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Abstract
Incorrect protein translation, caused by codon mismatch, is an important problem of living

cells. In this work, a computational model was introduced to quantify the effects of codon

mismatch and the model was used to study the protein translation of Saccharomyces cere-

visiae. According to simulation results, the probability of codon mismatch will increase when

the supply of amino acids is unbalanced, and the longer is the codon sequence, the larger is

the probability for incorrect translation to occur, making the synthesis of long peptide chain

difficult. By comparing to simulation results without codon mismatch effects taken into

account, the fraction of mRNAs with bound ribosome decrease faster along the mRNAs,

making the 5’ ramp phenomenon more obvious. It was also found in our work that the pre-

mature mechanism resulted from codon mismatch can reduce the proportion of incorrect

translation when the amino acid supply is extremely unbalanced, which is one possible

source of high fidelity protein synthesis after peptidyl transfer.

Introduction
Understanding of the gene translation process is important for human health[1–3], biotech-
nology [4–6] and evolution[3,4,7,8]. In recent years a number of technologies have been
developed to characterize different features related to the gene translation and multiple roles
of the coding sequence have been proposed. Recent studies suggested that the order of codons
along the mRNA plays an important role in determining translation efficiency[4,9–11]. It was
suggested that there is weak folding of mRNA molecule in the region surrounding the start
codons[9–16], and endogenous genes tend to perform strong mRNA folding in the region
after the start codon[10,17,18], which can improve the fidelity of translation initiation
[10,17,19,20]. It was also suggested that the first 30–50 codons at the beginning of the open
reading frame (ORF) tended to be recognized by tRNA species with lower intracellular abun-
dance[6,21,22], resulting in slower ribosomal elongation speed in this region[6,23,24]. Fast
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initiation of short genes also causes a 5’ ribosomal ramp[14]. However, this process is still
enigmatic with contradicting conclusions in different studies. Although there are many publi-
cations show that the codon sequence is one reason of the 5’ end ramp, other research sug-
gested that the ramp of 5’ end is caused primarily by faster initiation in short genes, rather
than by the ordering of codons within each gene[14]. In this paper, we proposed that the ribo-
some premature is another causeof5’ ramp.

Translation of mRNA has been studied by a variety of computational models based on the
totally asymmetric simple exclusion process, justifying the role of codon ordering in deter-
mining spatial patterns of ribosomes along mRNAs[18,25]. Such models were built based on
constant, inexhaustible supplies of amino acids, free ribosomes and free tRNAs in the cell. A
more realistic alternation, the “Whole cell”[14] was developed to investigate the gnome scale
gene translation properties. This model tracks all ribosomes and tRNAs in a cell—each of
which is either freely diffusing or bound to a specific mRNA molecule at a specific codon
position at any time point. Transition rates among states are parameterized in seconds so
that the model describes the dynamics of translation in real time. Unlike many other models
of translation, which treat each mRNA molecule in isolation and assume an inexhaustible
supply of free ribosomes that initiate the message at a constant rate, “Whole cell”model
keeps track of every tRNA, mRNA, and ribosome molecule in the cell simultaneously. But
codon mismatch effects, leading to premature, especially under unbalanced starvation condi-
tions[26,27], was still ignored in the “Whole cell”model. Our model are based on the “Whole
cell”model, and focus on a previously ignored problem: the effect of codon mismatch and
translation premature. From the simulation result of our model, the premature is one reason
for the 5’ ramp and cannot be ignored. Although the chance of codon mismatch at each
codon is low[28], it can be accumulated along the long mRNA sequence. In order to investi-
gate the codon mismatch effects in translation processes[29–32], we built a model to study
the translation performance under two different conditions: balanced and unbalanced
amino-acid supplies.

Methods

Model description
Our model takes the premature event into account (Fig 1). Consider a set of mRNA sequences
and each has Ni sites (i is the index of sequence) which can either be occupied by a ribosome or
be empty, ribosomes can transfer between different sites according to the following rules: given
a movable ribosome randomly, if its current position j (j, 1� j� Ni) is between 1 and Ni− 1,
then the ribosome on site j will move to site j + 1.

In this process, codon mismatch can occur based on a predefined probability. For mRNA i,
codon j, the codon mismatch probability pj_mis can be calculated based on the number of avail-
able aminoacyl tRNAs (Eqs 1–5). Here pmis_based is the average mismatch probability under
normal conditions, which is available from experimental results[28]; prelative_mis_aa is the aver-
age probability of mismatch for the current codon under normal amino acid supply conditions;
prelative_match_aa is the average match probability for the current codon under normal amino
acid supply conditions; pmis_abort is the total premature probability for a ribosome when a
codon mismatch occurs. If a non-cognate amino acyl tRNA is incorporated, the peptide chain
will lose specificity in the A site of the ribosome and the propagation of this error may result in
premature of the peptide[28,33]. From Fig 2 [28], we can see that when a codon mismatch
occurs, the premature probability for a ribosome is rather high. Because the probability of con-
tinuing an incorrect translation will be significantly reduced, the premature termination is
assumed to occur immediately after the first mismatch with the defined probability in this
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model.

prelative mis aa ¼
pmis based

61
ð1Þ

prelative match aa ¼ 1� pmis based ð2Þ

For the current codon j, the index of matched aminoacyl tRNA type is t; x is the set of
matched aminoacyl tRNA; pj_total_relative_mis is the probability of mismatch and pj_total_relati-
ve_match is the probability of match.

pj total relative mis ¼
X

t=2x
Tf
t prelative mis aa ð3Þ

pj total relative match ¼
X

t2x
Tf
t prelative match aa ð4Þ

pj mis ¼
pj total relative mis

pj total relative match þ pj total relative mis

ð5Þ

pj match ¼
pj total relative match

pj total relative match þ pj total relative mis

ð6Þ

Here Tf
t is the number of free aminoacyl tRNAs of type t. For a movable ribosome on site j,

it has three possible moves. The probability of the ribosome to move to the next site correctly is

Fig 1. Translation schematic diagram.When a codon mismatch occurs, the ribosome will either abort or continue to translate the left codons. When the
ribosome aborts, all the work has been done will become invalid and the ribosome will return to the free pool, while some ribosomes can still reach the ending
codons with incorrect peptides, which will decrease translation efficiency.

doi:10.1371/journal.pone.0148302.g001
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pj_match; the probability for it to move to the next position, but performing incorrect translation
is pj_mis × (1 –pmis_abort); and the probability of a premature termination is pj_mis × pmis_abort.

A reasonable estimation of the initiation rate under various conditions is a key problem.
Here we assume that the initiation rate is the bottleneck of translation rate because the average
number of ribosomes on mRNA sequences is small, indicating that the transfer between differ-
ent sites should be much faster than the initiation[18,24,34]. Here we infer that the initiation
rate is determined by the supply of free Methionyl-tRNAs and ribosomes (Eqs 9 and 10).

Initiation rate for one mRNA of gene i:

if ðM > Rf Þ : ri ¼
Rf pi
trNr

ð7Þ

if ðM <¼ Rf Þ : ri ¼
Mpi
trNr

ð8Þ

Total initiation rate:

if ðM > Rf Þ : rt ¼
Xn

i¼1

Rf fiAipi
trNr

ð9Þ

Fig 2. An initial miscoding event results in an overall drop in yield of full-length peptides. (adapted from nature. 2009, 457(8):161, with permission from
NATURE) Proposed model for the events after a miscoding event with the steps contributing to the quality control described here highlighted by green
arrows. PT, peptidyl transfer.

doi:10.1371/journal.pone.0148302.g002
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if ðM <¼ Rf Þ : rt ¼
Xn

i¼1

MfiAipi
trNr

ð10Þ

fi is the fraction of mRNAs of gene i that can be initialized. Ai is the number of mRNAs of type
i. pi is the gene-specific initiation probability[14], Dr is the diffusion coefficient of ribosomes.
Dt is the diffusion coefficient of tRNAs, τr and τt are the characteristic times of ribosomes and
tRNAs[14], Rf is the number of free ribosomes,M is the number of free Methionyl-tRNAs.
Because the mismatched aminoacyl tRNAs also have a certain chance to be accepted in the
translation especially with an unbalanced amino acid supply, a transfer rate is introduced.

Transfer rate for one ribosome on codon:

εj ¼
Cf

jojs

ttNt

ð11Þ

Total transfer rate:

εt ¼
X61

j¼1

Rb
j C

f
jojs

ttNt

ð12Þ

Cf
j ¼

X61

k¼1

pk j � Tf
k ð13Þ

If the anticodon k does not match codon j:

pk j ¼
pmis based

61
ð14Þ

If the anticodon kmatches codon j:

pk j ¼ 1� pmis based ð15Þ

ωj is the wobble parameter, s is tRNA competition coefficient, Tf
k is the number of free tRNAs

of type k. This model can also simulate the process that does not count codon mismatchby set-
ting pmis_based = 0.

Simulation Setup Details
To investigate how protein production is affected by stress, we simulated translation under
conditions of balanced and unbalanced amino-acid supply conditions. We modeled the stress
of a particular amino acid by changing the abundance of its (charged) cognate tRNAs by 2x

folds[14]. Here 2x is the supply coefficient. The package used for the simulations can be down-
load from ftp://159.226.238.166/pub/. It was written in C++ and can be compiled under centos.
Based on the package of “Whole cell”[14], the codon mismatch and premature features were
added.

Condition 1: a balanced amino acid supply condition in which the amount of each aminoa-
cyl tRNAs is multiplied by the same supply coefficient 2x. When x = 0, the system is in normal
amino acid supplycondition[14].

Condition 2: an unbalanced amino acid supply condition. Here we take Arg imbalance as
an example to investigate the performance of the translation system. So only the amount of
Arginyl-tRNA is multiplied by a supply coefficient 2x.

The Effect of Codon Mismatch

PLOS ONE | DOI:10.1371/journal.pone.0148302 February 3, 2016 5 / 14

ftp://159.226.238.166/pub/


Condition 3: random starvation condition that all amino-acid supplies are randomly modi-
fied, different amino acids have different coefficients less than one. In fact this condition is also
an unbalanced condition.

Normal amino acid supply condition: the ratio of amino acid supply is defined with the
relative copy numbers of charged aminoacyl tRNAs (Table 1) [14].

In our simulation, pmis_abort was set to be 0.5, pmis_based was set to be 0.001[28]. 3,795 genes
and 60,000 mRNAs were adopted from S. cerevisiae[14]. To investigate the effects of mistrans-
lation, we studied the translation under three conditions: Condition 1, Condition 2and Condi-
tion 3 as previously mentioned. Equilibrations in all simulation systems were achieved in the
first 2x109 steps, followed by another 100 seconds of simulation for data collection.

Results and Discussions

Incorrect translation proportion is high under unbalanced conditions
There will be 2 types of productions: one is the correct translation production which is the
correct translation of the whole codon sequence. The second is incorrect translation produc-
tion in which the peptide is synthesized with codon mismatch or is shorter than the correct
peptide. The fraction of the three fractions were got from the simulation result and are defined
as the following:

fraction premature len ¼ total length of released premature chains
total length of released chains

ð16Þ

Table 1. The relative copy numbers of aminoacyl tRNAs.

aa code anti code trna copy number aa code anti code trna copy number aa code anti code trna copy number

A GCA TGC 5 K AAA TTT 7 R CGG CCG 1

A GCC AGC 11 K AAG CTT 14 R CGT ACG 6

A GCG TGC 5 L CTA TAG 3 S TCA TGA 3

A GCT AGC 11 L CTC GAG 1 S TCC AGA 11

C TGC GCA 4 L CTG TAG 3 S TCG CGA 1

C TGT GCA 4 L CTT GAG 1 S TCT AGA 11

D GAC GTC 16 L TTA TAA 7 S AGC GCT 2

D GAT GTC 16 L TTG CAA 10 S AGT GCT 2

E GAA TTC 14 M ATG CAT 10 T ACA TGT 4

E GAG CTC 2 N AAC GTT 10 T ACC AGT 11

F TTC GAA 10 N AAT GTT 10 T ACG CGT 1

F TTT GAA 10 P CCA TGG 10 T ACT AGT 11

G GGA TCC 3 P CCC AGG 2 V GTA TAC 2

G GGC GCC 16 P CCG TGG 10 V GTC AAC 14

G GGG CCC 2 P CCT AGG 2 V GTG CAC 2

G GGT GCC 16 Q CAA TTG 9 V GTT AAC 14

H CAC GTG 7 Q CAG CTG 1 W TGG CCA 6

H CAT GTG 7 R AGA TCT 11 Y TAC GTA 8

I ATA TAT 2 R AGG CCT 1 Y TAT GTA 8

I ATC AAT 13 R CGA ACG 6

I ATT AAT 13 R CGC ACG 6

doi:10.1371/journal.pone.0148302.t001
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fraction unabort len ¼ total length of released unabort incorrect chains
total length of released chains

ð17Þ

fraction incorrect len ¼ total length of released incorrect chains
total length of released chains

ð18Þ

Compared to the simulation under Condition 1, the fraction of incorrect translation under
unbalanced conditions is relatively high (Fig 3). The fraction of incorrect translation is minor
and does not perform large fluctuations under Condition 1, while under Condition 2, the frac-
tion of incorrect translation increases with the stress of unbalanced amino acid supply. Under
Condition 3, all the 10 fractions of incorrect translation are higher than the normal conditions.
This is an evidence of the premature termination mechanism, which can contribute to the
reduction of incorrect production when the supply of amino acid is extremely unbalanced.

Although the chance of codon mismatch is low under balanced conditions, accumulation of
codon mismatch can lead to a high proportion of incorrect translation of long mRNAs (Fig 4a,
4b and 4c) and the chance can be increased under the Condition 2 (Fig 4b) and Condition 3
(Fig 4c). In Fig 4a, the fraction of incorrect peptide length does not change very much when
there are more charged tRNA available, because under normal condition, the proportion of
charged tRNAs can almost meet the demand of protein synthesis, and so is the balanced condi-
tions of more charged tRNA available. So the fraction of mismatch on a codon almost remains
unchanged (Fig 4d and 4f). But in Fig 4b, the fraction of incorrect peptide length increases fast
with more unbalanced supplies. The reason is that when the number of Arginyl-tRNAs
decreases or increases based on normal condition, the proportion of charged tRNAs cannot
meet the demand of protein synthesis any longer. When the number of Arginyl-tRNAs
decreases, the fraction of mismatch on Arg related codons will significantly increase, while the
fraction of mismatch on other codons will decrease. When the number of Arginyl-tRNAs
increases, the fraction of mismatch on Arg related codons will decrease, while the fraction of
mismatch on other codons will increase (Fig 4e and 4g). Thus, study of codon mismatch effects
is essential to build the model of the translation process.

Fig 3. The relationship between incorrect translation proportion and amino acid supply. In Fig 3a, 3b and 3c, the vertical axis shows the total length
fraction of the three kinds of released peptide chains which are the premature chains, mature chains with error, and the incorrect chains. In Fig 3a and 3b, the
horizontal axis shows the amino acids supply coefficient. So in Fig 3a, all amino acid numbers were multiplied by the same coefficient, and in Fig 3b, only the
number of Arg was multiplied by the coefficient while the number of other amino acids were kept unchanged. In Fig 3c, 10 simulations were run under
Condition 3 independently and the horizontal axis shows the simulation index. The result shows that stress of unbalanced amino acid supply can lead to
incorrect translation.

doi:10.1371/journal.pone.0148302.g003
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Mismatch is one reason of 5’-to-3’ ramp
Codon mismatch effects can be used to explain some well-known phenomenon in the translation
process. In order to remove the effects of faster initiation of short mRNAs, 10410 mRNAs with
codon sequence length larger than 500 codons were selected. To study the effect of mismatch on

Fig 4. Incorrect translation proportion increases with codon sequence length. In Fig 4a, 4b and 4c, some of mRNAs were not translated for enough
times, which could have a significant effect on the final result. So for each simulation result, the mRNAs were sorted with the correctly translated times, and
the top 100 were selected. The vertical axis shows the total length fraction of the incorrect chains. The horizontal axis shows the codon sequence length. In
Fig 4a and 4b, the incorrect translation fraction is plotted against the codon sequence length with 5 different supply coefficients; In Fig 4c, there are 5 curves
for each simulation, different charged aminoacyl tRNA coefficient was randomly set less than 1; Fig 4d and 4e show the fraction of mismatch events on a
codon, which is equal to the number of mismatch events on the codon divided by the number of all events on the same codon. Fig 4f and 4g show the fraction
of mismatch events of a codon, which is equal to the number of mismatch events on the codon divided by the number of mismatch events on all codons.

doi:10.1371/journal.pone.0148302.g004
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the 5’ ramp, the simulation with and without mismatch were run and the fraction of mRNAs
with bound ribosome at each site was averaged over all the mRNAs. For each case (Fig 5a, 5b, 5c
and 5d), a faster decline of fraction of mRNAs with bound ribosome is found through the elonga-
tion process when the mismatch events are considered (Fig 5b and 5d), which suggests that the
mismatch premature events play an important role to form the 5’ ramp. The tests under Condi-
tion 3 with and without codon mismatch effects counted were also done (Fig 5e). There are 200
different random supply configurations and for each supply configuration, the simulation with
and without codon mismatch effects counted were done. Finally the fraction of mRNAs with
bound ribosome of each site was averaged over all the 200 simulations results. The result also
shows that the curve declines faster when codon mismatch effects are counted.

Since the incorrect but complete translation would not affect the fraction of mRNAs with
bound ribosome, it can be inferred that the fraction decrease along mRNA is, at least partly,
caused by the premature termination mechanism. If a premature termination occurs, ribosome
cannot translate the left codons, which will do contribution to a higher ribosome density in 5’
zones and lower ribosome density in 3’ zones.

In Fig 5, another observation is the lower fraction of mRNAs with bound ribosome when
amino acids is more available, because when there are more charged aminoacyl tRNAs avail-
able, the ribosome will move faster from one codon to the next. But the initiation rate is the
bottleneck for the whole translation process, which cannot be speeded as fast as the codon
translation rate. So the increase of ribosome flux cannot be increased as fast as the increase of
the charged aminoacyl tRNA,which will lead to a lower fraction of mRNAs with bound ribo-
some. Moreover, this effect is alleviated in Condition 2 under which only the number of Argi-
nyl-tRNA fluctuates. When the number of Arginyl-tRNA increases, only the Arginyl-tRNA
related codons will be affected significantly. That is to say only the ribosome at Arginyl-tRNA
related codons site will translate faster than before, which cannot affect the fraction of mRNAs
with bound ribosome very much. But when the Arginyl-tRNA drops in large number, all the
codons will be affected because the ribosome on the Arginyl-tRNA related codons site moves
slower, which will lead more stalled ribosomes, then the fraction of mRNAs with bound ribo-
some will increase significantly.

Codon mismatch affects the rate of correct translation
Incorrect translation productions waste cell energies, decrease the rate of correct translation
and even do harm to the living cell. The rate of the amino acid synthesis is about 5 aa/s under
normal amino acid supply condition, which agrees with the results from empirical measure-
ments[35,36]. In this work, the rates of correct translation under a variety of unbalanced
amino acid supplies conditions were studied (Fig 6). It is interesting to see that the increase of
Arg affects the translation rate in different manners. With a supply coefficient smaller than 20,
the translation rate increases with more Arg supplied due to the increase in reagent concentra-
tion. However, the trend is then reversed, which suggests that the degree of amino acid imbal-
ance plays a more important role, causing a higher chance of codon mismatch and higher
probability of incorrect translation. Thus, the codon mismatch is key to the determination of
translation consequence.

Discussion
All the above simulations are based on the assumption that amino acids are supplied continu-
ously. But the actual environment is more complex than that. For example, there may be an
extreme condition that the supply of some amino acids is ceased. As far as the model concerned,
without the contribution of premature, there will be deadlock states on corresponding codon
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Fig 5. The effect of mismatch on 5’-to-3’ ramp. The vertical axis shows the fraction of mRNAs with bound ribosome. The horizontal axis shows the codon
positions. Fraction of mRNAs with bound ribosome in each site was averaged over all the mRNAs that were larger than 500 codons. Fig 5a and 5b:
simulation results with codon mismatch effects counted; Fig 5c and 5d: simulation results with no codon mismatch effects counted; Fig 5a and 5c: simulation
results are under Condition 1; Fig 5b and 5d: simulation results are under Condition 2; Fig 5e: simulation results are under Condition 3 and the final fraction of
mRNAs with bound ribosome of each site was averaged over the 200 simulations results.

doi:10.1371/journal.pone.0148302.g005
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positions and the process of translation event will be paused without releasing the ribosome and
the nascent peptide. From our results, it can be inferred that the premature termination can
help avoid entering into the deadlock states. If cells release some incomplete nascent peptides
through the premature mechanism and recover some scarce amino acids through the recycling
mechanism[37–39], some of the stalled ribosomes caused by the deficient amino acids will con-
tinue to translate the left codons. Thus, although the codon mismatch does reduce the rate of
valid work when amino acids supply is balanced, it can also be helpful when supply is unbal-
anced. Mismatch may be a way for living creatures to adapt to stressful environments. Due to
the limitation of computational power and simulation algorithms, a number of simplifications
were made in our model. The initialization, translation and termination should be each sepa-
rated into several steps[40–42], which are not counted in this work. Additionally, in real biologi-
cal environments the numbers of free tRNAs, ribosomes and mRNAs are changing
continuously[25,43–45], while in our model these numbers are fixed. Some regulatory mecha-
nisms[39,46,47] involved in the translation process are also ignored in the process of the simula-
tion and other kinds of mismatch error that exist in the translation process[29,48] are also
ignored. We mainly considered two supply conditions. One is balanced and the other is unbal-
anced. Considering the unbalanced supply of different amino acids have the similar effect, we
just take the Arg as an example. In this model we have investigated the starvation condition that
one amino acid is very deficient, but in fact, such a condition is terrible, almost no cell can keep
live or cells have already adjusted the metabolic pathways to suit the terrible conditions. Based
on the assumption that cells can survive and the amino acid metabolism pathway is not
changed, we just only focus on the translation system behaviour and properties. It is more easier
to get unusual behaviour under terrible conditions. Hopefully more parameters can be achieved
in further experimental studies on various transition systems to improve this model.
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