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Abstract
Objective: Development	of	biofluid-based	biomarkers	 is	attractive	 for	 the	diagno-
sis	of	chronic	obstructive	pulmonary	disease	(COPD)	but	still	lacking.	Thus,	here	we	
aimed	to	identify	serum	metabolic	biomarkers	for	the	diagnosis	of	COPD.
Methods: In	 this	study,	we	 investigated	serum	metabolic	 features	between	COPD	
patients	(n	=	54)	and	normal	individuals	(n	=	74)	using	a	1H	NMR-based	metabolomics	
approach	and	developed	an	integrated	method	of	least-squares	support	vector	ma-
chine	(LS-SVM)	and	serum	metabolic	biomarkers	to	assist	COPD	diagnosis.
Results: We	observed	a	hypometabolic	state	in	serum	of	COPD	patients,	as	indicated	
by	decreases	 in	N-acetyl-glycoprotein	 (NAG),	 lipoprotein	 (LOP,	mainly	LDL/VLDL),	
polyunsaturated	fatty	acid	(pUFA),	glucose,	alanine,	leucine,	histidine,	valine,	and	lac-
tate.	Using	an	integrated	method	of	multivariable	and	univariate	analyses,	NAG	and	
LOP	were	identified	as	two	important	metabolites	for	distinguishing	between	COPD	
patients	and	controls.	Subsequently,	we	developed	a	LS-SVM	classifier	using	these	
two	markers	and	found	that	LS-SVM	classifiers	with	 linear	and	polynomial	kernels	
performed	better	than	the	classifier	with	RBF	kernel.	Linear	and	polynomial	LS-SVM	
classifiers	can	achieve	the	total	accuracy	rates	of	80.77%	and	84.62%	and	the	AUC	
values	of	0.87	and	0.90	for	COPD	diagnosis,	respectively.
Conclusions: This study suggests that artificial intelligence integrated with serum 
metabolic	biomarkers	has	a	great	potential	for	auxiliary	diagnosis	of	COPD.
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1  | INTRODUC TION

Chronic	 obstructive	 pulmonary	 disease	 (COPD)	 is	 a	 preventable	
and treatable disease characterized by persistent respiratory 
symptoms and airflow limitation.1 Chronic obstructive pulmo-
nary disease has become the third leading cause of death in the 
world and causes considerable economic and social burdens due 
to insufficient diagnosis and treatment.2,3 Currently, spirometry is 
still a common method for diagnosing and monitoring progression 
of	COPD	according	 to	 the	presence	of	chronic	airflow	 limitation.	
Many	factors	may	affect	COPD	diagnosis	and	 lead	to	under-	and	
over-diagnosis4; therefore, it is of great importance to develop 
other	adjunctive	measures,	especially	biofluid-based	method.	It	is	
worth noting that serum inflammatory and oxidative stress mark-
ers	have	been	associated	with	COPD.5-8 However, there is still a 
lack	of	reliable	and	simple	biofluid-based	biomarkers	to	assist	the	
diagnosis	of	COPD.

Metabolomics	has	the	ability	to	identify	specific	metabolic	bio-
markers related to the onset and development of disease,9 which 
makes it possible to diagnose or predict diseases, such as cancer,10 
cardiovascular disease,11 and diabetes.12	 Of	 note,	 characteristic	
metabolic	changes	have	also	been	detected	in	COPD	patients	using	
a	 metabolomics	 approach.	 Ubhi	 et	 al	 found	 an	 increased	 protein	
turnover	in	serum	of	COPD	patients	by	NMR-based	metabolomics.13 
In	exhaled	breath	condensate,	COPD	patients	showed	lower	levels	
of acetone, valine, and lysine, as well as higher levels of lactate, ace-
tate, propionate, serine, proline, and tyrosine, when compared with 
controls.14	Using	a	mass	spectrometry-based	metabolomics	method,	
Naz	 et	 al	 reported	 that	 oxidative	 stress	 and	 the	 autotoxin-lysoPA	
axis	 were	 disturbed	 in	 serum	 of	 COPD	 patients	 in	 a	 sex-specific	
manner.15

Additionally,	 artificial	 intelligence	 (AI)-based	 techniques	 are	
developing rapidly in medicine and may achieve a better detection 
and diagnosis of disease.16,17	 For	 example,	 Esteva	 et	 al	 trained	
deep neural networks with skin images and achieved dermatolo-
gist-level	classification	of	skin	diseases.18 Ardila et al developed 
a deep learning model integrated with computed tomography in-
formation to predict the risk of lung cancer with an area under 
the	curve	of	94.4%.19	Besides,	AI-based	diagnostic	technique	has	
also been successfully applied for other diseases, such as liver 
masses,20 breast cancer metastases,21 diabetic retinopathy,22 and 
others.	Most	of	the	developed	AI	diagnostic	systems	are	based	on	
medical	 imaging;	however,	here	we	sought	 to	 integrate	AI	 tech-
nique and metabolic features in biofluids for disease diagnosis 
and classification.

In	 the	 present	 study,	 therefore,	 we	 analyzed	 serum	metabolic	
profiles	in	COPD	patients	and	normal	controls	by	using	a	1H	NMR-
based	metabolomics	approach.	The	aims	of	this	study	are	(a)	to	iden-
tify	 characteristic	metabolic	 changes	 in	COPD	patients,	 and	 (b)	 to	
develop	an	integrated	method	of	least-squares	support	vector	ma-
chine and serum metabolomics biomarkers for auxiliary diagnosis of 
COPD.

2  | MATERIAL S AND METHODS

2.1 | Clinical sample collection

We	 recruited	 a	 total	 of	 128	 participants	 from	 the	 First	 Affiliated	
Hospital	 of	Wenzhou	Medical	 University,	 including	 54	 COPD	 pa-
tients	 and	 74	 subjects	 without	 COPD.	 Pulmonary	 function	 was	
evaluated	using	prebronchodilator	spirometry	based	on	the	Global	
Initiative	 for	 Chronic	 Obstructive	 Lung	 Disease	 (GOLD)	 criteria,	
and	COPD	was	defined	when	FEV1	<	80%	and	FEV1/FVC	<	0.7.23 
The detailed clinical information of participants is listed in Table 1. 
Fasting	blood	sample	was	collected	in	a	5	ml	vacutainer	tube	con-
taining	the	chelating	agent	ethylene	diamine	tetraacetic	acid	(EDTA)	
and	 centrifuged	at	1500	g	 for	15	minutes	 at	4°C.	 Serum	was	 col-
lected	and	stored	at	−80°C	until	analysis.	This	study	was	approved	
by	the	Ethical	Committee	of	Wenzhou	Medical	University,	and	writ-
ten informed consents were acquired from all subjects. All proce-
dures in the present study were carried out according to the 2008 
Helsinki	Declaration	and	 the	clinical-ethical	guidelines	of	 the	First	
Affiliated	Hospital	of	Wenzhou	Medical	University.

2.2 | NMR-based metabolomic analysis

1H	NMR	spectra	were	recorded	using	a	Bruker	AVANCE	III	600	MHz	
NMR	 spectrometer	 with	 a	 5-mm	 TXI	 probe	 (Bruker	 BioSpin,	
Rheinstetten,	 Germany)	 at	 37°C.	 Serum	 sample	 was	 thawed	 at	
4°C	 and	 vortexed	 for	 10	 seconds	 using	 a	 vortex-genie	 (Scientific	
Industries).	 Then	 200	 μL of serum sample was drawn into an 
Eppendorf tube and mixed with 400 μL of 0.2 mol/L phosphate 
buffer. The mixture was centrifuged at 10 000 g for 10 minutes at 
4°C, and 500 μL of supernatant was transferred and mixed with 
100 μL of D2O	 containing	 0.5%	 sodium	 trimethylsilyl	 propionate-
d4	 (TSP)	 in	a	5	mm	NMR	tube	for	metabolomics	analysis.	

1H	NMR	
spectra	were	acquired	using	the	CPMG	pulse	sequence	with	a	fixed	
receiver-gain	value	and	the	main	parameters	were	set	as	follows:	re-
laxation delay, 4 seconds; acquisition time, 1.64 seconds/scan; data 
points,	32K;	spectral	width,	10	000	Hz;	exponential	line-broadening	
function, 0.3 Hz.

All	NMR	 spectra	were	 phase/baseline	 corrected	 automatically	
and referenced to the methyl signal of lactate at 1.33 ppm in Topspin 
3.0	software	(Bruker	BioSpin).	Subsequently,	all	spectra	were	aligned	
using	the	“icoshift”	procedure	in	MATLAB	(R2012a,	The	Mathworks	
Inc).24	NMR	spectra	from	0.4	to	9.0	ppm	excluding	the	residual	water	
region from 4.0 to 5.0 ppm were subdivided and integrated to bin-
ning data with a size of 0.01 ppm for multivariate analysis.

Metabolite	 signals	 in	 NMR	 spectra	 were	 assigned	 by	 using	
Chenomx	NMR	suite	7.0	(Chenomx	Inc)	and	the	human	metabolome	
database.25	 To	 further	 confirm	uncertain	 identifications,	 a	 two-di-
mensional 13C-1H	heteronuclear	single	quantum	coherence	(HSQC)	
experiment was employed to analyze the representative samples. 
The level of each metabolite was indicated using its peak area.
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2.3 | Multivariate data analysis

Partial	 least-squares-discriminate	 analysis	 (PLS-DA)	 was	 per-
formed	 on	 auto-scaled	 data	 to	 obtain	 an	 overview	 of	 metabolic	
changes	 between	COPD	 patients	 and	 normal	 individuals	 by	 using	
MetaboAnalyst	4.0.26	Moreover,	a	permutation	test	with	1,000	per-
mutations based on separation distance was used to validate the 
performance	of	PLS-DA	models.26	 In	PLS-DA,	variable	 importance	
in	 the	projection	 (VIP)	 represents	 a	quantitative	 statistical	 param-
eter ranking metabolites according to their ability to discriminate 
between	COPD	patients	and	normal	 individuals.	 In	this	study,	me-
tabolites	with	VIP	values	more	than	1.5	were	selected	as	important	
indicators.

2.4 | Least-squares support vector machine (LS-
SVM) classifier

Least-squares	support	vector	machine	as	an	artificial	intelligence	
model	 was	 used	 to	 distinguish	 COPD	 patients	 from	 normal	 in-
dividuals.	 For	 development	 of	 LS-SVM	 classifier,	 the	 selection	
of optimal kernels and parameters is crucial for model perfor-
mances. Therefore, in the present study, linear, polynomial and 
RBF	kernels	were	compared,	 and	 leave	one	out	 cross-validation	

were	used	to	select	the	optimal	parameters	of	LS-SVM.	All	data	
were	 auto-scaled	 and	 randomly	 divided	 into	 two	 subsets	 for	
training	 (80%)	 and	 testing	 (20%)	 phases	 of	 LS-SVM	 classifiers.	
Receiver	 operating-characteristic	 (ROC)	 curve	was	 plotted	with	
sensitivity	 versus	 1-specificity,	 and	 its	 area	 under	 curve	 (AUC)	
value was calculated to assess the diagnostic performance of 
LS-SVM	 classifiers.	 LS-SVM	model	 with	 the	 highest	 AUC	 value	
was	selected	as	the	optimal	model	 for	COPD	predictive	diagno-
sis.	 LS-SVM	was	 implemented	 using	 a	 LS-SVM	 toolbox27 under 
MATLAB	environment	(R2012a,	The	MathWorks,	Inc,	Natick,	MA,	
USA).

2.5 | Statistical analysis

Metabolic	difference	between	COPD	patients	and	normal	individu-
als	was	performed	using	Student's	t test with Bonferroni correction 
in	SAS	software	(SAS	9.2,	SAS	Institute	Inc),	and	a	statistically	sig-
nificant difference was defined when a P value below .05. The vol-
cano plot was employed to identify potentially important metabolic 
markers according to fold change and P value of the metabolite using 
MetaboAnalyst	4.0.26	The	AUC	value	of	each	metabolite	for	COPD	
predictive	 diagnosis	 was	 calculated	 by	 a	 classical	 univariate	 ROC	
analysis	in	MetaboAnalyst	4.0.26

COPDa  NORMb  P

n 54 74 –

Female,	n	(%) 7	(12.97) 43	(58.11) –

Age	(y) 71.27	±	7.37 65.09	±	7.89 <.001

Height	(cm) 162.64 ± 8.36 157.06	±	11.77 .007

Weigh	(kg) 60.68 ±	9.88 63.03 ± 10.16 .22

Smoking	status:	current,	n	(%) 32	(59.26) 27	(36.49) –

Smoking	status:	former,	n	(%) 23	(71.88) 12	(44.44) –

Passive smoking status: never, 
n	(%)

16	(29.63) 35	(47.30) –

Passive smoking status: former, 
n	(%)

10	(18.52) 9	(12.16) –

Passive smoking status: current, 
n	(%)

18	(33.33) 32	(43.24) –

FVCc 	(L) 2.3 ±	0.87 2.43 ±	0.69 .377

FVC	(%) 74.25	±	20.67 91.22	±	19.76 <.001

FEV1d 	(L) 1.28 ± 0.64 3.21 ± 10.45 .225

FEV1	(%) 51.2 ±	19.04 83.2 ± 21.11 <.001

FEV1/FVC	(%) 53.67	±	10.91 84.13 ±	6.76 <.001

Hypertension,	n	(%) 19	(35.19) 40	(54.05) –

Diabetes,	n	(%) 4	(7.41) 5	(6.76) –

aChronic obstructive pulmonary disease. 
bParticipants without chronic obstructive pulmonary disease. 
cForced	vital	capacity.	
dForced	expiratory	volume	in	1	s.	

TA B L E  1   The clinical information of 
participants
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3  | RESULTS

3.1 | COPD patients possesses a peculiar metabolic 
phenotype

Typical 1H	NMR	spectrum	acquired	 from	serum	 in	COPD	patients	
is	 illustrated	 in	 Figure	 1A,	 where	 we	 identified	 a	 series	 of	 serum	
metabolites,	 involving	 amino	 acid	metabolism	 (alanine,	 valine,	 iso-
leucine,	 leucine,	 tyrosine,	 and	 histidine),	 glucose	 metabolism	 (lac-
tate	 and	 glucose),	 lipid	 metabolism	 (pUFA,	 polyunsaturated	 fatty	
acid;	formate),	and	others	(LOP,	lipoprotein	mainly	include	LDL	and	
VLDL;	NAG,	N-acetyl-glycoprotein).	 To	 examine	 the	 difference	 of	
metabolic	patterns	between	COPD	patients	and	controls,	a	partial	
least-squares-discriminant	analysis	(PLS-DA)	was	used	in	this	study	
based	 on	 serum	metabolomes,	 as	 shown	 in	 Figure	 1B.	 The	 result	
of	 PLS-DA	 shows	 a	 clear	 separation	 between	COPD	patients	 and	
controls. Then, we performed a permutation test with 1000 random 
permutations to test this model and found a statistically significant 
performance	 of	 PLS-DA	 model	 (Figure	 1C,	 P <	 .001).	 Figure	 1D	
shows	 variable	 importance	 in	 projection	 (VIP)	 scores	 of	 each	me-
tabolite	from	PLS-DA	model.	Relative	to	other	metabolites,	NAG	and	
LOP	with	VIP	> 1.5 were identified as important differential metab-
olites	between	COPD	patients	and	controls	in	this	study.	Moreover,	

volcano	plot	also	shows	that	NAG	and	LOP	had	a	higher	fold	change	
and	more	significant	difference	(Figure	1E).

Furthermore,	 we	 found	 that	 most	 of	 identified	 metabolites	
in	 serum	 were	 significantly	 decreased	 in	 COPD	 patients	 relative	
to	 normal	 controls,	 including	 NAG	 (Figure	 2A),	 LOP	 (Figure	 2B),	
pUFA	 (Figure	2C),	 glucose	 (Figure	2D),	 alanine	 (Figure	2E),	 leucine	
(Figure	 2F),	 histidine	 (Figure	 2G),	 valine	 (Figure	 2H),	 and	 lactate	
(Figure	2I).	However,	COPD	patients	had	a	significantly	higher	level	
of	 serum	 formate	 than	 controls	 (Figure	 2J,	 P =	 .02).	 In	 addition,	
there	were	no	significant	differences	in	serum	isoleucine	(Figure	2K,	
P =	.51)	and	tyrosine	(Figure	2L,	P =	.87)	levels	between	COPD	pa-
tients and controls.

3.2 | Diagnosis of COPD based on LS-SVM classifier 
using metabolic biomarkers

In	this	study,	ROC	curves	analysis	was	employed	to	evaluate	serum	
NAG	and	LOP	that	have	been	identified	as	important	differential	me-
tabolites	for	diagnosis	of	COPD.	The	corresponding	area	under	curve	
(AUC)	were	0.78	for	NAG	(Figure	3A)	and	0.76	for	LOP	(Figure	3B).	
Subsequently,	we	developed	LS-SVM	classifiers	equipped	with	dif-
ferent	kernel	functions	for	COPD	diagnosis	using	NAG	and	LOP,	as	

F I G U R E  1  NMR-based	metabolomics	analysis.	A,	A	typical	600	MHz	1H	NMR	spectrum	obtained	from	serum	in	patients	with	COPD:	
LOP,	lipoprotein;	NAG,	N-acetyl-glycoprotein;	×4,	4	times	magnification;	B,	PLS-DA-based	classification	of	participators	with	and	without	
COPD	(COPD	vs.	NORM)	using	serum	metabolomics	data;	C,	A	1000-times	random	permutation	test;	D,	VIP	values	of	metabolites	analyzed	
by	PLS-DA;	E,	Volcano	plot	of	metabolites	analyzed	by	MetaboAnalyst.	Important	metabolites	were	selected	when	VIP	value	was	>1.5 and P 
value <.05
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shown	in	Figure	3C.	The	development	of	LS-SVM	classifier	includes	
two	steps:	training	and	test	phases.	In	the	training	phase,	80%	of	the	
data were randomly selected to generate the models. We found that 
LS-SVM	classifier	with	radial	basis	function	(RBF)	kernel	had	a	higher	
accuracy	(Figure	3D)	than	the	classifier	with	other	two	kernels.	After	
training,	LS-SVM	classifiers	were	tested	using	an	independent	data-
set	(20%	of	the	data).	The	results	reveal	that	the	total	classification	
accuracy	 of	 LS-SVM	 classifier	 with	 RBF	 kernel	 were	 dramatically	
decreased	 to	 57.69%	 (Figure	 3E),	 suggesting	 that	 this	 model	 was	
overfitting. During the test phase, we found that the classification 
accuracy	of	LS-SVM	classifier	with	RBF	kernel	was	only	41.67%	for	
COPD	patients	and	71.43%	for	normal	controls.	For	linear	LS-SVM	
classifier,	 however,	 the	 classification	 accuracies	were	 83.33%	 and	
78.57%	 for	COPD	patients	 and	 normal	 controls,	 respectively,	 and	
the	total	accuracy	rate	was	80.77%,	as	shown	in	Figure	3E.	For	poly-
nomial	LS-SVM	classifier,	the	classification	accuracy	was	83.33%	for	
COPD	patients	and	85.71%	for	normal	controls,	and	the	total	accu-
racy	rate	was	84.62%	(Figure	3E).	In	addition,	linear	(Figure	3F)	and	
polynomial	(Figure	3G)	LS-SVM	classifiers	achieved	the	AUC	values	
of	0.87	and	0.90	for	COPD	diagnosis	in	an	independent	dataset,	re-
spectively;	however,	the	AUC	value	of	LS-SVM	classifier	with	RBF	
kernel	was	only	0.61	(Figure	3H).	Thus,	for	the	diagnosis	of	COPD	
based	on	NAG	and	LOP,	LS-SVM	classifiers	with	linear	and	polyno-
mial	kernels	performed	better	than	the	classifier	with	RBF	kernel.

4  | DISCUSSION

Abnormal metabolism plays an important role in most diseases, 
indicating that the onset and development of diseases would be 

accompanied by a peculiar metabolic change.28 Hence, metabo-
lomics might be contributed to explore the pathogenesis and treat-
ment	of	diseases	as	well	as	to	predict	and	diagnose	diseases.	In	the	
present	study,	we	observed	a	hypometabolic	state	in	COPD	patients	
using	an	NMR-based	metabolomics	approach.	This	finding	is	consist-
ent with the result of Labaki et al, who reported that the severity of 
airflow obstruction is linked with downregulation of serum metabo-
lism in smokers.29	In	addition,	they	also	identified	the	most	relevant	
metabolites, including tryptophan, histidine, valine and leucine.29 
Therefore,	hypometabolism	may	trigger	the	progression	of	COPD.

In	 this	 study,	we	 found	 that	COPD	patients	 had	 lower	 leucine	
and valine levels than normal controls. Leucine and valine belong 
to	 branched-chain	 amino	 acids	 (BCAAs)	 that	 have	 been	 shown	 to	
regulate protein turnover and glucose homeostasis.30 Decreased 
BCAAs	levels	in	COPD	patients	have	also	been	reported	in	previous	
studies.31,32 Additionally, Yoneda et al demonstrated that reduced 
BCAAs	 levels	 in	 COPD	 patients	 are	 specifically	 related	 to	 loss	 of	
body weight and muscle mass.33 Besides BCAAs, we also observed 
significantly decreased levels of alanine and histidine in serum of 
COPD	patients	 relative	 to	normal	 controls.	For	COPD,	 cachexia	 is	
regarded as a common and partly reversible feature, but adversely 
affects its progression and prognosis.34,35	Of	note,	amino	acids	have	
been	 shown	 to	 be	 implicated	 in	COPD	 cachexia.32,35	 In	 the	 body,	
amino acids not only are necessary constituents for protein synthe-
sis,	but	also	replenish	tricarboxylic	acid	(TCA)	cycle	intermediates	for	
energy supply.36 Therefore, the reduction of amino acid metabolism 
could	be	a	common	characteristic	in	COPD	patients	and	indicate	the	
deterioration	of	COPD.

Chronic obstructive pulmonary disease has also been associ-
ated with disrupted lipid metabolism,37,38 but its effect is differed 

F I G U R E  2  COPD-driven	serum	metabolic	changes.	The	metabolic	difference	between	COPD	patients	(COPD)	and	normal	individuals	
(NORM)	was	analyzed	using	Student's	t test with Bonferroni correction, and a statistically significant difference was defined when a P 
value <	.05.	Metabolite:	pUFA,	polyunsaturated	fatty	acid;	LOP,	lipoprotein;	NAG,	N-acetyl-glycoprotein
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on	blood	lipid	profiles.	Titz	et	al	reported	that	smokers	with	COPD	
can	be	clearly	distinguished	 from	never-smokers	using	 serum	 lipid	
profiles.39	They	also	found	that	COPD	patients	had	higher	levels	of	
glycerolipids and monounsaturated fatty acids as well as lower levels 
of	polyunsaturated	fatty	acids	(pUFA)	and	hydroxyoctadecadienoic	

acids.39	 In	 addition,	 decreased	 pUFA	 level	 in	 COPD	 patients	 was	
also detected in other studies.40-42	In	the	current	study,	relative	to	
normal	controls,	we	observed	a	lower	pUFA	level	and	a	higher	for-
mate	level	in	serum	of	COPD	patients.	Of	note,	a	decrease	in	pUFA	
is a marker of oxidative stress,43,44 and an increase in formate has 

F I G U R E  3  AI-based	COPD	diagnosis	using	serum	metabolic	biomarkers.	Values	of	the	area	under	the	curve	of	(A)	N-acetyl-glycoprotein	
(NAG)	and	(B)	lipoprotein	(LOP)	analyzed	by	receiver	operating	characteristics	(ROC);	(C)	AI-based	diagnostic	procedure	of	COPD:	(1)	Serum	
collection,	(2)	Predictive	diagnosis	of	COPD	based	on	AI	and	metabolic	biomarkers,	and	(3)	Diagnosis	report;	(D)	The	diagnostic	accuracies	
of	COPD	using	LS-SVM	classifiers	equipped	with	different	kernel	functions	and	serum	metabolic	biomarkers	(NAG	and	LOP):	K1,	linear	
function;	K2,	polynomial	function;	K3,	radial	basis	function;	(E)	The	diagnostic	results	using	LS-SVM	with	different	kernel	functions	and	
serum	metabolic	biomarkers	based	on	an	independent	dataset	including	12	COPD	patients	and	14	subjects	without	COPD	(NORM);	the	
ROC	analyses	and	AUC	values	of	LS-SVM	with	(F)	linear,	(G)	polynomial,	and	(H)	radial	basis	functions	during	the	training	and	test	phases
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been implicated in the inflammatory process.45 Therefore, changes 
in lipid metabolism proposed herein may indicate increases in ox-
idative	 stress	 and	 inflammation	 in	 COPD	 patients	 compared	with	
normal	 controls,	which	 could	 be	 potential	 inducements	 for	COPD	
progression. Additionally, glucose metabolism was also vulnerable 
to	be	disturbed	in	COPD	patients	relative	to	normal	individuals.46	In	
this	study,	we	found	that	COPD	patients	had	significantly	lower	lev-
els of glucose and lactate in serum than normal controls. This find-
ing	suggests	an	impaired	energy	metabolism	in	COPD	patients.47,48 
Together, our results imply that the disturbance of glucose and lipid 
metabolism	could	be	one	of	main	causes	in	COPD.

We speculate that the downregulation of amino acid, glucose 
and lipid metabolism would result in decreases in glycoprotein 
and	lipoprotein.	As	expected,	our	data	show	that	COPD	patients	
had	significantly	lower	levels	of	NAG	(N-acetyl-glycoprotein)	and	
LOP	 (mainly	 LDL	 and	 VLDL)	 in	 serum	 than	 normal	 controls.	 In	
our	 study,	 NAG	 and	 LOP	were	 also	 identified	 as	 two	 important	
metabolites	 for	distinguishing	between	COPD	patients	 and	 con-
trols from both multivariable and univariate analyses. Therefore, 
we	 sought	 to	 develop	 an	 artificial	 intelligence	 (AI)	 model	 using	
these	two	potential	biomarkers	for	predictive	diagnosis	of	COPD.	
AI-based	diagnostic	approach	has	been	used	in	COPD.	For	exam-
ple,	Fernandez-Granero	et	al	developed	a	decision	tree	classifier	
based	on	respiratory	sounds	of	patients	to	early	predict	COPD	ex-
acerbation.49	Feature-weighted	survival	learning	machine	using	all	
risk	 factors	 in	medical	 records	was	established	 for	COPD	failure	
prediction.50	Additionally,	Goto	et	 al	 also	 reported	 that	machine	
learning	 approaches	 can	 predict	 disposition	 of	 COPD	 exacerba-
tion.51	In	the	present	study,	LS-SVM	classifiers	equipped	with	lin-
ear	and	polynomial	kernels	based	on	serum	NAG	and	LOP	 levels	
can	achieve	 the	 total	 accuracy	 rates	of	80.77%	and	84.62%	and	
the	AUC	values	of	0.87	and	0.90	for	COPD	diagnosis,	respectively.	
Our	 results	demonstrated	 that	an	 integrated	method	of	AI	 tech-
nique and biofluid biomarkers has a significant potential for auxil-
iary	diagnosis	of	COPD.

5  | CONCLUSIONS

We	 used	 NMR-based	 serum	 metabolomics	 to	 examine	 metabolic	
differences	between	COPD	and	normal	 individuals	and	detected	a	
hypometabolic	state	in	COPD	patients.	The	peculiar	metabolic	phe-
notype	of	COPD	mainly	included	the	decreases	in	amino	acid,	glu-
cose,	and	lipid	metabolism.	Moreover,	we	identified	NAG	and	LOP	
as	 two	 important	 metabolites	 for	 distinguishing	 between	 COPD	
patients	and	normal	 individuals.	LS-SVM	classifiers	based	on	NAG	
and	LOP	were	developed	for	COPD	diagnosis,	and	LS-SVM	classi-
fiers with linear and polynomial kernels performed better than the 
classifier	with	RBF	kernel.	The	highlight	of	 the	present	study	 is	 to	
develop	an	integrated	method	of	artificial	intelligence	and	biofluid-
based	 biomarkers	 for	 auxiliary	 diagnosis	 of	 COPD.	 However,	 the	
proposed diagnostic method still needs to be further validated in a 
large clinical sample.
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