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Abstract

Background

Dengue virus (DENV) infection is a global health concern of increasing magnitude. To target

intervention strategies, accurate estimates of the force of infection (FOI) are necessary. Cat-

alytic models have been widely used to estimate DENV FOI and rely on a binary classifica-

tion of serostatus as seropositive or seronegative, according to pre-defined antibody

thresholds. Previous work has demonstrated the use of thresholds can cause serostatus

misclassification and biased estimates. In contrast, mixture models do not rely on thresholds

and use the full distribution of antibody titres. To date, there has been limited application of

mixture models to estimate DENV FOI.

Methods

We compare the application of mixture models and time-constant and time-varying catalytic

models to simulated data and to serological data collected in Vietnam from 2004 to 2009 (N

� 2178) and Indonesia in 2014 (N = 3194).

Results

The simulation study showed larger mean FOI estimate bias from the time-constant and

time-varying catalytic models (-0.007 (95% Confidence Interval (CI): -0.069, 0.029) and

-0.006 (95% CI -0.095, 0.043)) than from the mixture model (0.001 (95% CI -0.036, 0.065)).

Coverage of the true FOI was > 95% for estimates from both the time-varying catalytic and

mixture model, however the latter had reduced uncertainty. When applied to real data from

Vietnam, the mixture model frequently produced higher FOI and seroprevalence estimates

than the catalytic models.
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Conclusions

Our results suggest mixture models represent valid, potentially less biased, alternatives to

catalytic models, which could be particularly useful when estimating FOI from data with

largely overlapping antibody titre distributions.

Author summary

Characterising the transmission intensity of dengue virus is essential to inform the imple-

mentation of interventions, such as vector control and vaccination, and to better under-

stand the environmental drivers of transmission locally and globally. It is therefore

important to understand how methodological differences and model choice may influ-

ence the accuracy of estimates of transmission intensity. Using a simulation study, we

assessed the performance of catalytic and mixture models to reconstruct the force of infec-

tion (FOI) from simulated antibody titre data. Furthermore, we estimated the FOI of den-

gue virus from antibody titre data collected in Vietnam and Indonesia. The models

produced consistent estimates of FOI when they were applied to data with clear separation

between the distributions of seronegative and seropositive antibody titres. We observed

greater bias in FOI estimates obtained from catalytic models than from mixture models

when they were applied to data with high overlap in the bimodal distribution of antibody

titres. Our results indicate that mixture models could be preferential to estimate dengue

virus FOI when the antibody titre distributions of the seronegative and seropositive com-

ponents largely overlap.

Introduction

Dengue fever is caused by infection with one or more of four antigenically distinct serotypes of

dengue virus (DENV1-4), a Flavivirus carried by Aedes mosquitoes [1,2]. DENV infects

approximately 105 million people each year [3], primarily in tropical and sub-tropical regions.

The geographical range of DENV is increasing [1,4,5] and it is expected that the spread of den-

gue will be influenced by rising global temperatures and increasing urbanisation [1,6]. Inter-

vention measures to date rely essentially on vector control due to the absence of antiviral

treatment, challenges in the use of the first licensed dengue vaccine for widespread dengue pre-

vention and control [7], as well as in the use of rapid diagnostic tests for screening [8]. The cur-

rent and expected future burden of dengue on health-systems is therefore high, demonstrating

a continuing need for increased understanding of DENV transmission.

Estimating epidemiological parameters such as the force of infection (FOI, the per capita

rate at which a susceptible person is infected) and population seroprevalence (the proportion

of people in a population exposed to a virus, as determined by the detection of antibodies in

the blood) allow us to gain insights into the subsets of populations most at risk of infection and

disease [9], to assess the predicted impact of an intervention strategy [10], and to inform public

health policy [11,12].

Both the FOI and seroprevalence can be estimated using mathematical models calibrated to

age-stratified serological data measuring IgG antibody levels (also called titres) from blood

samples. IgG titres are obtained using Enzyme-Linked Immunosorbent Assays (ELISAs) and

are often classified into qualitative, binary test results (seropositive or seronegative) based on

the manufacturer’s threshold.
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Catalytic models, first proposed in 1934, estimate disease FOI from age-stratified serological

or case notification data [13]. In these models, large rates of increase in seroprevalence

between individuals who are age a versus age a+1 are explained by high age-specific FOI

(assuming the FOI is constant in time) or high time-specific FOI experienced by individuals of

all ages during the period a to a+1 years ago [14]. Catalytic models have been used extensively

for measles [15], rubella [16], Hepatitis A [17], Chagas disease [18], and DENV [12,14,19–21].

Whilst commonly used, previous work suggests that catalytic models risk generating biased

estimates due to data-loss and/or misclassification [22–24]. For example, samples with titres

greater than the seronegative threshold but lower than the seropositive threshold are classified

as ‘equivocal’ and discarded from the analysis. Furthermore, titre levels of seropositive individ-

uals in a given population may be affected by factors including host response, the degree of

exposure to the pathogen and infection timing, which could lead to misclassification.

Mixture models are flexible statistical models that can be applied to continuous data from

different clusters or populations, called components. Mixture models can therefore be applied

to the absolute antibody titre values in serology datasets, rather than to the counts of titres in

each of two classes (seropositive/seronegative) as is necessary for catalytic models [22]. The

components’ distributions and their defining parameters (e.g., the mean titre of each compo-

nent distribution) are inferred from a fitted mixture model which is used to estimate the FOI

and population seroprevalence [22,25]. To date, mixture models have been applied to serologi-

cal data to estimate the seroprevalence of infectious diseases such as parvovirus B19 and

rubella in England [26,27], human papillomavirus in the Netherlands [23], measles in Italy

[28], and a selection of arboviruses inlcuding DENV in Zambia [29]. In addition, mixture

models have been used to develop frameworks capable of distinguishing between primary and

post-primary DENV infections [30,31], and recent and historical influenza A infections [32].

Recently, DENV FOI was estimated using catalytic and mixture models applied to serological

data collected in three locations in Vietnam (N > = 266) and in Chennai, India (N = 799) [31].

In this study, the estimates from mixture models were deemed more robust than those from

binary catalytic models [31].

Here, we implement a simulation study to assess the ability of mixture and catalytic models

to reconstruct the FOI value used for simulating the data. Furthermore, we add to the growing

body of evidence exploring the use of mixture models by presenting a comparitative analysis

of the DENV trasmission intensity estimates obtained from mixture and catalytic models

applied to age-stratified serological datasets from Vietnam (N� 2178, for years 2004–2009)

and Indonesia (N = 3194, for 2014).

Methods

Ethics statement

Ethical approval for the secondary analysis of the age-stratified seroprevalence datasets was

granted by the Imperial College Research Ethics Committee (Approval Reference 21IC7066).

Data

Age-stratified seroprevalence data. DENV IgG data were collected in Long Xuyen, Viet-

nam, during a prospective epidemiological study that was conducted to assess the suitability of

the area for future CYD-TDV vaccine efficacy trials, as described previously [33]. Samples

were collected from children under 11 years old in 2004 and then from children under 15

years old during September to February in 2004–2005, 2005–2006, 2006–2007, 2007–2008 and

2008–2009 (Datasets A-1 to A-6, Table 1). The titres were measured using in-house ELISA

assays (Arbovirus Laboratory of Pasteur Institute, Ho Chi Minh City).
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DENV IgG data from 30 urban subdistricts in Jakarta, Indonesia were collected from 3,194

children under 18 years old as part of a cross-sectional seroprevalence survey in 2014 [34]

(Dataset B). Given the small spatial scale of the range of data collection, we did not account for

spatial differences when modelling. IgG titres were measured using the commercial Panbio

Dengue IgG Indirect ELISA kit.

Simulated datasets. We simulated 540 antibody titre datasets (Dataset C), with the same

age-distribution and sample size as the Indonesian seroprevalence survey data (Dataset B). For

each simulation the distributions used for sampling seronegative and seropositive log(titres

+ 1) were selected from a normal, gamma or Weibull distribution. This gave 9 possible distri-

bution pairs for seronegative and seropositive log(titre + 1) values, and we generated an equal

number of simulations (N = 60) for each combination. Normal, gamma and Weibull distribu-

tions were chosen based on preliminary work on our antibody titre datasets showing that

these mistures were most frequently selected among a wider set of distributions. Parameter

values were randomly drawn from uniform distributions with limits as shown in S1 Table. The

serostatus of each individual was drawn from a Bernoulli distribution with probability 1−e−λa,

where a is the age of the individual and λ is the FOI (which is assumed to be constant with age

and time), and therefore λa represents the cumulative FOI experienced by individuals over

their lifetime. Log(titre + 1) values for each individual were subsequently randomly drawn

from the respective component distributions. The analysis was conducted in the statistical pro-

gramming language R [35].

Catalytic model

Data preparation. Catalytic models rely on data that are binarily classified as seropositive

or seronegative. For Datasets A-1 to A-6, a background/control titre (t) was measured for each

assay. An individual titre was classified as seronegative if�t and seropositive otherwise. For

Dataset B, samples with titres� 9 PanBio units were classified as seronegative and�11 as sero-

positive. Titres >9 and <11 were discarded (28 out of 3,194 samples). For simulated Dataset

C, titres were classified as seronegative if they were�X and seropositive if they were�Y. X

and Y are thresholds that were optimised using the ‘true’ simulated serostatuses: the optim
function in R, using the Nelder Mead algorithm, was used to calulate the X and Y values per

simulated dataset resulting in the fewest titre misclassifications. The optimisation process

occassionally failed to estimate realistic classification thresholds (X< 25% quantile of seroneg-

ative titres or Y> 75% quantile of seropositive titres) and these simulations were excluded

from analysis (N = 31). For the remaining 509 simulations, titres >X and<Y were classified as

equivocal and discarded (mean = 2 out of 3,194 samples, median = 1, interquartile range

Table 1. Description of the datasets used in the analyses. Summary statistics including notation, region, the assay used, the year of testing, the age range of the children

participating to the study and the sample sizes.

Dataset Region Assay type Year Age Range Sample Size

A-1 Long Xuyen, Vietnam IgG ELISA 2004 3–10 2,178

A-2 Long Xuyen, Vietnam IgG ELISA 2004–2005 3–13 3,681

A-3 Long Xuyen, Vietnam IgG ELISA 2005–2006 3–14 3,727

A-4 Long Xuyen, Vietnam IgG ELISA 2006–2007 3–14 3,651

A-5 Long Xuyen, Vietnam IgG ELISA 2007–2008 4–14 2,959

A-6 Long Xuyen, Vietnam IgG ELISA 2008–2009 5–14 2,249

B 30 urban subdistricts, Indonesia IgG ELISA 2014 1–18 3,194

C Simulated data Simulated N/A 1–18 3,194

https://doi.org/10.1371/journal.pntd.0010592.t001
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(IQR) = 2, range = 0 to 30). The mean percentage misclassification error rate of titres across

the simulations was 6.6% (median = 2.8%, IQR = 9.8%, range = 0% to 41.9%).

Parameter estimation. We used a catalytic model as previously described [14,36]. The

yearly FOI, i.e., the per capita rate of infection experienced by individuals in a given year X−i,
where X is the year the serosurvey was conducted, is assumed to be either constant in time

(constant across the years) or time-varying (piecewise constant across the years). When we

assumed a time-varying FOI, the number of FOI estimates is equal to the number of single

year age groups available in the datasets (maximum age group A –minimum age group M).

The proportion of seropositive individuals in age group a during year X (πa,X), was estimated

as in Eq 1. Here, the yearly FOI (λX−i) is summed over the lifetime of the individuals in age

group a to give the cumulative FOI experienced by the individuals in this age group. If the

minimum age group M does not equal 1, then we estimated an average FOI for the M years

without age-specific data (X−M to X) denoted λX−M.

pa;X ¼ 1 � expð�
Pa

i¼0
lX� iÞ: ð1Þ

When we assume a time-constant FOI over the whole study period, Eq 1 can be expressed as

shown in Eq 2:

pa;X ¼ 1 � expð� l � aÞ: ð2Þ

A binomial log-likelihood was assumed for the FOI (Eq 3), where Na is the total number of

individuals and Pa is the number of seropositive individuals in age group a during year X [19].

The optim function in R was used to find the maximum likelihood estimate of the FOI using

Eq 3.

LnLðlX� iÞ ¼ Sa½ðNa;X � Pa;XÞðlogð1 � pa;XÞ þ Pa;Xðlogðpa;XÞ�: ð3Þ

When we assumed a time-varying FOI, the λX−i values were averaged to produce a mean FOI

experienced over the years in the study period (A−M) (Eq 4) which was compared to the FOI

estimated by the time-constant catalytic model and the mixture model.

l ¼

PA
i¼0
lX� i

A � M
: ð4Þ

We estimated 95% Confidence Intervals (CI) using a bootstrap method, where the titre data

were sampled with replacement and the age-stratified proportion of seropositive indivuals was

calculated, 500 times. The 95% CI was given by the 2.5% to 97.5% quantiles of the estimates

from the catalytic models applied to the bootstrap samples.

Mixture model

Applying the mixture models to the titre distributions. Mixture models were applied to

the bimodal distribution of individual antibody titres as described in Bollaerts et al., 2012 and

Hens et al., 2012 [22,25]. All individual antibody titre measurements were used in each dataset,

which differs from the data used for the catalytic model where equivocal titres were discarded

and titre measurements were classified as either seropositive or seronegative. The mixture

model defines the distribution (z) of the log(titres + 1) as a mixture of two distinct distribu-

tions: one for susceptible individuals (seronegative, zs) and one for individuals who have been

previously infected (seropositive, zI). The two-component mixture model is represented by:

f ðzjzs; zI; a;XÞ ¼ ð1 � pa;XÞfsðzsjms; ssÞ þ pa;XfIðzIjmI; sIÞ; ð5Þ
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where fs and fI represent the probability density function of the seronegative and seropositive

components, respectively, and where μ and σ represent the mean and standard deviation of

each component, and πa,X represents the age-specific seroprevalence during year X, when the

serosurvey was conducted.

The mixdist R package was used to fit the mixture models to the titre data by maximum

likelihood using an Expectation Maximisation (EM) algorithm [37]. The package was adapted

to allow fitting of different distributions for the seronegative and seropositive titre compo-

nents: normal, gamma and Weibull distributions, giving 9 possible combinations. The best fit-

ting mixture was chosen using the Akaike Information Criterion (AIC). For Dataset C, the

estimated means (μs and μI) and standard deviations (σS and σI) for the seronegative and sero-

positive components of the best mixture were compared against the true parameter values

used for simulating the data. We explored multiple parameterisations, including fixing the

standard deviation of the two mixture components. For the Vietnamese datasets, we optimised

the model having constrained the standard deviation of the seropositive component to multi-

ple different values (for Dataset A-4 we set σI equal to all values from 0.02 to 0.08 in steps of

0.01, for the other five Datasets we set σI equal to all values from 0.05, to 0.15 in steps of 0.01).

For the Indonesian dataset (Dataset B) the standard deviations of both components were con-

strained (σS was set equal to 0.10 to 0.15 in steps of 0.001, and σI was set equal to 0.15 to 0.3 in

steps of 0.05).

Parameter estimation. The relationship between the age-dependent mean log(titre + 1)

(μa,X), the age-specific seroprevalence (πa,X) and the means of the mixture components (μs and

μI) is described in Eq 6. We estimated μa,X by least-squares regression using a monotonically

increasing P spline [22,25,38] using the mpspline.fit function from the serostat R package [39].

Equally spaced cubic polynomial segments (degree = 3) made up the spline. The optimal

smoothing parameter (α) and number of segments (knots) were determined using the Bayes-

ian Information Criterion, having explored combinations of α values (set equal to 0.001, 0.01,

0.1, 0.5, 1, 5, 10, 50, 100, 500) and knots (set equal to values in the sequence: 5 to the maximum

number of x-axis age categories, step size = 1). The seroprevalence was calculated using Eq 7.

ma;X ¼ ð1 � pa;XÞms þ pa;XmI: ð6Þ

pa;X ¼
ma;X � ms

mI � ms
: ð7Þ

The time-varying FOI was derived from the age-specific seroprevalence as described in Eq

8 [22], where the rate of change in the seroprevalence between two sequential age groups (a−1

and a) is divided by the proportion of seronegative individuals in age group a, to give the FOI

experienced in the year X−a (λX−a). Eq 8 can in turn be expressed as a function of the underly-

ing antibody titre distribution as shown in Eq 9, where μ0a,X represents the derivative of the

age-specific mean log(titre + 1). The μ0a,X terms were calculated by taking the gradient of the

fitted μa,X spline at each age group a. The time-varying FOI can be averaged across the years in

the study period to give the total FOI λ (Eq 4).

lX� a ¼
p0a;X

1 � pa;X
: ð8Þ

lX� a ¼
m0a;X

mI � ma;X
: ð9Þ

The 95% CI around the FOI and seroprevalence estimates were calculated using a boostrap
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method, where the titre data were sampled with replacement 5000 times. The 95% CI were

given by the 2.5% to 97.5% quantiles of the estimates from the bootstrap samples.

Bias in the mixture and catalytic model estimates of FOI and seroprevalence for Dataset C

was calculated as the estimated value minus the true simulated value of the parameter. Uncer-

tainty was calculated as the width of the 95% CIs around the parameter estimates. Coverage

was calculated as the percentage of simulations where the estimated 95% CIs contained the

true parameter value. Code for the simulation study analysis is available at: https://github.com/

Tori-Cox/Mixture-catalytic-models.

Results

Simulated data

The mixture model identified the correct distributions used to simulate both seropositive and

seronegative titres in 76.1% (411/540) of simulations, one of the two distributions in 22.2%

(120/540) of simulations and did not correctly identify either distribution in 1.7% (9/540) of

the simulations. Whether the distributions were gamma, normal or Weibull did not influence

the ability of the mixture model to correctly identify them (S2 Table). The estimated 95% CIs

contained the true parameter values used to simulate the data in 88.1% (476/540), 86.9% (469/

540), 86.5% (467/540) and 89.4% (483/540) of simulations for μs, μI, σS and σI, respectively

(S1A Fig). Simulations where the seronegative titre distribution was Weibull distributed were

over-represented in the simulations which produced outlying estimates of μs, μI, σS and σI
(S1B Fig).

The mixture model coverage for the FOI was 95% of the total simulations (513/540) and

95% (485/509) of the simulations included in the catalytic model analysis, and for the seroprev-

alence was 88% (475/540) and 89% (451/509) respectively. The time-varying catalytic model

coverage for the FOI was 96.7% (492/509) and for the seroprevalence was 78.8% (401/509).

The time-constant catalytic model coverage for the FOI and seroprevalence was 38.9% (198/

509) and 55.0% (280/509). It should be noted that the time-varying catalytic model produced

wider CIs compared to when assuming a time-constant FOI or when using a mixture model

(Fig 1). Average bias in the FOI estimates (0.001 (95% CI -0.036, 0.065), -0.007 (95% CI -0.069,

0.029) and -0.007 (95% CI -0.095, 0.043) for the mixture, time-constant and time-varying cata-

lytic models, respectively) and the seropreavelance estimates (-0.003 (95% CI -0.144, 0.108),

-0.007 (95% CI -0.244, 0.087) and -0.005 (95% CI -0.241, 0.100)) was smaller for the mixture

model estimates (Fig 1). The increased negative bias in the catalytic model estimates compared

to the mixture model estimates demonstrates that the catalytic models are more prone to

underestimation of FOI and seroprevalence (Figs 1 and 2). High antibody titre misclassifica-

tion error rates were positively associated with increased bias in the parameter estimates from

the catalytic models (S3 Fig). As expected, model performance was improved when we fitted

the catalytic models to the simulated ‘true serostatus’ (i.e., without classifying the titres using

optimised thresholds): the coverage of the FOI was 99% (536/540) (95% CI: 98%, 100%) and

42% (228/540) (95% CI: 38%, 47%) for the time-varying and time-constant FOI catalytic mod-

els respectively, and the coverage of the seroprevalence was 100% for both models. The average

bias in the FOI estimates was 0.007 (95% CI -0.020, 0.056) and -0.005 (95% CI -0.016, -0.477),

and in the seroprevalence estimates was 0.000 (95% CI -0.001, 0.001) and 0.002 (95% CI

-0.001, 0.001) for the time-varying and time-constant FOI catalytic models respectively.

Long Xuyen, Vietnam data

When we applied the mixture model (Fig 3) to the data from Long Xuyen, Vietnam, the total

population-level seroprevalence estimates ranged from 0.163 (95% CI 0.138–0.188) in 2004 to
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0.376 (95% CI 0.249–0.403) in 2005–2006. The seroprevalence estimates from the time-con-

stant and time-varying catalytic models were consistent with each other, with the latter ranging

from 0.189 (95% CI 0.163–0.217) in 2006–2007 to 0.299 (95% CI 0.262–0.337) in 2008–2009.

The seroprevalence estimates from all three models were consistent (as determined by the 95%

CIs) for 4 out of 6 datasets (Fig 4, S3 Table). The general trend in the age-specific seropreva-

lence estimates, specifically for Datasets A-2:A-5, differed significantly between the mixture

model and the catalytic models, with the mixture model estimating higher seroprevalence at

the older ages (Fig 5).

The average FOI estimated by the mixture model ranged from 0.026 (95% CI 0.019–0.033)

for the period 1993 to 2004, to 0.099 (95% CI 0.077–0.124) for 1990 to 2005. The average FOI

estimated by the time-varying catalytic model ranged from 0.024 (95% CI 0.007–0.058) for the

period 1991 to 2007, to 0.050 (95% CI 0.001–0.118) for 1990 to 2005. The FOI estimates from

Fig 1. Bias, coverage, and degree of uncertainty for seroprevalence and force of infection (FOI) estimates using catalytic and mixture models fitted to

simulated datasets (Dataset C). Bias is calculated as the estimated parameter value minus the true parameter value. Uncertainty is the width of the 95%

Confidence intervals (CIs) around the central estimates, calculated using the bootstrap method. The coverage is the percentage of simulations where the

estimated CIs contained the true values. The dashed line at 95% shows the threshold for the ideal coverage. For the bias and the uncertainty, the mean and 95%

CI across the 509 simulations are given. For the coverage, the 95% exact binomial CI are given.

https://doi.org/10.1371/journal.pntd.0010592.g001
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the mixture model versus the time-varying catalytic model were consistent for 6 out of 6 data-

sets, and versus the time-constant catalytic model they were consistent for 3 out of 6 datasets

(Fig 4, S3 Table). There is a higher degree of uncertainty around the estimates from the cata-

lytic model when assuming a time-varying FOI compared to the time-constant FOI assump-

tion (Fig 4). We observe greater differences in the estimates from each model when comparing

the year-specific FOI as opposed to the averaged total FOI (S4 Fig).

Indonesian data

The mixture and catalytic models fitted to the Indonesian data produced consistent FOI, total

population seroprevalence and age-specific seroprevalence estimates. The FOI for the period

1996 to 2014 was estimated at 0.154 (95% CI: 0.106–0.213), 0.143 (95% CI 0.136–0.150) and

0.164 (95% CI 0.022–0.814), and the seroprevalence in 2014 was estimated at 0.718 (95% CI

0.694–0.741), 0.700 (95% CI 0.686–0.714) and 0.700 (95% CI 0.655–0.743) by the mixture

model and the time-constant and time-varying catalytic models, respectively (Fig 4, S3 Table).

Discussion

In this analysis, we explored the accuracy and bias of FOI and seroprevalence estimates

obtained from mixture and catalytic models applied to serological data. The catalytic models

were applied assuming a time-constant or time-varying FOI. We performed a simulation

study to compare the performance of each model with known parameter values used to

Fig 2. True versus estimated seroprevalence and force of infection (FOI) values from the mixture and catalytic

models fitted to the simulated datasets (Dataset C). The catalytic model was run under the assumption that the FOI

was time-constant or time-varying. The 95% Confidence Intervals for the estimated values were calculated using a

bootstrap method and are shown here as error bars; the point denotes the central estimate. The Pearson’s correlation

coefficients (R) are shown. The dashed line represents the line y = x and shows where points would be located in a

scenario with zero bias in the estimated values.

https://doi.org/10.1371/journal.pntd.0010592.g002
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generate the simulated data, and we observed significantly greater accuracy in FOI and sero-

prevalence estimates from the mixture and time-varying catalytic models than time-constant

catalytic models. We observed reduced bias and uncertainty in estimates from the mixture

compared to the time-varying catalytic model.

In our simulation study, larger bias in the catalytic model estimates of FOI and seropreva-

lence (Figs 1 and 2), was associated with increased serostatus misclassification (S3 Fig). Seros-

tatus misclassification occurred more often in simulations where the difference between the

mean log(titre + 1) for the susceptible/seronegative component and the mean log(titre + 1) for

the infected/seropositive component was lower (S2 Fig), indicating greater overlap between

the distributions of the two components. Our results are consistent with previous work which

showed greater bias in seroprevalence estimates using methods which employ cut-off

Fig 3. Mixture model fitted to the Vietnamese (A1:A6) and Indonesian (B) datasets. The distribution of log(titre+1) is shown in dark grey, the fitted

mixture model is shown in blue, and the red dashed lines represent the mean antibody titre of each component of the fitted mixture model (μs and μI for the

seronegative and seropositive components respectively). Note that the y-axis limits differ for each panel.

https://doi.org/10.1371/journal.pntd.0010592.g003
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thresholds to classify simulated antibody data as opposed to mixture models, when there was

high overlap in the underlying components [24].

Differences in the degree of overlap between components in real serological datasets are

likely impacted by many factors, including differences in the ELISA tests used to measure anti-

body titres, the age groups sampled and the underlying age structure of the population as well

as the transmission setting and spatiotemporal heterogeneities in the risk of infection at the

local scale. In datasets where there is clear separation in the bimodal distribution of antibody

titres, catalytic and mixture models are expected to produce more similar estimates of FOI and

seroprevalence as fewer samples are misclassified during the binary classification of the data

needed to calibrate catalytic models [22,24]. This is consistent with the results from our simu-

lation study and with the reduced variability we observe in our FOI and seroprevalence

Fig 4. Force of infection (FOI) and total population level seroprevalence (SP) estimates from the mixture model and the catalytic models fitted to the

observed data. The catalytic model was run under the time-constant and time-varying FOI assumption. The 95% Confidence Intervals (CI) which were

calculated by bootstrapping for all models are given as error bars. Note that the y-axis limits differ for each panel.

https://doi.org/10.1371/journal.pntd.0010592.g004
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estimates from each model when they were applied to serological data from Indonesia com-

pared to Vietnam, where the former had higher separation of titre distributions (Figs 3 and 4,

S3 Table).

The estimates for Indonesia from each model were consistent with each other and with pre-

viously published FOI estimates from catalytic models fitted to case-notification data from

2008–2017 in Jakarta, Indonesia (0.130, 95% CI: 0.129–0.131) [12], and seroprevalence esti-

mates from time-constant catalytic models applied to the same serology dataset (Dataset B)

[34,40]. Our results show that the mixture and catalytic models do not significantly differ in

their FOI and seroprevalence estimates in this setting. In contrast, the mixture model applied

to the six datasets from Vietnam produced more variable estimates (FOI range = 0.026–0.099,

seroprevalence range = 0.16.3–0.376) than the catalytic models (FOI range = 0.023–0.037 and

0.024–0.050, seroprevalence range = 0.190–0.300 and 0.189–0.299 under the assumption of a

time-constant or time-varying FOI respectively). The variance was even greater in the age-spe-

cific seroprevalence and yearly FOI estimates (Figs 5 and S4). As expected, the time-varying

catalytic model and the mixture model (which implicitly models FOI as time-varying), were

better able to capture the age-specific seroprevalence than the time-constant catalytic model.

The estimates from the mixture model tended to exceed those obtained from the catalytic

models (Fig 4, S3 Table). Given the greater negative bias observed for the catalytic models in

our simulation study, we expect the higher mixture model estimates to be more accurate for

the Vietnamese setting. Lam et al., similarly observed higher FOI estimates when applying

mixture models compared to catalytic models to serological data from Vietnam, for example

0.12 (95% CI: 0.11–0.14) compared to 0.07 (95% CI: 0.06–0.09), in Ho Chi Minh City [31].

A major advantage of the mixture model is the comparative ease with which it can be

applied to serological data to estimate transmission intensity without the need to use thresh-

olds to process the data. Furthermore, to generate robust estimates, there are fewer data

requirements for mixture models than for catalytic models: in the former, the data are pooled,

and age is used only to calculate the age-specific mean log(titre + 1) using a spline, meaning

that there are no constraints on the number of participants per age category. However, it is

important to consider the bias that will be introduced if the mixture distributions fit the titre

data poorly [24]. In this study we accounted for this by using an information criterion to select

the best fitting models from a range of options. In the future we will explore implementing the

models in a Bayesian framework [22] which would allow us to perform posterior predictive

checks to more robustly assess model fit. It would also be interesting to explore the FOI esti-

mates obtained when applying a mixture model with more than two mixture distributions,

which may better account for the complex immunity profiles observed in areas where multiple

DENV serotypes circulate. For example, Biggs et al. and Lam et al. fit three-component mix-

ture distributions to DENV antibody titre data in the Philippines and Vietnam respectively, to

develop frameworks capable of distinguishing between post and primary DENV infection

[30,31] by specifying mixture components for seronegative, seropositive with a primary infec-

tion and seropositive with post-primary infections.

In summary, our results suggest that mixture models represent a good alternative to cata-

lytic models to quantify DENV time-varying FOI and seroprevalence from age-stratified sero-

logical data, with potentially less bias and less uncertainty. They may be particularly useful

when estimating FOI from data where there is high overlap between the component distribu-

tions, where the risk of serostatus misclassification and bias introduction when using cut-off

threshold methods is greater (S2 and S3 Figs).

We have provided code to run the simulation study to encourage further exploration and

comparison of the different methodologies. Critically, further investigation of the use of mix-

ture models depends on the availability of raw antibody titre data. For these reasons, we would

PLOS NEGLECTED TROPICAL DISEASES Comparing mixture and catalytic models

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0010592 July 11, 2022 12 / 17

https://doi.org/10.1371/journal.pntd.0010592


encourage current and future seroprevalence studies on DENV, as well as other infectious dis-

eases, to publish anonymised individual-level antibody titre data where it is possible to do so.

Supporting information

S1 Table. Parameter values used for generating 540 simulated datasets.

(DOCX)

S2 Table. Number of simulations where the mixture model correctly specified the distribu-

tions of the seronegative and/or seropositive component of the simulated antibody titre

Fig 5. Age-specific seroprevalence estimates for the IgG data from Vietnam (Dataset A1:A6) and from Indonesia (Dataset B). Mixture model estimates

are in orange, catalytic model estimates are in green and blue when applied under the assumption that the FOI is time-constant or time-varying respectively.

Shading represents the 95% Confidence Intervals (CI). The grey points show the observed seroprevalence per age group calculated from the binarily classified

IgG data (seropositive individuals / tested individuals), with error bars indicating the 95% exact binomial CIs. The seroprevalence data and model estimates are

overlayed for the purpose of comparison. However, it is important to note that the mixture model was not fitted to the data (grey points), as the former does

not depend on the titre classification. The size of the grey data points represents the number of individuals tested in each age group.

https://doi.org/10.1371/journal.pntd.0010592.g005
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datasets (Dataset C). Here, n represents the number of simulated datasets out of 540.

(DOCX)

S3 Table. Force of infection (FOI) and total population level seroprevalence (SP) estimates

from the mixture model and the catalytic models fitted to the observed data. The observed

data is serology data collected in Vietnam (Datasets A-1:A-6) and Indonesia (Dataset B). 95%

Confidence Intervals (CI) were calculated by the bootstrap method.

(DOCX)

S1 Fig. (A) True versus estimated parameter values from the mixture model fitted to the simulated

datasets (Dataset C). The estimated parameters are the mean log(titre + 1) value of the seronegative/

susceptible (S) and seropositive/infected (I) components (μs and μI respectively) and the corre-

sponding standard deviations (σs and σI). Red indicates the estimates where the true parameter

value was not captured by the estimates (i.e., the 95% Confidence Interval of the estimate did not

contain the true value). Note that the axes limits differ for each panel. (B) The percentage of parame-

ter outliers after fitting the mixture model to Dataset C, per seronegative and seropositive titre family

distributions. The percentage of the total number of outliers of μs, μI, σS and σI (red in panel A) per

distribution combination on the x-axis, where the two letters represent the seronegative (first letter)

and the seropositive (second letter) distribution pair (N = normal, G = gamma and W = Weibull).

(TIF)

S2 Fig. Association between the true component mean titre values in Dataset C versus the

serostatus misclassification error. The x-axis shows the difference between the true mean log

(titre + 1) value of the seronegative (μs) and the seropositive component (μI) for each realisa-

tion over 509 simulated datasets. The titres are classified as seropositive or seronegative using

realisation-specific optimised titre thresholds. The loess regression line and corresponding

95% Confidence Intervals are shown.

(TIF)

S3 Fig. Serostatus misclassification versus catalytic model estimate bias. The bias in the esti-

mates from the time-constant and time-varying catalytic models for the realisations over 509

simulated datasets are plotted against the serostatus misclassification error rate. The serosta-

tuses of the titres in each of the 509 simulated datasets are classified as seropositive or seroneg-

ative using realisation-specific optimised titre thresholds. The serostatus misclassification

error rate is calculated as the percentage of titres in each dataset that are misclassified. Absolute

bias is calculated as the absolute value of the estimated value–true value for the force of infec-

tion (FOI) and seroprevalence. The linear regression lines and corresponding 95% Confidence

Intervals are shown, as well as the Pearson’s correlation coefficients (R). Three outliers with

FOI estimates > 0.4 were removed from the time-varying catalytic model panel and corre-

sponding regression line estimation.

(TIF)

S4 Fig. Force of infection (FOI) estimates across time. Yearly FOI estimates from the cata-

lytic and mixture models. 95% Confidence Intervals were calculated by bootstrapping.

(TIF)
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