
Timing the multiple cell death pathways initiated by
Rose Bengal acetate photodynamic therapy
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Rose Bengal acetate photodynamic therapy (RBAc–PDT) induced multiple cell death pathways in HeLa cells through ROS and
ER stress. Indeed, apoptosis was the first preferred mechanism of death, and it was triggered by at least four different pathways,
whose independent temporal activation ensures cell killing when one or several of the pathways are inactivated. Apoptosis
occurred as early as 1 h after PDT through activation of intrinsic pathways, followed by activation of extrinsic, caspase-12-
dependent and caspase-independent pathways, and by autophagy. The onset of the different apoptotic pathways and autophagy,
that in our system had a pro-death role, was timed by determining the levels of caspases 9, 8, 3 and 12; Bcl-2 family; Hsp70;
LC3B; GRP78 and phospho-eIF2a proteins. Interestingly, inhibition of one pathway, that is, caspase-9 (Z-LEHD-FMK), caspase-8
(Z-IETD-FMK), pan-caspases (Z-VAD-FMK), autophagy (3-MA) and necrosis (Nec-1), did not impair the activation of the others,
suggesting that the independent onset of the different apoptotic pathways and autophagy did not occur in a subordinated
manner. Altogether, our data indicate RBAc as a powerful photosensitiser that induces a prolonged cytotoxicity and time-related
cell death onset by signals originating from or converging on almost all intracellular organelles. The fact that cancer cells can die
through different mechanisms is a relevant clue in the choice and design of anticancer PDT.
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Photodynamic therapy (PDT) is a non-invasive treatment1

that involves the administration of a photosensitising drug
(PS) and its subsequent activation by light at wavelengths
matching the absorption spectrum of the PS. The activation of
the PS evokes photochemical reactions that produce lethal
toxic agents, such as reactive oxygen species (ROS), which
result in cell death and tissue destruction.2 In particular, the
cytotoxic effect depends on the intracellular localisation of the
PS.3 Among the various PS useful in PDT protocols, those
targeted on mitochondria are very powerful cytotoxic indu-
cers.4 However, PS localising in organelles other than
mitochondria have been also shown to be efficient in inducing
cell death.5–7 As the chemical/physical properties of PS define
its intracellular localisation, the oxidative stress induced can
be directed to a particular sub-cellular organelle modulating
the type and the biochemistry of cell death pathway.8

In this context, Rose Bengal acetate (RBAc) could have a
practical application in PDT,9–10 as introduction of acetate
groups increases its ability to cross cell membranes and
accumulate in cells. RB molecules, restored by cytoplasmic

esterases, redistribute through the cytoplasm, inducing multi-
ple organelle photo-damage.11 RBAc-mediated PDT is highly
efficient to induce cell death in human HeLa cells by
apoptosis9–14 and autophagy.15 It is known that cellular stress
can cause the induction of mitotic catastrophe, cellular
senescence and/or autophagy, which in many instances
accompanies apoptosis.16

The fact that cancer cells can die through different
mechanisms is a relevant clue in the choice and design of
anticancer therapy. In this context, prompt and positive
resolution of the cancer is important to know the amount
and the type of cell death, that is, apoptosis, necrosis and
autophagy, tolerogenic or immunogenic cell death, that are
produced by a specific chemotherapy.17 Indeed, only few of
the chemotherapeutic agents have the capacity to stimulate
immunogenic cell death18 that combines the cell death
induction through stimulation of immune cells, resulting in
the immunogenic apoptosis, which differs from normal
apoptosis (tolerogenic apoptosis).17 Apoptosis, largely in-
duced by PDT, is triggered by different pathways, initiated by
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activation of cysteine aspartyl-specific proteases (cas-
pases).19–21 Caspase activation is regulated by a variety of
factors, among which the Bcl-2 family has a pivotal role.22

Autophagy, on the other hand, is a catabolic process involved
in energy homeostasis, organelle turnover and in cancer
cell death.23

To date, the knowledge of the molecular mechanisms
involved in the induction of cell death by RBAc–PDT is still
scarce. In this work we analysed the temporal activation of the
different cell death types induced by RBAc–PDT. To define
the onset of apoptotic pathways, we tracked the activation of
caspases 3, 8 and 9, and cleavage of caspase-12 during 72 h
of recovery after irradiation; the role of some members of the
Bcl-2 family and endoplasmic reticulum (ER) stress. The
induction of autophagy was evaluated by detecting
the formation of autophagosomes and the presence of the
autophagic biomarker light chain-3B-II (LC3BII), and its pro-
death or pro-survival role was assessed by using
3-methyladenine (3-MA), an autophagic-specific inhibitor.
Finally, we elucidated the independence of both apoptosis
and autophagy, and the different apoptotic pathways initiated
after RBAc–PDT.

Results

RBAc–PDT triggered ROS generation. The cytotoxicity of
RBAc–PDT is ROS-mediated (Figure 1). Their generation
was time-dependent, with a maximum of threefold over that
of untreated HeLa cells measured soon after irradiation. ROS
levels were always significantly higher than that in untreated
cells and decreased progressively with time of recovery
(Figure 1a). ROS cytotoxicity was neutralised using the
antioxidant vitamin C (10 mM), achieving a partially rescued
cell viability and less severe RBAc–PDT toxicity (Figure 1b).

RBAc–PDT induced multiple apoptotic pathways in
HeLa cells. The activation of the different pathways of
apoptosis generated by RBAc–PDT was determined by
quantification of active caspase-9 (37 and 35 kDa), caspase-
8 (18 kDa) and caspase-3 (17 kDa), and cleaved caspase-12
(40 kDa) during 72 h of recovery after PDT. Photodynamic
treatment triggered the rapid activation of the intrinsic
pathway soon after irradiation, as indicated by the
presence of active caspase-9 (Figures 2A and B). This, in
turn, correlated with the onset of active caspase-3 (Figures
2A and B), the cytosolic release of cytochrome c (Figure 2C)
and the early appearance of apoptotic cells, whose number
and nuclear fragmentation increased progressively, with a
peak at 12 h after PDT. From 8 h after PDT, the level of active
caspase-9 decreased concomitantly compared with a
constant high presence of active caspase-3 during the
recovery time, which remained up to 72 h post PDT,
suggesting activation of other apoptotic pathways (Figures
2A and B). In fact, the level of active caspase-8 was found to
be five-fold over that in untreated cells at 8–12 h of recovery
and Hsp70 protein peaked at 12–18 h after PDT (Figure 2A).

RBAc–PDT also induced caspase-12-dependent apoptosis
(Figure 3). In fact, the cleaved form of caspase-12 was
markedly detected from 18 h up to the end of recovery

(Figures 3B and D). In order to confirm the real involvement of
this pathway, two ER stress markers, glucose-regulated
protein (GRP78) and eukaryotic initiation factor-2a (eIF2a)
were analysed. Overexpression of GRP78, two-fold over that
in untreated cells from 18 h up to the end of recovery, and we
observed an increment of the P-eIF2a/eIF2a ratio, approxi-
mately two-fold at 24 h of recovery (Figures 3A, B and D).

The pan-caspase inhibitor, Z-VAD, failed to completely
prevent apoptosis, supporting the involvement of a caspase-
independent apoptotic pathway. Indeed, in the presence of
Z-VAD and 3-MA, 10% of Annexin-V-positive HeLa cells were
found from 12 h up to the end of recovery (Table 1).

Bcl-2 family members regulated the intrinsic apoptotic
pathway. The level of Bcl-2 increased dramatically (four-fold
over that in untreated cells) in the cytoplasm from 8 h after
PDT, whereas it decreased in the membrane protein pool
within 4 h of recovery. The highest cytosolic amount of Bcl-2
was measured at 48 and 72 h of recovery (respectively,
8- and 10-fold that in untreated cells) (Figures 2D–F).

RBAc–PDT induced an early reduction of mitochondrial
transmembrane potential (Dcm) in HeLa cells,12,13 and an
extensive cytochrome c release into the cytosol as early as 1 h
after PDT (Figure 2C). The simultaneous increase of Bax–Bax

Figure 1 ROS levels and viability of RBAc–PDT-treated HeLa cells. (a) ROS
levels were detected by using NBT assay as reported under Materials and Methods.
The values are reported as optical density (OD) measured at 630 nm. ROS
production was measured in photosensitised HeLa cells and in untreated cells, or
cells incubated with vitamin C alone or in combination with photodynamic treatment.
Each value represents the mean±S.D. of three independent experiments. All PDT
values are significantly different (Po0.05) with respect to untreated and vitamin
C–PDT cells. (b) Viability was assessed by MTT assay. The values are reported as
percentage of OD measured at 570 nm of the untreated HeLa cells considered
as 100%. Each value represents the mean±S.D. of three independent
experiments. All PDT values are significantly different (Po0.05) with respect to
vitamin C–PDT cells
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homodimers (42 kDa) in the fraction of membrane proteins was
always significantly higher than that in non-photosensitised
cells up to the end of recovery (Figures 2D and F).

Conversely, the levels of cytosolic Bax–Bax homodimers
were approximately 7- and five-fold the value in untreated
cells from 18 to 48 h after PDT, respectively (Figures 2D

Figure 2 Induction of apoptosis. Time-dependent cleavage of caspases (A and B), cytochrome c release (C), and expression of Bcl-2 family member proteins (D–F) and
cytosolic Hsp70 (A). The cytosolic (A–E) and membrane (F) fractions (30mg protein/lane) of RBAc–PDT (10�5 M RBAc, 1 h, 1.6 J/cm2, 90 s)-treated HeLa cells at the
indicated time points after PDT were collected and assayed by western blotting, and developed using monoclonal antibodies against caspase-3, caspase-8, caspase-9,
Hsp70, Bcl-2, Bax and Bid proteins. Antibodies detected cleaved products of caspases-3 (17 kDa), caspase-8 (18 kDa), caspase-9 (37 and 35 kDa), and Hsp70, Bcl-2
(26 kDa), Bax (21 and 42 kDa) and Bid (24, 20, 16, 14 kDa). b-Actin was used as loading control. All blots shown (B–D) are representative of three experiments. The
densitometric analysis is reported as band intensity of the proteins under investigation normalised to that of untreated HeLa cells. The results are the mean±S.D. of three
independent experiments. *significantly different (Po0.05) with respect to untreated cells. The lower images in panel B show fluorescence micrographs of active caspase-3 in
RBAc–PDT-treated HeLa cells at 24 h of recovery after PDT. The cells were co-stained with Hoechstþ FLICA to visualise nuclei fragmentation (a; excitation, 365 nm;
emission, 480 nm) and caspase activation (b; excitation, 490 nm; emission, 516 nm), as reported under Materials and Methods. Phase-contrast micrographs of RBAc–PDT-
treated HeLa cells at 24 h of recovery after PDT (c). Bars¼ 10mm. (C) RBAc–PDT (10�5 M RBAc, 1 h, 1.6 J/cm2, 90 s)-treated HeLa cells were harvested at various time
points after PDT for the content of cytosolic and mitochondrial cytochrome c, whose concentrations, detected by ELISA assay, are expressed as percentage of pg cyt c/mg of
protein with respect to untreated values considered as 100%. *significantly different (Po0.05) with respect to the control
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and E). The membrane-associated Bax monomers (21 kDa)
increased soon after irradiation and at the longest time
periods (48–72 h) of recovery, whereas their level progres-
sively decreased in the cytoplasm. The levels of Bax
monomers were approximately 2.3-fold the value in the
cytoplasm of untreated cells at 24 h of recovery.

There was significant decrease in the level of Bid (24 kDa) in
the cytosol, which was approximately 1.5- and 2.5-fold the
values in untreated cells between 18 and 72 h of recovery,
respectively (Figures 2D and E). The 20-, 16- and 14-kDa
truncated forms of Bid (tBids) were detected within 1 h of
recovery in the cytosol (Figures 2D and E), from where they
disappeared (from 18 to 48 h after PDT) concomitantly to their
increment in the membrane protein pool (Figures 2D and F).

RBAc–PDT induced autophagy in HeLa
cells. Morphological and biochemical assays, that is,
monodansylcadaverine (MDC) staining, transmission

electron microscopy (TEM) and LC3BII expression, allowed
us to identify autophagy in photosensitised HeLa cells
(Figures 3D, C and F, respectively). The peak of
autophagy (25%) was measured at 8 h of recovery
(Table 1). Characteristic autophagosomes with a double
membrane surrounding damaged mitochondria are shown in
the transmission electron micrographs in Figures 3F, c and d.
Acidic vesicles of autophagic cells were stained with MDC
(Figures 3F, a and b). Induction of autophagy was further
supported by the conversion of LC3BI to LC3BII at 8 h after
PDT (Figures 3C and D).

Suppression of autophagy with 3-MA during RBAc photo-
sensitisation rescued 40% of cell viability with respect to
RBAc–PDT HeLa cells, suggesting a pro-death role of
autophagy (Figure 3E).

The different cell death types occurred independently
during RBAc–PDT. Tables 1–3 show the effect of selective

Figure 3 ER stress and induction of autophagy. Time-dependent phosphorylation of eIF2a (A), overexpression of GRP78 (B), cleavage of caspase-12 (B) and expression
of LC3BII protein (C). The cytosolic (A–C) and membrane (C) fractions (30 mg protein/lane) of RBAc–PDT (10�5 M RBAc, 1 h, 1.6 J/cm2, 90 s)-treated HeLa cells at the
indicated time points after PDT were collected and assayed by western blotting, and developed using monoclonal antibodies against eIF2a, P-eIF2a, GRP78, caspase-12 and
LC3BI–II proteins. Antibodies detected cleaved products of caspase-12 (p40), GRP78 (78 kDa), eIF2a (36 kDa), LC3BI (18 kDa) and LC3BII (16 kDa). b-Actin was used as
loading control. The densitometric analysis is reported as band intensity of P-eIF2a protein normalised to eIF2a (a); GRP78 and caspase-12 normalised to untreated HeLa
cells (B); and the LC3BII protein normalised to LC3BI (C). The results are the mean±S.D. of three independent experiments. All blots shown (D) are representative of three
experiments. *, significantly different (Po0.05) with respect to untreated cells. (E) Viability of RBAc–PDT-treated HeLa cells in the presence of 3-MA and Z-VAD was assessed
by MTT assay. The values are reported as percentage of optical density (OD) measured at 570 nm, normalised to untreated HeLa cells considered as 100%. Each value
represents the mean±S.D. of three independent experiments. All PDTþ 3-MA values are significantly different (Po0.05) with respect to PDT cells. (F) Fluorescence
microscopic micrographs of MDC (0.05 mM)-labelled, RBAc–PDT HeLa cells at 4 (a) and 8 h (b) of recovery. Bars¼ 10mm. Electron microscopic (TEM) micrographs of HeLa
cells at 4 (c) and 8 h (d) of recovery after PDT treatment, showing the presence of autophagosomes. The arrows indicate a double-membrane structure. M indicates
mitochondria. Bars¼ 0.5mm
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caspase-9 (Z-LEHD-FMK (Z-Leu–Glu(OMe)–His–Asp(OMe)-
fluoromethylketone)), caspase-8 (Z-IETD-FMK (Z-Ile–
Glu(OMe)–Thr–Asp(OMe)-fluoromethylketone)), pan-
caspase (Z-VAD-FMK (benzyloxycarbonyl-Val–Ala–Asp
(OMe)-fluoromethylketone)), autophagy (3-MA) and
necrosis (necrostatin-1 (Nec-1)) inhibitors on the rate of cell
death over the course of 72 h of recovery after PDT.

Inhibition of autophagy with 3-MA, apoptosis with Z-VAD
and necrosis with Nec-1, alone or in combination, did not
interfere with the onset and rate of apoptosis, autophagy and
necrosis (Table 1). Similarly, the contribution to the rate of cell
deaths generated by the extrinsic apoptotic pathway in the
presence of the specific inhibitor of the intrinsic pathway, was
unchanged with respect to RBAc–PDT and vice versa
(Table 2).

Discussion

To our knowledge, this is the first report showing that the
photosensitiser RBAc is able to efficiently and independently
induce multiple cell death types, that is, apoptosis and
autophagy. Through this work RBAc has been further
confirmed as a very promising photosensitising drug as it
ensures long-term cytotoxic effects by induction of relevant
percentage of apoptosis and autophagy in a time-related
manner after PDT. Photo-killing has been shown to involve
the intrinsic or mitochondrial apoptotic pathway in virtually all
PDTs studied so far.7 Here we provide evidence that HeLa
cells exploit multiple pathways to induce apoptosis after
RBAc–PDT. Indeed, apoptosis is the first preferred mechan-
ism of death in our system and it is triggered by at least four

different pathways (Figure 4), whose independent temporal
activation ensures cell killing when one or several of the
apoptotic pathways are inactivated. Apoptosis occurred as
early as 1 h after irradiation by activation of the intrinsic
pathway, followed by the activation of the extrinsic, caspase-
12-dependent and caspase-independent pathways. Apopto-
sis was then followed rapidly by autophagy.

The crucial event responsible for cell death induction was
the prompt ROS generation after irradiation, whose amount
and site of generation is thought to determine the damage of
cellular components and the triggering of several signalling
pathways, including cell death.24 Indeed, as ROS accumula-
tion occurred upstream to all RBAc–PDT-induced apoptotic
events, is likely that the quick generation of ROS provoked
mitochondrial damage that, in turn, activated the intrinsic
apoptotic pathway. Immediately after irradiation, the Bcl-2
family members regulated the loss of Dcm

13 and the
consequent cytosolic release of cytochrome c, ending in the
cleavage cascade of caspase-9 and caspase-3. In fact, loss of
Dcm, owing to opening of the transition pore complex that
permeabilises the outer mitochondrial membrane (OMM), is a
very early event (1–2 h after PDT),13 even if mitochondria are
not the primary target of RBAc. Mitochondrial membrane
permeabilisation (MMP) after PDT is a crucial lethal event,
which is tightly controlled by Bcl-2 family members. Our data
are in line with those indicating pro-apoptotic Bcl-2 family
members as a critical gateway to the permeabilisation of the
OMM in photosensitised cells, and confirm the regulatory role
of these proteins of the intrinsic pathway, through mitochon-
drial regulation.22 However, the pro- or antiapoptotic role
of Bcl-2 proteins in PDT-mediated apoptosis is not yet

Table 2 Percentage of Annexin-V-positive HeLa cells untreated and at different recovery time points after incubation with 10�5 M RBAc for 1 h and irradiation with
1.6 J/cm2 for 90 s

Recovery time (h) CTRL

1 2.8±1.1 2.9±0.6 2.7±0.9 1.7±0.4 2.8±0.9
2 3.9±0.9 2.6±0.5 2.8±1.1 1.6±0.6 2.4±0.9
4 3.5±1.7 3.1±0.3 3.2±0.8 1.8±0.5 2.1±0.7
8 8.1±1.1 5.6±0.5 5.2±1.1 1.9±0.3 3.1±1.1
12 8.9±0.98 4.9±0.6 4.8±0.5 2.2±0.7 2.9±1.2
18 10.4±0.4 6.1±0.6 5.9±1.1 2.8±0.6 3.2±0.9
24 11.2±0.9 6.5±1.1 6.4±1.2 2.6±0.9 3.4±0.8
48 10.9±1.2 7.1±1.2 6.9±1.1 2.9±1.1 2.9±0.6
72 9.9±0.8 7.4±1.3 7.2±0.9 3.1±1.2 2.8±0.6

RBAc-PDT
1 29.4±2.1*a 30.5±1.7*a 4.5±1.1*e 5.6±0.6*e 2.8±1.3g

2 28.9±1.9*a 29.9±0.9*a 5.2±0.8*e 8.5±0.7*e 2.5±0.9g

4 30.4±0.9*a 31.5±0.2*a 4.9±0.7*e 15.2±1.2*f 14.9±0.7*f

8 41.5±1.4*b 39.9±1.1*b 31.5±1.6*a 25.2±1.1*a 26.4±1.1*a

12 49.8±1.1*c 23.5±2.3*d 32.6±2.1*a 20.4±0.5*a 26.9±1.4*a

18 42.6±0.9*b 24.9±1.9*d 30.1±1.1*a 20.9±1.2*a 27.1±1.6*a

24 43.1±1.3*b 23.6±1.4*d 31.4±0.9*a 19.9±0.9*a 26.3±1.3*a

48 39.3±2.1*b 21.5±1.8*d 29.8±1.1*a 17.9±0.8*a 25.9±1.1*a

72 37.6±1.8*b 22.1±2.3*d 31.2±1.7*a 18.1±0.7*a 25.4±0.9*a

Z-IETD-FMK � + � � +
Z-LEHD-FMK � � + � +
Z-VAD-FMK � � � + �s

Abbreviations: Z-IETD-FMK, Z-Ile–Glu(OMe)–Thr–Asp(OMe)-fluoromethylketone, caspase-8 inhibitor; Z-LEHD-FMK, Z-Leu–Glu(OMe)–His–Asp(OMe)-fluoro-
methylketone, caspase-9 inhibitor; Z-VAD-FMK, benzyloxycarbonyl-Val–Ala–Asp(OMe)-fluoromethylketone, pan-caspase inhibitor. The fraction of apoptotic dead
cells was determined by counting Annexin-V-positive HeLa cells. At least 500 cells were scored for each time point using a fluorescence microscope. The values are
the mean±S.D. of three independent experiments. The asterisks indicate significant values (Po0.05) versus those in untreated ones. Significantly different
(Po0.05) values among samples are indicated by various alphabets. HeLa cells were incubated with RBAc for 60 min, followed by 90 s of light irradiation (1.6 J/cm2)
and then recovery in fresh medium (1, 2, 4, 8, 12, 18, 24, 48 and 72 h).
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established convincingly. For instance, in HeLa cells over-
expressing Bcl-2, partial protection from verterporfin-
mediated apoptosis has been observed;25 paradoxically, in
MCF10A cells photosensitised with aluminium phthalocya-
nine (AlPc), increased levels of Bcl-2 enhanced the efficiency
of photo-killing.26 Probably, photo-generation of ROS repre-
sents a signal in the delocalisation and insertion of Bax on the
OMM.27 In fact, the molecular mechanisms of activation of
Bax are not completely understood and they are only
speculative in PDT. Our data on the levels of Bax monomers
and Bax–Bax dimers in the cytosol and in membrane proteins
pool are in agreement with the findings that relocation of Bax
from the cytosol to the mitochondria occurs before release of
cytochrome c.28 An exception is provided by smooth-muscle

cells photosensitised with verteporfin, where translocation of
Bax to mitochondria was detected secondary to the release of
cytochrome c.29 We hypothesised that membrane-associated
Bax monomers could engage a close molecular cooperation
with proteins from the permeability transition pore complex
(PTPC), such as adenine-nucleotide translocators (ANTs) or
voltage-dependent anion channels (VDACs), to induce MMP.
Alternatively, Bax, inserted as monomer in the OMM,
destabilised the lipid bilayer, allowing the release of cyto-
chrome c.20 Indeed, the drastic reduction of Dcm

13 may
depend on molecular openings induced by Bax–Bax dimers
as suggested by their increment on membrane proteins pool.

A signal for the loss of Dcm could be the dramatic and
specific photo-induced oxidation of Bcl-2, with loss of its
function.30 These events interfere with the antiapoptotic
function of Bcl-2 on the OMM and act as a permissive signal
to induce Bax-mediated MMP. Thus, the observed decrement
of Bcl-2 in the cytosol could probably be because of loss of
function of the protein, induced by photosensitisation with
RBAc. It is known that Bcl-2 protein associated to ER can be
photo-damaged by PDT.30 Other signals able to activate Bax
could not be excluded, such as alteration of calcium (Ca2þ )
homeostasis caused by photodynamic reactions developed in
the ER, which is the main store of Ca2þ in the cell. We have
already reported that [Ca2þ ]i increases in photosensitised
cells soon after 1 h after RBAc–PDT, the time in which loss of
function of Bcl-2 and activation of Bax were observed.
Moreover, increment of [Ca2þ ]i, 12 h after PDT, corresponds
to the peak of apoptosis and to the dramatic damage of
the ER.13,15

Bcl-2 family proteins also regulated the intrinsic pathway
through activation of Bid, which is a molecular cross-talk
between the extrinsic and the intrinsic pathway. Bid is cleaved
by caspase-8 in a truncated form (tBid), which translocates
from the cytosol to the OMM, mediating pore formation.22

Indeed, from 12 to 18 h after PDT, whereas native Bid
decreased in the cytosol, tBid increased in the membrane
proteins pool. As RBAc–PDT influences lysosomes,12,13 the
Bid protein can be fragmented not only by active caspase-8
but also by cathepsin released in the cytosol after alteration of
the lysosomal membrane.31

The high level of cleaved caspase-3 during the entire
recovery time, even when the level of active caspase-9 was
negligible, indicated activation of other caspases, such as
caspase-8 and, to a lesser extent, caspase-12. Indeed, our
data show that, in RBAc–PDT, apoptosis was further induced
by activation of the extrinsic pathway (from 12 to 72 h of
recovery), the caspase-12-dependent pathway (from 18 h to
72 h of recovery) and the caspase-independent pathway (from
12 to 72 of recovery) (Table 3). Caspase-12-dependent
apoptosis was triggered by ER stress, as suggested by
phosphorylation of eIF2a and upregulation of GRP78. The
pan-caspase inhibitor Z-VAD confirmed the involvement of
the caspase-independent pathway. Accordingly, Bottone
et al.32reported that the apoptosis-inducing factor (AIF)
translocates from mitochondria to the nucleus from 24 to
72 h after RBAc PDT, indicating the involvement of a caspase-
independent pathway.

A substantial contribution to the killing of tumour cells was
also provided by induction of autophagy and ER stress. These

Table 3 Time-related onset of the different cell death types generated by
RBAc–PDT in HeLa cells

Time of recovery post PDT (h)
Inhibitors 1 2 4 8 12 18 24 48 72

Z-VAD-FMK 

Z-IETD-
FMK 

      
      

     

     
      

Z-LEHD-
FMK 

     

     
      

Nec-1 

      
     

     

3-MA
     
     

Autophagy

Secondary necrosis

Caspase-independent apoptotic pathway

Caspase-12-dependent apoptotic pathway

Intrinsic apoptotic pathway

Extrinsic apoptotic pathway

Abbreviations: 3-MA, 3-methyladenine, autophagy inhibitor; Nec-1, necrosta-
tin-1, necrosis inhibitor; Z-IETD-FMK, Z-Ile–Glu(OMe)–Thr–Asp(OMe)-fluor-
omethylketone, caspase-8 inhibitor; Z-LEHD-FMK, Z-Leu–Glu(OMe)–His–
Asp(OMe)-fluoromethylketone, caspase-9 inhibitor; Z-VAD-FMK, benzyloxy-
carbonyl-Val–Ala–Asp(OMe)-fluoromethylketone, pan-caspase inhibitor. HeLa
cells were incubated with 10�5 M RBAc for 1 h and irradiated with 1.6 J/cm2 for
90 s in the presence of different inhibitors of cell death. Cells were analyzed
during 72 h of recovery after irradiation.
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two latter PDT outcomes are of particular interest as certain
promising anticancer regimens have been shown to
concomitantly activate ER stress and autophagy.33

Autophagy was detected in HeLa cells in response to
RBAc–PDT by morphological and biochemical criteria. We
showed a time-dependent conversion of LC3BI into its
autophagosome-bound form LC3BII, which is a hallmark of
autophagy and we observed the presence of autophago-
somes in photosensitised HeLa cells, as well as MDC-positive
vacuoles. As already indicated by several studies examining
the role of autophagy in cancer, this process can be a pro-
death as well as a pro-survival pathway.34 Our inhibition data
indicate the pro-death role played by autophagy in the RBAc–
PDT of HeLa cells. It is thus likely that autophagy occurred
initially to eliminate damaged mitochondria, but the

persistence of the injury favoured the pro-death pathway.
On the other hand, autophagy was also initiated following ER
stress, as already reported for other mammalian cells.35 The
onset of ER stress was proved by the concomitant increase of
two ER stress sensors, that is, phosphorylated eIF2a and
GRP78. It is well known that ER may act as a critical control
point in several apoptotic pathways activated by stimuli that
cause a Ca2þ overload or perturb the Ca2þ homeostasis.36

Indeed, the reported increase of [Ca2þ ]i as early as after 1 h
after RBAc–PDT confirms the critical role of ER in cell death,
also supported by the fact that, the highest increment of
[Ca2þ ]i, 12 h after PDT, corresponds to the peak of apoptosis
and to the dramatic damage of the ER.13,15

The ER stress response is activated to protect cells from
various alterations affecting this organelle. However, when

Figure 4 The mechanism of photocytotoxicity of RBAc–PDT in HeLa cells. RBAc–PDT treatment induces cell death in HeLa cells through four different cell death
pathways. (1) Mitochondrial or intrinsic pathway: Caspase-9 is the first caspase to be activated (2–8 h after irradiation) by the formation of an apoptosome, inhibited at 12 h by
the increased level of free cytosolic Hsp70 protein. Cytosolic Bax monomers translocate to the OMM, Dcm collapses and cytochrome c is released into the cytosol through
pores formed by Bax oligomers (a), Bax-associated PTPC (b), Bax-mediated lipid bilayer destabilisation (c) and Bax–tBid association (d). (2) Extrinsic pathway: Trimerisation
of death receptors (such as Fas and TNF) mediated by ROS and activation of caspase-8 (8–12 h after irradiation), which in turn cleave Bid to form tBid, which translocates to
the OMM. (3) ER stress-mediated pathway: ROS-mediated stress to the ER, early (1 h) after irradiation, inducing the removal of Ca2þ ions at 12 h; damage of ER activates
caspase-12 (18 h after irradiation). (4) Caspase-independent pathway: Release of apoptogenic factors from mitochondria following Dcm decrease triggers chromatin
fragmentation without caspase-3 involvement
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the intensity or duration of ER damage cannot be restored by
this response, ER stress can also lead to cell death.37

Likewise, autophagy can help to cope with ER stress or
participate in the mechanism of ER stress-induced cell death.
Thus, ER stress and autophagy can activate both pro-survival
mechanisms as well as lethal programs, depending on the
type of cancer and cytotoxic agents used. In our experimental
system, both ER stress and autophagy promoted cell death. In
terms of therapeutic outcome, drugs/treatments capable of
activating the proapoptotic branch of ER stress and autop-
hagy, while simultaneously inhibiting their pro-survival func-
tion, should provide the highest therapeutic benefit.

Interestingly, temporal activation of apoptosis and auto-
phagy in RBAc–PDT ensures cell death when one or several
of these pathways are inactivated. Indeed, in our system all
these pathways are exploited independently, thus inhibition of
one or more than one pathway is ineffective in blocking or
delaying the onset of cell deaths, and in regulating the
percentage of dead cell generated by the non-inhibited
pathways. Conversely to the data of Granville et al.28 showing
that, when the intrinsic pathway is suppressed or not activated
perfectly, the apoptosis commitment is mediated by the
extrinsic pathway, in our system, the activation of the extrinsic
apoptotic pathway is independent of the suppression of the
intrinsic one or any other. Possible reasons could be ROS,
which, besides its crucial role in mitochondrial damage, could
also be an important factor in the processing of cell death
receptor activation and subsequently activation of caspase-8.
ROS could also have a significant role in the trimerisation of
membrane receptors, favoured by binding of RBAc to the
plasma membrane and the very short distance of diffusion of
singlet oxygen.38 In addition, the role of Hsp70 proteins in the
activation of the extrinsic pathway at 12/18 h after irradiation
must be also taken into account. Indeed, the Hsp70 protein is
a negative regulator of mitochondrial pathway of apoptosis, as
it binds to the caspase activation and recruitment domain
(CARD) of apoptotic protease-activating factor-1 (Apaf-1),
preventing apoptosome complex formation.39 We found that
the level of free Hsp70 in the cytosol largely increased from 18
to 72 h after RBAc–PDT, displacing pro-caspase-9 from the
apoptosome. Accordingly, inhibition of caspase-8 did not
prevent the activation of the intrinsic and caspase-12-
dependent pathways.

We found that necrosis was always negligible and HeLa cell
death was preferentially executed through apoptosis and
autophagy. Thus, as autophagy is a quality-control mechan-
ism involved in the removal of ROS-damaged proteins and
organelles,23 it is plausible that reducing ROS damage by
autophagic degradation limits necrotic cell death in our
paradigm. In fact, Coupienne et al.40 suggest that
5-aminolaevulinic acid–PDT (5-ALA–PDT) in human glioblas-
toma LN18 and U87 cell lines induces autophagy, with a
protective role against necrosis.

In summary, based on the results discussed above, it can
be stated that the main advantage of using RBAc–PDT is that,
several signalling processes are initiated in exposed cells,
leading to rapid, independent and successive onset of
different cell death types. This allows also a significant
percentage of tumour dead cells when one or more death
pathways are inhibited or lacking. Consequently, RBAc is a

powerful cytotoxic PDT photosensitiser that is able to induce a
long-lasting and time-related cell death onset by signals
originating from or converging on almost all intracellular
organelles. Indeed, RBAc–PDT cell damage involves several
organelles, that is, mitochondria, lysosomes, Golgi apparatus
and ER, despite RBAc primary perinuclear intracellular
localisation.11

Materials and Methods
Chemicals. A stock solution (10�2 M) was obtained by diluting RBAc in dimethyl
sulphoxide: the solution, at a final concentration of 10�5 M, was added directly to the
culture medium. All other chemicals used were of the highest purity commercially
available. Unless otherwise stated, all chemicals are purchased from Sigma-Aldrich
Chem. Co. (St. Louis, MO, USA).

Cell culture. The human cervical carcinoma HeLa cell line was cultured in
Eagle’s minimum essential medium (EMEM) (Cambrex, Verviers, Belgium)
supplemented with 10% fetal calf serum (FCS), 2 mM L-glutamine (Cambrex),
100 IU/ml penicillin and streptomycin solution, and 10 000 U/ml nystatin (antimycotic
solution) (Cambrex), in a 5% CO2 humidified atmosphere at 37 1C. The cells were
maintained in 75 cm2 flasks (at a cell concentration of 2� 105/1� 106 cells/ml) by
passage every 3–4 days.

PDT treatment. Cells were incubated with RBAc (10�5 M) in EMEM medium
supplemented with 10% FCS for 60 min at 37 1C. After incubation, the culture
medium was replaced with phosphate-buffered saline (PBS) (0.2 M, pH 7.4),
previously allowed to equilibrate with 5% CO2 humidified atmosphere, without
phenol red, to avoid undesired photosensitising effects. The cells were then exposed
for 90 s to an innovative green light-emitting diode (LED), DPL 305 (QTL Inc., Atlanta,
GA, USA), emitting at 530±15 nm, in order to obtain 1.6 J/cm2 as the total light dose.
The cells were then rinsed twice with 0.2 M PBS (pH 7.4), transferred to drug-free
complete medium and allowed to recover for different time periods (from 0 to 72 h).

Cytochrome c. Quantitative determination of cytochrome c was performed by
Assay Designs’ human Cytochrome c TiterZyme Enzyme Immunometric Assay
(EIA) (Assay Designs Inc., Ann Arbor, MI, USA). Treated cells at various time points
after PDT were rinsed twice with 0.2 M PBS (pH 7.4) and resuspended in a digitonin
cell permeabilization buffer (250 nM sucrose, 137 mM NaCl, 70 mM KCl, 1.3 mM
Na2HPO4, 1.4 mM K2HPO4, 0.2 mg/ml digitonin and 0.1% hydorol-M) to obtain the
cytosolic fraction of cytochrome c and then in RIPA cell lysis buffer (50 mM Tris-HCl
(pH 7.4), 150 mM NaCl, 1 mM EDTA, 1 mM EGTA, 1% Triton X-100, 1% sodium
deoxycholate and 0.1% SDS) to obtain the mitochondrial fraction of cytochrome c.
Both fractions were incubated with a monoclonal antibody to cytochrome c
immobilised on a microtiter plate for 1 h. Then sample in excess was washed out
and a biotinylated monoclonal antibody to cytochrome c was added. After 1 h of
incubation, excess antibody was washed out and streptavidin conjugated to alkaline
phosphatase was added for 30 min, before the addition of the pNpp substrate for
additional 45 min. The colour generated by the reaction was read at 405 nm, using
the ETI-SYSTEM Fast Reader (Sorin Biomedica, Vicenza, Italy). The values were
expressed as picogram of cytochrome c in total protein in milligram. Protein
concentration was measured by a Bio-Rad protein assay.

Immunoblot analysis. At established time points after PDT, HeLa cells were
collected by trypsin/EDTA 0.25%, washed in ice-cold PBS, suspended in lysis buffer
(50 mM Tris-HCl (pH 7.4), 10 mM DTT and 1 mM PMFS) and further centrifuged at
10 000� g for 10 min. In order to separate the cytosolic and membrane proteins, the
samples were centrifuged at 36 000� g for 1 h. The sediment (membrane proteins) was
removed and suspended in Tris-HCl (1 mM)–DTT (50 mM)–PMSF (1 mM). The proteins
were de-lipidated by various passages in methanol/chloroform. The supernatant
(cytoplasm proteins) was precipitated in acetone. Then, the proteins were suspended in
sample buffer (0.0625 M Tris-HCl (pH 6.8), 10% glycerol, 2% SDS, 50 mM DTT and
1 mM PMFS) and solubilised in a boiling water bath for 5–6 min. Protein concentration
was determined by Bio-Rad protein assay.

Proteins (30mg) were separated by 13% SDS-PAGE under reducing conditions,
followed by western blotting. The membranes were blocked for 1 h in 25 mM TBS
(pH 8.3)/3% BSA. The following monoclonal primary antibodies were incubated
with the appropriate membranes: anti-caspase-3 antibody (diluted 1 : 200),
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anti-caspase-8 antibody (diluted 1 : 200), anti-caspase-9 antibody (diluted 1 : 1000),
anti-caspase-12 antibody (diluted 1 : 200) (each from MBL, Woburn, MA, USA);
anti-Bax antibody (diluted 1 : 2000), anti-Bcl-2 antibody (diluted 1 : 1000), anti-Bid
antibody (diluted 1 : 3000) (Abcam Inc., Cambridge, MA, USA); anti-Hsp70 antibody
(diluted 1 : 2000), anti eIF2a antibody (diluted 1 : 1000), anti phospho-eIF2a
antibody (diluted 1 : 1000) (Cell Signaling Technology Inc., Beverly, MA, USA); anti-
GRP78 antibody (diluted 1 : 1000) (Santa Cruz Biotechnology Inc., Santa Cruz, CA,
USA); anti-LC3B antibody (diluted 1 : 500) (MBL); and anti-actin antibody (diluted
1 : 2000). Appropriate IgG biotin-conjugated secondary antibodies (1 : 2000) were
incubated with the membranes for 2 h. The membranes were incubated with
ExtrAvidin peroxidase (diluted 1 : 1500) at 4 1C for 1 h, and after extensive washing
in 25 mM TBS (pH 8.3), the membranes were incubated with a DAB solution for
20 min in the dark. A densitometric analysis was performed using a GS-700 Imaging
Densitometer (Bio-Rad, Hercules, CA, USA).

Qualitative analysis of caspase activity. Qualitative analysis of
caspase-3, caspase-8 and caspase-9 was performed using the FLICA Apoptosis
Detection kit (Immunochemistry Technologies, LLC, Bloomington, MN, USA), based
a fluorochrome inhibitor of caspases (FLICA). Twenty-four hours before PDT
treatment, 1� 105 HeLa cells were seeded on coverslips in six-multi-well plates.
The cells were then treated with RBAc. At established time points after PDT, the
cells were stained with 30� FLICA solution in culture medium (1 : 30 ratio). The
cells were then counterstained with Hoechst and observed under a fluorescence
microscope, Eclipse 80i (Nikon, Tokyo, Japan), using a band-pass filter (excitation
490 nm, emission 520 nm), to view the green fluorescence of caspase-positive cells
and a UV filter (excitation 365 nm, emission 480 nm) to view Hoechst stain.

Transmission electron microscopy. The presence of autophagosome
vacuoles in HeLa cells was investigated by TEM. Cells were fixed with 2.5%
glutaraldehyde in cacodylate buffer (pH 7.4), for 1 h at freezing temperature and
post-fixed with 1% OsO4 in same buffer. The samples were then dehydrated,
embedded in Spurr resin and examined with a Zeiss 910 transmission electron
microscope operating at 80 kV.

Inhibition experiments. Caspase activation was inhibited by using specific
inhibitor of caspase-9 (20 mM Z-LEHD-FMK; R&D Systems, Minneapolis, MN, USA)
and caspase-8 (20mM Z-LETD-FMK; R&D Systems); apoptosis was inhibited by
using pan-caspase inhibitor (20 mM Z-VAD-FMK; R&D Systems); autophagy was
inhibited by using 3-MA (10 mM; Sigma-Aldrich Chem. Co., St. Louis, MO, USA),
and necrosis was inhibited by using Nec-1 (300mM; Santa Cruz Biotechnology Inc).
The cell death inhibitors were added alone and in the presence or absence of others
inhibitors 30 min before photodynamic treatment, during RBAc treatment (1-h
incubation) and after irradiation during recovery time periods (1, 2, 4, 8, 12, 18, 24,
48 and 72 h), in a 5% CO2 humidified atmosphere at 37 1C. Dead cells were
evaluated by using the Annexin-V/propidium iodide (PI) and MDC staining.

Annexin-V/PI staining. Dead cells were detected by the Annexin-V–fluorescein
isothiocyanate (FITC) Apoptosis Detection kit (Sigma, St. Louis, MO, USA). Cells
were rinsed twice with 0.2 M PBS (pH 7.4) and incubated for 10 min in complete
culture medium containing 0.5mg/ml FITC-conjugated Annexin-V and 2mg/ml PI.
Dead cells were recognised with a fluorescence microscope Eclipse 80i (Nikon) for
their positivity to Annexin-V that binds the phosphatidylserine residues translocated
to the outer leaflet of the plasma membrane. Early apoptotic cells were stained only
by Annexin-V–FITC, necrotic cells were simultaneously stained by PI and Annexin-
V–FITC and living cells were not stained. Counts were performed on at least 20
randomly chosen microscopic fields (� 40) and at least 300 cells were analyzed.

MDC staining. HeLa cells were stained with 0.05 mM MDC (Fluka Chemie,
Buchs, Switzerland) in PBS after PDT treatment at room temperature (RT) for
10 min. The cells were washed two times with PBS and immediately observed using
the fluorescence microscope, Eclipse 80i (Nikon). Counts were performed on at
least 20 randomly chosen microscopic fields (� 40) and at least 300 nuclei were
analysed.

Measurement of ROS generation and cell viability assay
Nitrobluetetrazolium. ROS were monitored by using nitrobluetetrazolium
(NBT) assay. After PDT treatment, performed in the presence and in the
absence of vitamin C (10 mM; Bayer, Leverkusen, Germany), HeLa cells were
incubated with 0.1 mg/ml NBT in EMEM culture medium for 2 h at 37 1C. The cells

were washed three times with methanol and ROS generation, directly associated to
the amount of NBT-formazan salt produced, was determined by NBT dye reduction,
and it can be determined spectrophotometrically (DU 640B; Beckman Coulter, Brea,
CA, USA) at 630 nm after solubilisation of crystal in 1 ml containing solution KOH
(2 M)/dimethyl sulphoxide (DMSO) (460ml KOH and 540 ml DMSO).

MTT. MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrasolium bromide) assay
(98%; Sigma-Aldrich) is a cytotoxicity method. Briefly, at fixed recovery time points
following RBAc incubation and irradiation, cells were incubated with 1 mg/ml MTT in
culture medium for 2 h. After extensive washing in PBS, live cells were determined
by MTT dye reduction. The amount of MTT-formazan produced is directly
associated with cell vitality and it can be determined spectrophotometrically (DU 640
B; Beckman Coulter, Brea, CA, USA) at 570 nm after solubilisation of crystal in 1 ml
of DMSO.

Statistical analysis. Two-tailed Student’s t-test was used to analyze
differences between controls and treated samples. The data are presented as
the mean value±S.D., and all tests were performed at the 0.05 significance level.
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