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Schizophrenia is characterized by positive, negative, and cognitive symptoms. While pos-
itive symptoms occur periodically during psychotic exacerbations, negative and cognitive
symptoms often emerge before the first psychotic episode and persist with low func-
tional outcome and poor prognosis. This review article outlines the importance of modern
functional magnetic resonance imaging techniques for developing a stratified therapy of
schizophrenic disorders. Functional neuroimaging evidence on the neural correlates of pos-
itive and particularly negative symptoms and cognitive deficits in schizophrenic disorders
is briefly reviewed. Acute dysregulation of dopaminergic neurotransmission is crucially
involved in the occurrence of psychotic symptoms. However, increasing evidence also
implicates glutamatergic pathomechanisms, in particular N -methyl-D-aspartate (NMDA)
receptor dysfunction in the pathogenesis of schizophrenia and in the appearance of neg-
ative symptoms and cognitive dysfunctions. In line with this notion, several gene variants
affecting the NMDA receptor’s pathway have been reported to increase susceptibility for
schizophrenia, and have been investigated using the imaging genetics approach. In recent
years, several attempts have been made to develop medications modulating the gluta-
matergic pathway with modest evidences for efficacy. The most successful approaches
were those that aimed at influencing this pathway using compounds that enhance NMDA
receptor function. More recently, the selective glycine reuptake inhibitor bitopertin has
been shown to improve NMDA receptor hypofunction by increasing glycine concentra-
tions in the synaptic cleft. Further research is required to test whether pharmacological
agents with effects on the glutamatergic system can help to improve the treatment of
negative symptoms in schizophrenic disorders.

Keywords: schizophrenia, glutamate, negative symptoms, cognitive deficits, neuroimaging biomarkers, stratified
therapy

Neuroimaging techniques have been developed as important tools
to investigate brain dysfunctions that underlie psychiatric disor-
ders. In particular, modern functional magnetic resonance imag-
ing (fMRI) holds the promise to provide neurofunctional bio-
markers for improved diagnosis, prognosis, and optimized treat-
ment of mental disorders [e.g., Ref. (1–4)]. In this brief, not
exhaustive review, we will exemplify this translational neuroimag-
ing research by focusing on schizophrenia and current challenges
to advancing therapeutic approaches for this heterogeneous diag-
nostic category. First, the importance of negative symptoms and
cognitive deficits for successful treatment of schizophrenic disor-
ders will be highlighted,and an overview will be given on the neural
correlates of these symptom domains as revealed by fMRI stud-
ies. Second, neuroimaging studies of glutamate levels and genetic
risk factors pointing to an important role of glutamate–dopamine
interactions in the pathophysiology of schizophrenic disorders will
be briefly reviewed and will be related to recent findings of phar-
macological and animal studies. In the final part of this review, we
will present current approaches to develop therapeutic strategies
that target the glutamatergic pathway in schizophrenic disorders.

“PSYCHOPATHOPHYSIOLOGY” OF SCHIZOPHRENIC
DISORDERS AND THE IMPORTANCE OF NEGATIVE
SYMPTOMS AND COGNITIVE DEFICITS
In traditional psychiatry, mental disorders are diagnosed and clas-
sified on the basis of more or less specific psychopathological
symptoms in the course of the disorder. Numerous recent findings
from modern systems neuroscience and molecular neuroscience
strongly suggest that diagnoses made on the basis of psychopatho-
logical criteria do not represent “natural disease entities” in the
sense of diseases with uniform pathogenesis and pathology [see
Ref. (1, 3–8)]. Therefore, schizophrenia represents a group of men-
tal disorders that share more or less characteristic psychopatho-
logical symptoms, such as verbal hallucinations, delusions, and
formal thought disorders.

During the last two decades, modern brain imaging tech-
niques have allowed for the first time scientific investiga-
tions into the neural correlates of different symptom dimen-
sions that characterize schizophrenic disorders. These studies of
pathophysiological processes that underlie different psychopatho-
logical symptoms and syndromes (an approach that may be
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termed “psychopathophysiology”) are briefly reviewed in the
following.

Positive symptoms of schizophrenic disorders such as verbal
hallucinations (“hearing voices”) and delusional symptoms are
certainly the most impressive characteristics of schizophrenic dis-
orders. Nevertheless, much evidence has been provided that nega-
tive symptoms and cognitive disturbances are more strongly asso-
ciated with the long-term functional outcome of patients suffering
from schizophrenia than positive symptoms (9–14). Cognitive
deficits are even present at first episode and remain relatively con-
stant over the course of illness (15–17). In contrast to the dopamine
model of schizophrenia, glutamatergic theories of schizophre-
nia account for negative symptoms and cognitive dysfunction
as well, and may therefore lead to new treatment approaches
specifically targeting the unmet medical need to improve negative
symptomatology and cognitive deficits (18).

NEURAL CORRELATES OF POSITIVE SYMPTOMS IN SCHIZOPHRENIC
DISORDERS
The positive symptoms of schizophrenic disorders particularly
include auditory–verbal hallucinations (“hearing voices”) and
delusional symptoms like paranoia. As regards auditory–verbal
hallucinations, a number of functional brain imaging studies have
been performed in the past. Overall, findings of these studies
appear quite heterogeneous. However, a finding that has been
replicated several times is overactivation of the superior temporal
gyrus during experimental phases in which the patients exhib-
ited the symptom of hearing voices [e.g., Ref. (19–21)]. In most
of these studies, this activation of auditory association cortices
was associated with additional activations in other brain regions.
For instance, some of these studies also reported an increased
brain activity in Broca’s area, the anterior cingulate cortex, the
hippocampus, and the amygdala [e.g., Ref. (20)]. Some of these
findings have also been confirmed on the meta-analytical level.
Jardri et al. (22) confirmed that phases of “hearing voices” are
associated with increased activity in Broca’s area, anterior insula,
precentral gyrus, frontal opercular cortex, middle and superior
temporal gyrus, inferior parietal lobule as well as in hippocam-
pus and parahippocampal gyrus. It has to be noted, however,
that patients suffering from this kind of intermittently occurring
auditory–verbal hallucinations are probably not representative for
most types of schizophrenic disorders in which the hallucina-
tions persist for longer time periods. A second meta-analysis by
Kühn and Gallinat (23) came to the conclusion that a current
psychopathological state of experiencing auditory–verbal hallu-
cinations may be associated with abnormal activation of brain
regions that are also involved in speech production (e.g., Broca’s
area), whereas a subgroup of schizophrenic patients that exhibits
the symptom of auditory–verbal hallucinations (in comparison
to a subgroup without “life-time diagnosis” of auditory–verbal
hallucinations) may be particularly characterized by abnormal
brain activation in areas involved in speech processing and, more
generally, the processing of auditory stimuli. In another, qual-
itative and quantitative review, Goghari et al. (24) showed an
association between positive symptoms, in particular ideas of per-
secution, with the activity in medial prefrontal cortex, amygdala,
hippocampus, and parahippocampal gyrus.

NEURAL CORRELATES OF NEGATIVE SYMPTOMS IN SCHIZOPHRENIC
DISORDERS
Negative symptoms of schizophrenic disorders are usually defined
as symptoms representing a qualitative and/or quantitative
reduction of mental capacities or qualities of experience. This
class of symptoms is relatively heterogeneous and tradition-
ally includes the five “A”s, which are affective flattening, apa-
thy (reduced drive), anhedonia, asociality (social withdrawal),
and alogia (impoverishment of thought) [e.g., Ref. (25)]. Early
studies on the structural correlates of negative symptoms in
schizophrenic disorders have shown gray matter reduction in
temporal, medial frontal, insular, and hippocampal regions
[e.g., Ref. (26)]. On the other hand, evidence on brain struc-
tural correlates of negative symptoms is very heterogeneous as
there are also several studies that failed to find any correla-
tion of brain volumes to negative symptoms in schizophrenia
[e.g., Ref. (27–30)].

The development of functional neuroimaging techniques like
PET and fMRI led to an increasing number of studies on the
neurofunctional correlates of negative symptoms. Several stud-
ies have shown a reduced activation of the prefrontal cortex
in schizophrenic patients with negative symptoms (25, 31–33).
This principal finding of “hypofrontality” associated with negative
symptoms has been confirmed by later studies though for different
subregions of the prefrontal cortex. For example, in a study using
memory retrieval tasks, Heckers et al. (34) found a significantly
reduced recruitment of left frontal cortex (Brodmann area 44/9)
in schizophrenic patients with deficit syndrome (i.e., patients with
negative symptoms as primary and enduring features) as com-
pared to both schizophrenic patients without deficit syndrome and
healthy controls. Using auditory working memory tasks (n-back
tasks), Menon et al. (35) found an inverse correlation of negative
symptoms with activation in the frontal opercular cortex and in
the right DLPFC. In contrast to that, another experiment using the
n-back task (36) reported a correlation of activation deficits in the
DLPFC with disorganization symptoms rather than with negative
symptoms.

A number of functional neuroimaging studies have also
reported associations of negative symptoms with activation in
other brain regions including temporal cortices and the ventral
striatum. For instance, Tamminga et al. (37) found both lim-
bic system abnormalities and neocortical alterations associated
with the deficit syndrome. A later series of studies have demon-
strated a significant correlation of activation in temporal cortices
with negative symptoms (38–40). Using the monetary incen-
tive delay task, which activates the reward system, Juckel et al.
(41) found a correlation of diminished ventral striatal activation
with negative symptoms in schizophrenic patients. In another
study by Simon et al. (42), a ventral striatal activation during
reward anticipation was negatively correlated with symptoms of
apathy, while activation during receipt of reward was negatively
correlated with severity of depressive symptoms. Finally, in a
recent systematic review and meta-analysis of 25 fMRI studies
on schizophrenic symptomatology, Goghari and colleagues (24)
have confirmed a relationship of negative symptoms with the
functioning of the ventrolateral prefrontal cortex and the ventral
striatum.
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NEURAL CORRELATES OF COGNITIVE DYSFUNCTIONS IN
SCHIZOPHRENIC DISORDERS
Traditionally, psychiatric diagnosis of schizophrenic disorders is
based on psychopathological, particularly positive and negative
symptoms. Over the last few decades, the advent of modern
experimental neuropsychological and functional neuroimaging
techniques has switched the focus of interest toward brain dysfunc-
tions in the domains of cognitive, emotional, and motivational
processes that are highly prevalent in schizophrenic disorders.
Especially cognitive deficits are of major interest as they have been
proposed to represent core deficits of schizophrenic disorders [e.g.,
Ref. (43, 44)]. These core cognitive deficits of schizophrenic dis-
orders include deficits in working memory, executive functions,
episodic memory, and social cognitions.

Deficits in working memory in schizophrenic disorders have
been found to be associated with dysfunctions of prefrontal cor-
tices, especially of the dorsolateral prefrontal cortex, of the deep
fronto-opercular cortex, and of the anterior cingulate cortex [e.g.,
Ref. (45–50)]. In the last few years, there have also been several
reports of a disturbed connectivity between these prefrontal areas
and the medial temporal lobe, particularly the hippocampus [e.g.,
Ref. (51, 52)].

Executive function is a construct that encompasses a variety
of sub-functions [see for example Ref. (53, 54)], among them
selective attention, background monitoring of the environment
for potentially significant sensory events [e.g., Ref. (55)], and
the adaptation of behavior to changing environmental conditions
[e.g., Ref. (56–60)]. Patients with schizophrenic disorders exhibit
multiple dysfunctions in these areas of executive control mech-
anisms that are associated with reduced activity in the posterior
frontal medial cortex and the inferior frontal junction area (IFJA;
a cortical subregion at the intersection of the precentral sulcus
and the inferior frontal sulcus) (61, 62) as well as with abnor-
mally increased activations in brain stem nuclei and the ventral
striatum (63).

Episodic memory deficits in schizophrenic disorders have been
found to be associated firstly with dysfunction of the extended
hippocampal formation (including the hippocampus proper and
the surrounding medial temporal structures) [e.g., Ref. (64)],
and secondly with dysfunctions of prefrontal cognitive con-
trol mechanisms that are involved in encoding and retrieval
processes (65).

Disturbed social cognitions in schizophrenic disorders include
particularly impaired recognition of facial emotional expressions
and reduced theory-of-mind capacities. Neuroimaging studies
have revealed that deficits in these domains of social cognitions
are associated, firstly, with reduced activation in the amygdala and
the fusiform gyrus (66) and, secondly, with reduced activity in the
fronto-median cortex, in the temporo-parietal junction cortex,
and the amygdala–hippocampus complex [e.g., Ref. (67)]. Dis-
turbed functional coupling between prefrontal areas and the amyg-
dala has also been reported as a correlate of impaired emotional
regulation mechanisms (68).

Taken together, neuroimaging studies on the neural corre-
lates of different (positive, negative, cognitive) symptom domains
in schizophrenic disorders suggest the involvement of different
lateral and medial prefrontal, temporal (particularly including

hippocampus and amygdala), and subcortical (in particular ven-
tral striatum as part of the dopaminergic reward system) brain
regions in the occurrence of these symptoms.

PATHOGENESIS, PATHOPHYSIOLOGY, AND TREATMENT OF
SCHIZOPHRENIC DISORDERS: THE ROLE OF
GLUTAMATE–DOPAMINE INTERACTIONS
It is well-established that acute dysregulation of dopaminergic
(and glutamatergic) neurotransmission is crucially involved in the
occurrence of psychotic symptoms, whereas more chronic cellular
neuropathology may be responsible for the development of cog-
nitive deficits and negative symptoms (69). In more recent years,
classical elements of the dopamine hypothesis such as the over-
active mesolimbic dopamine system and a reduced mesocortical
dopamine turnover are considered rather as a“final common path-
way” (70), i.e., as the expression of upstream pathophysiological
changes. In particular, it is postulated that N -methyl-d-aspartate
(NMDA) receptor dysfunction may lead to dopaminergic dysreg-
ulation in schizophrenic disorders through a complex interaction
between glutamatergic and dopaminergic, but also GABA-ergic
mechanisms. Schwartz and co-workers (71), for example, explain
both positive and negative symptoms of schizophrenia with dys-
functions of NMDA-glutamatergic synapses. Via effects on various
complex circuits including GABA-ergic interneurons, these dys-
functions ultimately result both in hyperfunction of the mesolim-
bic dopamine system leading to positive symptoms, and also in
hypofunction of the mesocortical dopamine system associated
with negative symptoms and cognitive dysfunctions (Figure 1).
Such pathomechanisms in functional interactions between pre-
frontal cortices and brain stem nuclei, in particular the ventral
tegmental area (VTA), the striatum, and the thalamus, may be
influenced by predisposing and/or protective genetic variants that
exert effects on the glutamatergic synapse. Thus, the glutamatergic
hypothesis is also compatible with our knowledge about the effects
of susceptibility genes of schizophrenia (see below).

Modern pharmacological and animal research approaches are
increasingly focusing on the interactions between the dopamin-
ergic and glutamatergic system, especially within fronto-striato-
thalamo-frontal loops and in the interactions between frontal
cortex, hippocampus, nucleus accumbens, and VTA. Within and
between these brain regions, the dopamine and the glutamate sys-
tem interact in a very complex way, and dysfunctions in these
interactions are a central pathomechanistic explanation for the
development of schizophrenic disorders [e.g., Ref. (73, 74)]. Par-
ticularly, the hippocampus plays a major role in regulating the
dopaminergic reward system. Animal studies have shown that
increased activity of the ventral hippocampus (subiculum) leads
to increased dopamine turnover in the ventral striatum (nucleus
accumbens) (75, 76). Other recent findings suggest that this glu-
tamatergically mediated effect of the subiculum on the nucleus
accumbens further leads to increased GABA-ergic projection onto
the ventral pallidum with reduced tonic activity of the pal-
lidum and consecutive disinhibition of dopamine neurons in the
VTA (77). In this way, hyperactivity of the ventral hippocampus
observed in schizophrenic disorders could lead to overstimu-
lation and hyperactivity of dopaminergic VTA neurons which
may account for various symptoms, in particular for delusional
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FIGURE 1 | Example for consequences of NMDA receptor hypofunction
in glutamatergic–dopaminergic circuits. Hypofunction of NMDA
receptors mediating excitatory inputs to prefrontal pyramidal cells in
schizophrenia leads to decreased activity in cortical excitatory projections to
mesencephalic DA cell nuclei. This results in decreased activity of DA
neurons projecting to the DLPFC and increased activity of DA cells
projecting to the striatum, as a consequence of decreased stimulation of
GABA interneurons. Reduced DA levels in DLPFC lead to compensatory,
but functionally insufficient, upregulation of D1 receptors [adapted from
Lewis and Gonzalez-Burgos (72)].

phenomena. Further support for this theory is provided by studies
using the MAM animal model of schizophrenia which have shown
that the relevant pathophysiological changes such as VTA hyper-
activity and increased response to amphetamines are no longer
present after inactivation of the subiculum. This indicates that the
subiculum is necessary to induce hyperdopaminergic states in this
animal model (78).

The pathophysiological role of glutamatergic disbalances has
also been investigated in vivo in patients with schizophrenia, for
example using magnetic resonance spectroscopy (MRS). In very
recent publications (79, 80), findings of such glutamatergic pro-
ton magnetic resonance spectroscopic imaging studies have been
nicely reviewed, particularly with respect to their implications for
drug discovery. Overall, neuroimaging studies support the current
glutamate model of schizophrenia by suggesting a hypofunction
of the NMDA receptor. In particular, proton magnetic reso-
nance spectroscopic (1H-MRS) studies have provided evidence
for altered levels of glutamate and glutamine in the medial pre-
frontal cortex and in the basal ganglia in early-stage, drug-naïve,
or drug-free schizophrenia patients.

Some studies with unmedicated patients with schizophrenia
have reported elevated glutamatergic levels in the medial pre-
frontal cortex as compared to healthy controls (81–84). More
precisely, a recent meta-analysis by Marsman and colleagues (79)
indicated that it is glutamine which is increased in the frontal cor-
tex in schizophrenic patients, whereas glutamate is reduced. Such

an elevated glutamine/glutamate ration may result from either a
deficiency in glutaminase, which converts glutamine into gluta-
mate, or from NMDA receptor hypofunction which has also been
shown to increase glutamine levels and decrease glutamate levels
(79). Further, glutamate levels in the medial prefrontal cortex have
been found to be associated with negative symptoms and worse
global functioning and to be decreased in remitted patients as com-
pared to non-remitted patients (85). Consistent with that, most
studies comparing medicated patients with healthy control sub-
jects reported unchanged glutamate levels in the medial prefrontal
cortex (81, 86–92). The meta-analysis by Marsman and colleagues
(79) provided additional support for a progressive decrease of
frontal glutamate and glutamine in patients with schizophrenia
possibly indicating a progressive loss of synaptic activity. Finally,
particularly in first episodes schizophrenic patients, increased glu-
tamatergic levels have also been reported in the basal ganglia
(93–95), and they appear to decrease to normal levels during
antipsychotic treatment with risperidone (94).

Over the last 10–15 years, numerous potential susceptibility
genes of schizophrenia have been identified, among them COMT,
dysbindin-1, neuregulin-1, RGS4, GRM3, and DISC1. Many of
these candidate genes have been shown to influence dopaminergic
and/or glutamatergic neurotransmission, and effects on neuro-
plastic processes and particularly on synaptogenesis have also
been reported. Imaging genetics is still a relatively novel approach
that, however, has already made substantial contributions to our
knowledge about genetic effects on brain structure and function.
Early studies, for example, demonstrated the influence of variants
in the COMT gene on working memory-related prefrontal acti-
vation (96) and on the functional interplay between dopamine
synthesis in the midbrain and prefrontal function (97). Although
the evidence for an association between the COMT gene and
schizophrenia is not unequivocal, these findings nevertheless have
high biological plausibility insofar as the influence of the COMT
gene on the dopaminergic tone in the prefrontal cortex has been
convincingly demonstrated (98). Further studies on the COMT
genotype have shown more complex haplotype effects on pre-
frontal cerebral activations (99) and on gene–gene interactions
between COMT and other genes such as RGS4, G72, DISC1, and
GRM3 (49, 100, 101). Especially the latter finding is consistent with
a role of glutamate–dopamine interactions in the pathophysiology
and pathogenesis of schizophrenic disorders.

The number of genome-wide association studies between gene
variants and diseases has markedly increased over the last few years
due to the availability of modern chips. This has also inspired
imaging genetics studies as genome-wide confirmed risk variants
have also been investigated for their effects on brain structure and
function. Two examples of this are the zinc finger protein 804A
(ZNF804A), the function of which has not yet been more closely
characterized, but which showed a genome-wide significant asso-
ciation with schizophrenia and also with bipolar disorder (102),
as well as the CACNA1C gene, which was first discovered as a risk
gene for bipolar disorder, but later also for schizophrenia (103).
Studies on the ZNF804A polymorphism have shown an effect on
the connectivity between the prefrontal cortex and the hippocam-
pus (104–106). Effects of the CACNA1C gene have been reported
with regard to activation of the hippocampus and the subgenual
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ACC (107) as well as activation of the amygdala during reward and
fear recognition paradigms (108, 109).

Taken together, the studies summarized here support the
important pathophysiological role of glutamate in schizophrenia
and encourage further development of therapeutic strategies that
target the glutamatergic pathway in schizophrenia.

THERAPEUTIC STRATEGIES TARGETING THE
GLUTAMATERGIC PATHWAY IN SCHIZOPHRENIA
A valid treatment for positive symptoms, based on the use of
antipsychotic agents and their main capacity to modulate the
dopaminergic system, is currently available for schizophrenia.
However, antipsychotics are less effective in reducing negative
symptoms or in ameliorating cognitive dysfunctions (110–112).
Based on the novel findings that the glutamatergic system plays
an important role in the pathogenesis of schizophrenia, several
attempts have been made to identify drugs which, by modulat-
ing this system, could improve negative symptoms and cognitive
dysfunction (113). Pharmacological targets are different types of
glutamate receptors, which interact in a complex not yet fully
understood way within glutamatergic synapses. These receptors
include both ionotropic receptors [NMDA, α-amino-3-hydroxy-
5-methyl-4-isoxazolepropionic acid (AMPA), and kainate recep-
tors] and metabotropic glutamate receptors (mGluRs) [reviewed
in Ref. (114)]. AMPA and kainate receptors are fast gating by glu-
tamate binding and permeable for Na+ and K+ ions, whereas
NMDA receptors exhibit a slow gating kinetic and need a predepo-
larization of the neuronal membrane for activation by glutamate
binding. This predepolarization occurs when vicinal AMPA recep-
tors are frequently activated and leads to the release of a blocking
Mg2+ ion from the NMDA receptor. Activated NMDA receptor
channels are not ion specific and pass Ca2+, Na+, and K+ ions,
which leads not only to further depolarization but also intracel-
lular processes making the synapse more sensible for signals from
upstream and sending stronger signals downstream. This so-called
long-term potentiation (LTP) provides the basis for synaptic and
dendritic proliferation or pruning, learning, and memory (115).

Metabotropic glutamate receptors are G protein-coupled recep-
tors influencing intracellular metabolic processes and are present
on presynaptic and postsynaptic neurons as well as on glial cells
near glutamatergic synapses. Currently, eight mGlu receptors are
known of which the mGlu 2/3 receptors are investigated as tar-
gets for schizophrenia therapy, because they regulate presynaptic
glutamate secretion.

After successful completion of preclinical trial programs of
pharmacodynamic activity and safety, potential compounds are
investigated in escalating clinical study programs. Phase 1 studies
are open label, single to multiple dose trials with healthy volun-
teers, exploring pharmacokinetic and first safety characteristics.
Phase 2 studies are explorative or proof-of-concept studies that
are usually controlled and blinded with small to medium num-
bers of patients, and designed for dosis finding and first in patient
proof of safety and efficacy. Phase 3 studies are large scale, double
blinded controlled studies to confirm safety and efficacy. Some of
the following described trial results are not yet published in peer-
reviewed journals, and we had to quote congress presentations or
company statements.

COMPOUNDS ENHANCING NMDA RECEPTOR FUNCTION
Since the activation of the NMDA receptor also requires glycine
as a co-agonist, the glycine binding site at the NMDA receptor
is regarded as a promising pharmacological target to enhance
its activity, thereby minimizing the risk of excitotoxicity that is
associated with direct overactivation of the glutamate binding site
(116). A first review of clinical trials published until 2003 with ago-
nists of the glycine binding site of the NMDA receptor including
glycine, d-cycloserine, and d-serine reported moderate effect sizes
for glycine and d-serine on negative symptoms, but no effect of
d-cycloserine (117). It included 358 small randomized trials with
6–51 participants and a maximum duration of 12 weeks. Up to
now, the amount of data has grown confirming these early results.
In almost all trials, the compounds were used as adjunctive treat-
ment to regular antipsychotic therapy, and generally no effect was
reported in patients taking clozapine.

Several clinical trials have been conducted using glycine, a
substance that is endogenously produced and that can act as a
co-agonist of NMDA receptors binding at the glycine modula-
tory site. The results of these studies suggest that glycine can
significantly improve symptoms of schizophrenia (118), including
negative symptoms, although there are also negative and equivocal
studies (119).

d-Cycloserine is a selective co-agonist of NMDA receptors con-
taining the NR2C subunit, and these receptors are involved in fear
conditioning and memory consolidation (120). When used as a
single dosis in rodents, d-cycloserine led to enhanced memory
consolidation of novel information (120). In an exploratory clin-
ical trial, once weekly dosing of d-cycloserine augmentation over
8 weeks did not improve cognitive symptoms but reduced negative
symptoms and delusion severity in stable schizophrenic patients
medicated with a range of different antipsychotics excluding
clozapine (121).

d-Serine, another agonist of the glycine modulatory site within
the NMDA receptor, has been shown in clinical trials to be capa-
ble of ameliorating several symptom domains in schizophrenia
(122–124).

GLYCINE TRANSPORTER-1 INHIBITORS
Sarcosine is a potent natural glycine transporter-1 inhibitor (GlyT-
1) (125). The inhibition of this transporter leads to increased
levels of glycin in the synapsis and consequently enhanced NMDA
receptor activation, which may represent a possible treatment
mechanism for schizophrenic disorders in which a hypofunction
of NMDA receptors is present (126). As recently shown, sarco-
sine may reduce negative symptoms in acutely ill schizophrenia
patients receiving atypical antipsychotics, being more effective
than the NMDA/glycine site agonist d-serine (125).

A meta-analysis including all abovementioned molecules found
that, overall, the NMDA-enhancers were effective against most
symptom domains of schizophrenia. Glycine, d-serine, and sarco-
sine significantly improved multiple symptom domains, whereas
no symptom domain was improved by d-cycloserine. Further-
more, glycine, d-serine, and sarcosine were found to be supe-
rior to d-cycloserine in improving overall psychopathology [Ref.
(118); see Figure 2]. However, these compounds have individ-
ual disadvantages to be developed to drugs licensed for long-term
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FIGURE 2 | Meta-analysis of double-blind, placebo-controlled studies
of small-molecule NMDA receptor enhancers in patients with
schizophrenia. Sample size: 26 studies comprising about 800 patients.
Effect size (ES) for glycine, d-serine, d-cycloserine, sarcosine, and all in
different symptom domains of schizophrenia [adapted from Tsai and Lin
(118)].

use. Glycine is fast metabolized and passes the blood–brain bar-
rier poorly. So it has to be applied with daily doses up to 60 g.
Although d-serine is substantially metabolized, daily doses of
30–120 mg/kg were effective. But there is concern about nephro-
toxicity at higher doses, although no significant adverse events
have yet been observed at doses of ≤4 g/day (127). According to
Sreekumar et al. (128), sarcosine might play a role in aggravating
prostate cancer progression.

Bitopertin is a GlyT-1 inhibitor that increases levels of the
glycine neurotransmitter by inhibiting its reuptake from the
synaptic cleft. Preclinical evidence showed that this molecule is
capable of ameliorating the symptoms of schizophrenia in ani-
mal models (129, 130). These preclinical findings encouraged a
double blinded placebo-controlled phase IIb clinical trial which
showed that adjunctive treatment with bitopertin in stable patients
with predominant negative symptoms was capable of ameliorat-
ing negative symptoms and improving general clinical status (131).
Currently, several phase III studies are underway with the hope that
bitopertin may help in the treatment of currently unsatisfyingly
responding stages of schizophrenia.

A major goal for future research combining psychopharma-
cology and modern functional neuroimaging techniques would
be to understand how these molecules modulate the activity of
pathophysiologically relevant neural structures as outlined above.
Such studies could, for example, provide important informa-
tion on whether these pharmacological agents can be successfully
used to treat patient subgroups that are characterized by specific
symptoms of schizophrenia.

AMPA RECEPTOR MODULATORS
As described above, the fast trafficking of AMPA receptors in the
synaptic cleft has an impact on NMDA receptor-mediated LTP
and depression. These intracellular mechanisms influence synaptic
strength and therefore constitute the basis of learning and mem-
ory (132). Therefore, modulation of AMPA activity could lead to
amelioration of cognitive dysfunction in schizophrenia. To this
aim and based on preclinical evidences, two molecules have been
used in schizophrenia clinical trials: piracetam (133) and CX516
(121, 134).

Piracetam augmentation of haloperidol was capable of improv-
ing psychotic symptoms in schizophrenia, but had no effect on
PANSS (133). Because only 30 patients (all receiving haloperidol)
completed the placebo-controlled trial, more scientific evidence
is needed to support such an effect. Trials with CX156 led to
controversial results. In a small study, CX156 improved cognitive
functions and negative symptoms in schizophrenic patients when
compared to patients treated with clozapine (134). However, a
larger study was unable to show any effect of CX516 on cognition
or negative symptoms when compared to controls (135). Taken
together, there is only little evidence about these molecules and
their therapeutic effect.

mGlu RECEPTOR MODULATORS
In contrast to the concept of improving symptoms of schizophre-
nia with ampakines, a line of evidence points to an overactivation
of AMPA synapses in the prefrontal cortex downstream of NMDA
receptor hypofunction (136). NMDA receptor blockade on GABA-
ergic interneurons reduces inhibition of pyramidal cells and leads
to excessive glutamate release in AMPA receptor synapses in the
prefrontal cortex (137). Metabolic glutamate receptors 2 and 3
(mGlu 2/3) facilitate a feedback regulation of synaptic glutamate
release (138). Consequently, mGlu 2/3 enhancing agents were
developed to delimit pathologically enhanced glutamate release. In
schizophrenia, clinical trials were conducted with the mGluR2/3
agonist, pomaglumetad methionil (LY2140023) and the mGlu2
positive allosteric modulator, ADX71149.

Pomaglumetad methionil was investigated as monotherapy in
three clinical trials. At first, a phase 2 proof-of-concept trial showed
significant improvement of positive and negative symptoms ver-
sus placebo (139). In a following phase 2 dose ranging trial, all of
the four investigated dosing groups did not differ from placebo
(140), which was also the case for a phase 2 trial comparing
pomaglumetad methionil to olanzapine and a placebo group. In
this trial, both active treatment groups did not separate regarding
efficacy and safety parameters from the placebo group (141).

After demonstrating an augmentation of the efficacy of atypical
antipsychotics in preclinical trials, a phase 1 study was conducted
to prove the safety of the combination of pomaglumetad methionil
with four different second generation antipsychotics in healthy
subjects (142). A following placebo-controlled phase 2 study tested
the substance as adjunctive to standard of care in patients with
prominent negative symptoms of schizophrenia. This trial did
not indicate a significantly greater reduction of negative symp-
toms or an improvement of secondary efficacy endpoints over
placebo (143). Based on these results, a phase 3 study started in
the meantime was stopped.

Frontiers in Psychiatry | Schizophrenia April 2014 | Volume 5 | Article 32 | 6

http://www.frontiersin.org/Schizophrenia
http://www.frontiersin.org/Schizophrenia/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Gruber et al. Schizophrenia, the glutamate system, and negative symptoms

The mGluR2 selective positive allosteric modulator ADX71149
is co-developed by Addex Therapeutics (144) and Johnson &
Johnson, who code it JNJ40411813. Results of a randomized
placebo-controlled phase 2 study evaluating the safety, tolerability,
and exploratory efficacy of the compound given in two differ-
ent doses as adjunctive to an ongoing antipsychotic medication
were reported at the 2013 annual meeting of the American Psy-
chiatric Society. The study population comprised three groups:
patients with residual negative symptoms, patients with resid-
ual positive symptoms, and patients with insufficient response to
clozapine treatment. Tolerability results suggest that dose titra-
tion may be beneficial. An efficacy signal seen in the negative
symptoms subgroup treated with the lower dose suggests this pop-
ulation warrants further evaluation in a formal proof-of-concept
study (144, 145).

CONCLUSION AND FUTURE PERSPECTIVES
In this brief review article, we have summarized recent findings
from genetic, animal, and functional neuroimaging studies that
together point to an important role of glutamate–dopamine inter-
actions within cortico-striato-thalamo-cortical (CSTC) loops,
which are modulated by hippocampal and amygdala inputs, in the
pathophysiology of schizophrenic disorders. These findings pro-
vide the empirical basis for the development of novel treatment
approaches for schizophrenic disorders that target glutamatergic
mechanisms. The new findings from animal studies may also
inspire analogous clinical neuroimaging investigations of neu-
rofunctional interactions within CSTC loops as well as of the
dynamic effects of mediotemporal structures such as hippocam-
pus and amygdala on these CSTC loops in the human brain. Here,
the development of valid animal model-supported experimental
paradigms is of major importance as it may allow for the tar-
geted in vivo investigation of these pathomechanisms involved in
the pathophysiology of schizophrenic disorders [e.g., Ref. (4)].
Such targeted investigations may enable a future stratification of
the heterogeneous group of schizophrenic disorders into patho-
physiologically more homogenous “natural disease entities” (146).
Moreover, the development of neurofunctional MRI biomarkers
for sub-classification of patient groups and prediction of individ-
ual treatment responses may generally play an important role in a
future individualized medicine in psychiatry [e.g., Ref. (4)].
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