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Emerging evidence indicates that processes during postnatal development might signifi-
cantly influence the establishment of mucosal host-microbial homeostasis. Developmental
and adaptive immunological processes but also environmental and microbial exposure early
after birth might thus affect disease susceptibility and health during adult life. The present
review aims at summarizing the current understanding of the intestinal epithelial innate
immune system and its developmental and adaptive changes after birth.
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INNATE IMMUNE RECEPTOR EXPRESSION BY INTESTINAL
EPITHELIAL CELLS
Epithelial cells line the surface of the intestinal mucosa. Together
with the mucus layer, they generate the physical barrier between
the largely sterile underlying tissue and the enteric lumen exposed
to nutritional antigens, inhabited by a dense and dynamic micro-
biota and challenged by orally acquired pathogenic microor-
ganisms. In addition, epithelial cells actively contribute to host-
microbial homeostasis, antimicrobial host defense, and epithelial
barrier repair. The presence of microbial organisms is detected by
the expression of a variety of different innate immune receptors
that survey the apical and basolateral plasma membrane, endoso-
mal compartments, and the cytosol. Expression of members of the
Toll-like receptor (TLR) family, such as TLR2, 3, 4, 5, and 9, the
nucleotide-binding and oligomerization domain (NOD) receptor
1 and 2 and the helicases retinoic acid inducible gene (RIG-I),
and the melanoma differentiation associated gene-5 (MDA5), ini-
tiate signal transduction cascades via the NF-κB pathway, mitogen
activated protein (MAP) kinases, and interferon regulatory factors
(IRFs), and influence epithelial gene expression (1–3). Inflamma-
some members such as the NOD receptor-related pyrin domain-
containing NLRPs NLRP3, 6, and NLRC4 activate caspase 1 and
facilitate the processing of preformed pro-IL-1β and pro-IL-18
and the release of bioactive cytokines as well as the induction of
pyroptosis (4–7). In contrast, NLRP12 appears to inhibit canon-
ical and non-canonical NF-κB signaling (8). Additionally, cell-
autonomous mechanisms such as the formation of autophago-
somes restrict microbial invasion and mucosal translocation in
epithelial cells (9, 10). Recent reports have highlighted links
between these different pathways. For example, NOD1 and 2 were

shown to recruit autophagy-related protein 16-like 1 (ATG16L1) to
the site of bacterial entry (11). Also, MyD88-dependent cell stim-
ulation downstream of TLR or IL-1R stimulation was linked to
autophagy-dependent antibacterial host defense in epithelial cells
(9, 12). Although experimental evidence suggests the functional
presence of innate immune receptors at the intestinal epithelium, a
systematic analysis of epithelial cell specific receptor deficient ani-
mals has not been performed. The use of bone marrow chimeric
mice on the other hand suffers from the potential radio-resistance
of mucosal immune cells and the large diversity of stromal cells.

INNATE IMMUNE SIGNALING DURING ONTOGENY:
AGE-DEPENDENT RECEPTOR EXPRESSION AND
DOWNSTREAM SIGNALING
Recent reports suggest significant alterations of epithelial innate
immune signaling during ontogeny, i.e., the transition from the
protected environment in utero to the microbially and envi-
ronmentally exposed life after birth. Although only beginning
to be understood, the changes in the epithelial innate immune
response after birth might significantly contribute to establish a
stable life-long host-microbial homeostasis. On the other hand,
it may predispose the neonate to certain infectious or inflam-
matory diseases. Indeed, many pathogens of the neonate host
such as group B streptococci, Listeria monocytogenes, or Escherichia
coli K1 rarely cause disease in adult individuals. Similarly, necro-
tizing enterocolitis (NEC), an inflammatory enteric disease of
unknown etiology is largely restricted to the population of preterm
human neonates. In mice, the observed postnatal alterations in
epithelial innate immune signaling are accompanied by significant
developmental changes. For example, crypts appear only during
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Hornef and Fulde Postnatal adaptation of epithelial immunity

FIGURE 1 | Age-dependent expression of innate immune receptors,
signaling, and effector molecules in murine intestinal epithelial cells. (A)
Innate immune receptors and inhibitory molecules. TLRs, blue; NLRs, green;
RLRs, orange; negative regulators (SIGIRR, A20, PPARy, IRAK-M, IKK2), red.

(B) Soluble intermediates: interleukins, blue; epithelial-derived modifiers of
myeloid cells, red. (C) Antimicrobial effector molecules: (β-defensins, green;
CRS peptides, blue; α-defensins (Defa), red; Reg3β/γ, Angiogenin4 (Ang4),
and CRAMP, orange.

the second week after birth generating the niche for pluripo-
tent Lgr5+ stem cells. Stem cells generate the rapidly prolifer-
ating pool of so-called transit-amplifying (TA) cells. Enterocyte
proliferation within the crypts facilitates the continuous crypt-
villus migration and rapid cell turnover in adult animals (13).
In the absence of crypts, epithelial proliferation and renewal are
markedly diminished in the neonate animal. Cell lines and primary
epithelial cells isolated from fetal intestinal tissue express innate
immune receptors, respond to microbial ligands, and secrete pro-
inflammatory chemoattractants (14–17). Regulatory mechanisms
must, therefore, exist to prevent inappropriate immune stimula-
tion. Hackam and colleagues described downregulation of epithe-
lial TLR4 expression and upregulation of epithelial TLR9 expres-
sion prior to birth in mice (18). Since TLR4 mediated epithelial
signaling has been associated with mucosal damage (19) and TLR9
stimulation was suggested to dampen inflammation (20), this early
adaptive regulation might prepare the fetal epithelium to micro-
bial exposure during the immediate postnatal period. Similarly,
our group showed that TLR3 expression in the neonate intes-
tine in mice is low and increases only with weaning (Figure 1A)
correlating with the enhanced susceptibility to rotavirus infection
during the postnatal period (21). Since TLR3 was shown to amplify
the antiviral response by upregulation of the helicases Rig-I and
MDA5, low epithelial TLR3 expression in neonate mice might have
a broader effect and indirectly also impair the helicase-mediated
host response during the postnatal period despite unaltered basal
helicase expression levels (22). In contrast to TLR3,members of the
NOD-like receptor family, such as NOD1 and 2 but also the inflam-
masome constituents NLRP1, NLRP3, NALP6, and NALP12 as
well as caspase 1 do not underlie any detectable developmental reg-
ulation on transcriptional level (Figure 1A). Enhanced expression
of the negative regulatory molecules A20, single immunoglobulin
IL-1 receptor-related molecule (SIGIRR), interleukin 1 receptor
associated kinase (IRAK)-M, and Toll-interacting protein (TOL-
LIP) has been described in mature human neonatal epithelial cells
(23). In mice, however, no major change in their expression level
is observed (Figure 1A). Also, immune cell-mediated regulatory

mechanisms such as neonatal B cell-derived IL-10 or arginase 2
secretion by newborn CD71+ erythroid cells may dampen the
mucosal immune stimulation (24, 25). Finally, constituents of
the amniotic fluid, colostrum, and breast milk were described to
exhibit a negative regulatory effect on mucosal innate immune
stimulation during the neonatal and pre-weaning period (26, 27).
Thus, developmental and environmental mechanisms appear to
restrict epithelial stimulation by innate immune receptors during
the postnatal period.

On the other hand, exposure to environmental, nutritional,
and microbial stimuli after birth appears to induce a protective
epithelial response. For example, increased epithelial expression of
the pro-inflammatory chemokine Cxcl2 and the NF-κB induced
microRNA miR146-a were observed during the first hours after
vaginal delivery in mice (15, 16). Also an increase of intestinal TNF
mRNA levels was described after birth (28). In human beings, ele-
vated calprotectin levels were measured in healthy term neonates
during the first days after birth that reached concentrations com-
parable to patients with inflammatory bowel disease (29). This
stimulation, however, is transient and appears not to be associ-
ated with mucosal damage or clinical disease. Postnatal immune
activation induces adaptive negative regulatory mechanisms such
as downregulation of the TLR signaling molecule IRAK1. Low
epithelial IRAK1 protein expression prevents inappropriate tran-
scriptional activation and epithelial cell damage. In addition, it
drives a sustained epithelial expression profile that includes genes
involved in metabolism, cell survival, and differentiation (16).
IRAK1 is involved in the upstream signaling cascade of most
TLRs. Only TLR3 signaling occurs completely independent of
MyD88/IRAK1 via the adaptor molecule TIR-domain-containing
adapter-inducing interferon-β (TRIF) (30). TLR3 expression,
however, is significantly downregulated in the neonate intestine
by the developmental transcriptional repressor B lymphocyte-
induced maturation protein (Blimp)1 as described above (21,
31, 32). IRAK1 protein downregulation and low Tlr3 expression
during the postnatal period might explain why deletion of A20,
SIGIRR, or TOLLIP does not lead to spontaneous inflammation
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Hornef and Fulde Postnatal adaptation of epithelial immunity

after birth (33–35). It may also cause the reduced pro-IL-18 expres-
sion in neonatal epithelial cells and thereby prevent excessive
inflammasome-mediated tissue stimulation (Figure 1B). Thus,
adaptive mechanisms in addition to the above discussed develop-
mental mechanisms restrict epithelial innate immune activation in
the homeostatic neonatal intestine. Following bacterial challenge
with enteropathogenic microorganisms, however, the neonatal
epithelium is able to respond in a MyD88-dependent fashion (own
unpublished observation). The mechanisms that allow stimula-
tion of the neonate epithelium in the event of immediate danger
to mount a protective antimicrobial host response have not been
investigated but may require contribution from immune cells in
the lamina propria.

TLR, NLR, and helicase stimulation but also IL-1 and IL-18
signaling converge at the level of TGF-β activated kinase (TAK)1,
inhibitor of κB kinase (IKK)1/2, and NF-κB essential modulator
(NEMO) to induce NF-κB activation in epithelial cells. NF-κB sig-
naling inhibits pro-apoptotic pathways and drives the expression
of antimicrobial host defense mechanisms. A number of studies
have highlighted the protective role of NF-κB mediated signal-
ing at the epithelium during the postnatal period. For example,
10–15% of epithelial RelA deficient mice develop intestinal symp-
toms as early as 2–3 days after birth and succumb to mucosal
bleeding both in the small and large intestine before weaning
(36). Also, asymptomatic RelA deficient neonates exhibit reduced
expression of anti-apoptotic and antimicrobial effector mole-
cules. Similarly, enterocyte-specific TAK1 deficient mice develop
spontaneous intestinal inflammation and epithelial apoptosis at
the time of birth (28). Surprisingly, signs of epithelial apop-
tosis and inflammation were already observed prior to birth.
Both TNF mediated cell stimulation and enhanced susceptibil-
ity to reactive oxygen species (ROS) cause mucosal damage in
the neonate host (28, 37). Similarly, epithelial loss of NEMO or
IKK1/2 expression results in mucosal bleeding, epithelial apop-
tosis, loss of mucosal integrity, and bacterial translocation and
finally significant upregulation of pro-inflammatory cytokines
during the first weeks after birth. Inflammation is driven by
MyD88- and TNF-dependent pathways. Strikingly, loss of epithe-
lial NEMO or IKK1/2 expression altered the colonic mucosa but
left the small intestinal tissue largely unaffected (38). No clini-
cal symptoms are observed during the postnatal period in mice
expressing a dominant negative MyD88 transgene in the epithe-
lium possibly due to remaining compensatory NF-κB activating
pathways. Transgene animals initially gain weight indistinguish-
able from littermate controls but exhibit enhanced epithelial pro-
liferation and develop spontaneous small intestinal inflammation
at 24 weeks after birth (39). Epithelial-specific MyD88 deficient
mice show an impaired mucosal barrier formation but no sponta-
neous inflammation after the postnatal period (40). Dysfunction
in both animal models was at least in part explained by reduced
expression of enteric antimicrobial peptides (AMPs). Similarly,
MyD88-dependent signaling by radioresistant, non-myeloid cells
has been shown to provide protection from inflammation in
a chemically induced model of colitis via enhanced signaling
through the epidermal growth factor receptor (EGFR) (41). In
contrast to the strong phenotype of mice impaired in epithe-
lial NF-κB signaling, epithelial-specific deletion of the mitogen

activated protein (MAP) kinase p38 results in an only moderate
phenotype. Decreased numbers of goblet cells and an enhanced
rate of epithelial proliferation were noted in the adult colon in the
absence of overt inflammation (42). In addition to NF-κB, also
the alternative death complex protects from epithelial cell dam-
age early after birth. Lack of intestinal epithelial FADD expression
results in epithelial necroptosis with loss of small intestinal Paneth
cells and spontaneous inflammation in small and large intestine
associated with 50% mortality prior to weaning. Although the
phenotype was rescued in the absence of Rip3 both in small and
large intestine, only the colitis was dependent on MyD88 and
TNF. Small intestinal inflammation might be the consequence
of reduced antimicrobial peptide secretion (43). Thus, although
excess immune activation may lead to organ damage, homeosta-
tic innate immune stimulation appears to be required to prevent
epithelial cell death, and drive antimicrobial host defense early
after birth. The degree and nature of this homeostatic epithe-
lial signaling may well vary during postnatal development and
requires further investigations.

“CROSS-TALK” BETWEEN THE EPITHELIUM AND
UNDERLYING IMMUNE CELLS
Epithelial chemokine secretion upon innate immune stimulation
induces the recruitment of professional immune cells to help
combating infection. Consistently, enhanced epithelial chemokine
expression in adult transgene animals leads to increased recruit-
ment of granulocytes and lymphocytes to the lamina propria (42).
Epithelial signals also help to orchestrate adaptive immune func-
tions. The secretion of thymic stromal lymphopoietin (TSLP)
inhibits DC-derived IL-12 secretion and TH1 differentiation (44)
and, thus, drives the T cell-mediated immune response towards
TH2. A TH2-prone immune response with high IL-4, IL-5, IL-
13, and IL-10 levels is typical for the neonate host within its
anti-inflammatory environment (45). Epithelial TSLP production
remains unaltered and the increasing demand for TSLP is provided
by breast milk, as recently reported by MacFarlane et al. (46). TGF-
β is another component of breast milk with anti-inflammatory
properties (47). But, in contrast to TSLP, epithelial-specific expres-
sion of TGF-β is age-dependent and significantly more pro-
nounced around birth (Figure 1B). In addition to retinoic acid
and TSLP, TGF-β is a strong inducer of tolerogenic CD103+DCs,
which, in turn, promote TREG maturation (48). TREG cells secrete
large amounts of anti-inflammatory cytokines, such as Il-10 (49)
and, thus, contribute to the TH2 biased immune response of the
neonate. Furthermore, it is widely accepted that TREG cells are
directly involved in the development of a life-long protection
against allergic disorders, such as asthma and hay fever (50, 51).
Although, underlying mechanisms are still elusive, significantly
higher levels of regulatory T cells and TREG-derived interferon
(IFN)-γ were observed (52).

Epithelial-derived IL-25 recruits intraepithelial lymphocytes
and IL-7 and trans-presented IL-15 maintains their presence
(53). The expression of IL-15 is only enhanced after weaning
(Figure 1B). An underlying reason is unknown but it can be spec-
ulated that expression of IL-15 and its trans-presenting receptor
IL-15Rα by epithelial cells goes along with the development and
appearance of its target cells, IL-2Rβ expressing intraepithelial
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Hornef and Fulde Postnatal adaptation of epithelial immunity

intestinal lymphocytes (IELs). Similarly, the negligible epithelial
secretion of a proliferation-inducing ligand (April) and B-cell-
activating factor (BAFF) that facilitate T cell-independent IgA
production (54) around birth (Figure 1B) most probably relies
on the kinetic of B cell homing to the gut mucosa, which starts
only after birth (55).

EPITHELIAL INNATE IMMUNE EFFECTOR MOLECULES
Protective epithelial effector functions include the synthesis of
antimicrobial molecules, maintenance of the mucus layer, secre-
tion of signaling intermediates, and an enhancement of epithelial
tight junctions and cell turn over to remove infected or dam-
aged cells. The active role of the epithelium appears to be critical
also under homeostatic conditions to maintain barrier integrity.
Epithelial-specific knockouts that impair cell signaling (28, 38,
39), disturb histone acetylation and microRNA function (56, 57),
reduce apoptosis (43), alter epithelial cell differentiation (58, 59)
or decrease mucus production (60), and lead to tissue damage
and mucosal inflammation. Innate immune stimulation rein-
forces tight junction expression and regulates the epithelial barrier
function (61). Also, epithelium-derived antimicrobial molecules
such as Reg3γ, defensins or reactive oxygen, or nitrogen species
provide direct antibacterial activity (40, 62). Effector molecules
with antimicrobial and barrier promoting properties support
the maintenance of gut homeostasis. The most abundant effec-
tor molecules in the intestine are AMPs (63). They significantly
influence the microbial composition but also the susceptibility
to infection (64). AMPs comprise members of different pro-
tein families, including defensins, defensin-like molecules such as
cryptdin-related sequence (CRS) peptides, cathelicidins, C-type
lectins, such as the regenerative islet-derived proteins 3 β and γ

(Reg3β and Reg3γ), and RNAses, such as angiogenin 4 (Ang4)
(65). Defensins are highly cationic peptides with an average length
of approximately 30–40 amino acids. They encode for six cys-
teine residues that form characteristic, intramolecular disulfide
bonds, and prevent peptide degradation (66, 67). Paneth cells in
the small intestine constitute the main reservoir of α-defensins
(68). β-defensins are mainly expressed in the colon by absorp-
tive colonocytes. Whereas the genome of mice encodes more
than 20 different α-defensins (also termed cryptdins in mice),
human beings only produce two, human defensing (HD)-5 and
HD-6 (63, 69). CRS peptides are evolutionary closely related to
cryptdins and share a variety of properties such as the gener-
ation by Paneth cells as an inactive pro-form (69). In contrast
to cryptdins, CRS peptides have the potential to form covalent
homo- and heterodimers and, thus, are able to assemble a large
number of different peptide molecules (70). The transcription
of α-defensins and CRS peptides is largely constitutive and not
subjective to known environmental signals (71). Release from
Paneth cells, in contrast, occurs in response to microbial but also
nervous and endogenous mediators (72, 73). In contrast to crypt-
dins, epithelial Reg3β and Reg3γ as well as Ang4 expression is
MyD88 dependent and enhanced in the presence of the enteric
microbiota or the pro-inflammatory response to environmental or
infectious stimuli (40, 74). Significant differences in the antimicro-
bial peptide spectrum exist along the length of the small intestine
but also between different mouse strains (75). This fact requires

attention, since it has led to the misinterpretation of results by
comparing, e.g., insufficiently backcrossed gene animals in the
past (76).

THE ANTIMICROBIAL PEPTIDE REPERTOIRE DURING
ONTOGENY
The neonate small intestinal epithelium expresses the cathelicidin
cathelin-related antimicrobial peptide (CRAMP) (77). CRAMP
exerts antibacterial activity against commensal and pathogenic
bacteria in vitro and protects the neonate intestinal mucosa from
Listeria monocytogenes, a leading cause of neonatal sepsis and
meningitis in newborns. Production of Paneth cell-derived AMPs
like cryptdins and CRS peptides only starts approximately day 9
post partum in C57BL/6 mice as shown in Figure 1C, reflecting the
delayed appearance of small intestinal Paneth cells during the post-
natal period (77, 78). Since intestinal epithelial CRAMP expression
wanes after the postnatal period this results in a switch in the
peptide repertoire and production site from epithelial CRAMP
expression in the neonate to Paneth cell-secreted cryptdins and
CRS peptides after weaning (Figure 1C). Adult mice deficient for
the metalloproteinase (MMP)-7, and, therefore, unable to gener-
ate mature cryptdins and CRS peptides show a higher number
of Firmicutes and a lower amount of Bacteroidetes in the small
intestine (64). Since the transition in nutrition from breast milk
to solid food goes along with a reduction of Firmicutes, the spe-
cific antimicrobial potential of cryptdins might help to prepare the
neonatal intestine for weaning. Also, the lack of Paneth cell-derived
defensins in the neonate host might explain the susceptibility of
neonate but not adult mice to oral challenge with Shigella flexneri
(79, 80). Consistently, mice lacking MMP-7 are more suscepti-
ble to invasive Salmonella Typhimurium infection and exhibit a
reduced ability to clear the bacteria from the small intestine (81).
The expression of Reg3β/γ, and Ang4 is maximal in adult animals
(Figure 1C). This may in part be attributable to the low stimulatory
potential of the developing enteric microbiota and facilitate early
colonization by mainly gram-positive commensal bacteria (82).
Importantly, AMPs in adult mice act in concert with the mucus
layer overlaying the epithelium both in the small and large intes-
tine. Release by Paneth cells leads to enrichment of cryptdins and
CRS peptides in mucus material generating a physico-chemical
shield to protect the epithelial surface (83, 84). Similarly, also
Reg3γ acts to promote the mucus barrier and Reg3β/γ and Ang4
expression was noted in mucus-producing goblet cells (62, 85).
The neonate intestine displays a reduced mucus layer [(86) and
own unpublished observation]. Expression of CRAMP by ente-
rocytes lining the epithelial surface might compensate for the
reduced mucus layer to provide protection of the epithelial surface.

In conclusion, developmental and adaptive changes accompany
the establishment of mucosal host-microbial homeostasis in the
intestine after birth (Figure 2). Although the functional impor-
tance of these changes is incompletely understood, the observed
mechanisms appear to contribute to the transition from the pro-
tected environment in utero to the microbially and environmen-
tally exposed life after birth. A deeper understanding requires
further investigations but might ultimately help to explain the
development of inflammatory but also metabolic diseases and
allow the development of prophylactic and therapeutic strategies.
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Hornef and Fulde Postnatal adaptation of epithelial immunity

FIGURE 2 | Age-dependent innate immune receptor and effector
molecules expression at the mouse intestinal epithelium. Changes in the
epithelial architecture between the murine neonate (left) and adult (right)

intestinal epithelium. Age-dependently expressed genes are highlighted in
green (upregulation in the neonate epithelium) or red (downregulated in the
neonate epithelium).
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