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Abstract
Objective: Development of biofluid-based biomarkers is attractive for the diagno-
sis of chronic obstructive pulmonary disease (COPD) but still lacking. Thus, here we 
aimed to identify serum metabolic biomarkers for the diagnosis of COPD.
Methods: In this study, we investigated serum metabolic features between COPD 
patients (n = 54) and normal individuals (n = 74) using a 1H NMR-based metabolomics 
approach and developed an integrated method of least-squares support vector ma-
chine (LS-SVM) and serum metabolic biomarkers to assist COPD diagnosis.
Results: We observed a hypometabolic state in serum of COPD patients, as indicated 
by decreases in N-acetyl-glycoprotein (NAG), lipoprotein (LOP, mainly LDL/VLDL), 
polyunsaturated fatty acid (pUFA), glucose, alanine, leucine, histidine, valine, and lac-
tate. Using an integrated method of multivariable and univariate analyses, NAG and 
LOP were identified as two important metabolites for distinguishing between COPD 
patients and controls. Subsequently, we developed a LS-SVM classifier using these 
two markers and found that LS-SVM classifiers with linear and polynomial kernels 
performed better than the classifier with RBF kernel. Linear and polynomial LS-SVM 
classifiers can achieve the total accuracy rates of 80.77% and 84.62% and the AUC 
values of 0.87 and 0.90 for COPD diagnosis, respectively.
Conclusions: This study suggests that artificial intelligence integrated with serum 
metabolic biomarkers has a great potential for auxiliary diagnosis of COPD.
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1  | INTRODUC TION

Chronic obstructive pulmonary disease (COPD) is a preventable 
and treatable disease characterized by persistent respiratory 
symptoms and airflow limitation.1 Chronic obstructive pulmo-
nary disease has become the third leading cause of death in the 
world and causes considerable economic and social burdens due 
to insufficient diagnosis and treatment.2,3 Currently, spirometry is 
still a common method for diagnosing and monitoring progression 
of COPD according to the presence of chronic airflow limitation. 
Many factors may affect COPD diagnosis and lead to under- and 
over-diagnosis4; therefore, it is of great importance to develop 
other adjunctive measures, especially biofluid-based method. It is 
worth noting that serum inflammatory and oxidative stress mark-
ers have been associated with COPD.5-8 However, there is still a 
lack of reliable and simple biofluid-based biomarkers to assist the 
diagnosis of COPD.

Metabolomics has the ability to identify specific metabolic bio-
markers related to the onset and development of disease,9 which 
makes it possible to diagnose or predict diseases, such as cancer,10 
cardiovascular disease,11 and diabetes.12 Of note, characteristic 
metabolic changes have also been detected in COPD patients using 
a metabolomics approach. Ubhi et al found an increased protein 
turnover in serum of COPD patients by NMR-based metabolomics.13 
In exhaled breath condensate, COPD patients showed lower levels 
of acetone, valine, and lysine, as well as higher levels of lactate, ace-
tate, propionate, serine, proline, and tyrosine, when compared with 
controls.14 Using a mass spectrometry-based metabolomics method, 
Naz et al reported that oxidative stress and the autotoxin-lysoPA 
axis were disturbed in serum of COPD patients in a sex-specific 
manner.15

Additionally, artificial intelligence (AI)-based techniques are 
developing rapidly in medicine and may achieve a better detection 
and diagnosis of disease.16,17 For example, Esteva et al trained 
deep neural networks with skin images and achieved dermatolo-
gist-level classification of skin diseases.18 Ardila et al developed 
a deep learning model integrated with computed tomography in-
formation to predict the risk of lung cancer with an area under 
the curve of 94.4%.19 Besides, AI-based diagnostic technique has 
also been successfully applied for other diseases, such as liver 
masses,20 breast cancer metastases,21 diabetic retinopathy,22 and 
others. Most of the developed AI diagnostic systems are based on 
medical imaging; however, here we sought to integrate AI tech-
nique and metabolic features in biofluids for disease diagnosis 
and classification.

In the present study, therefore, we analyzed serum metabolic 
profiles in COPD patients and normal controls by using a 1H NMR-
based metabolomics approach. The aims of this study are (a) to iden-
tify characteristic metabolic changes in COPD patients, and (b) to 
develop an integrated method of least-squares support vector ma-
chine and serum metabolomics biomarkers for auxiliary diagnosis of 
COPD.

2  | MATERIAL S AND METHODS

2.1 | Clinical sample collection

We recruited a total of 128 participants from the First Affiliated 
Hospital of Wenzhou Medical University, including 54 COPD pa-
tients and 74 subjects without COPD. Pulmonary function was 
evaluated using prebronchodilator spirometry based on the Global 
Initiative for Chronic Obstructive Lung Disease (GOLD) criteria, 
and COPD was defined when FEV1 < 80% and FEV1/FVC < 0.7.23 
The detailed clinical information of participants is listed in Table 1. 
Fasting blood sample was collected in a 5 ml vacutainer tube con-
taining the chelating agent ethylene diamine tetraacetic acid (EDTA) 
and centrifuged at 1500 g for 15 minutes at 4°C. Serum was col-
lected and stored at −80°C until analysis. This study was approved 
by the Ethical Committee of Wenzhou Medical University, and writ-
ten informed consents were acquired from all subjects. All proce-
dures in the present study were carried out according to the 2008 
Helsinki Declaration and the clinical-ethical guidelines of the First 
Affiliated Hospital of Wenzhou Medical University.

2.2 | NMR-based metabolomic analysis

1H NMR spectra were recorded using a Bruker AVANCE III 600 MHz 
NMR spectrometer with a 5-mm TXI probe (Bruker BioSpin, 
Rheinstetten, Germany) at 37°C. Serum sample was thawed at 
4°C and vortexed for 10  seconds using a vortex-genie (Scientific 
Industries). Then 200  μL of serum sample was drawn into an 
Eppendorf tube and mixed with 400  μL of 0.2  mol/L phosphate 
buffer. The mixture was centrifuged at 10 000 g for 10 minutes at 
4°C, and 500  μL of supernatant was transferred and mixed with 
100  μL of D2O containing 0.5% sodium trimethylsilyl propionate-
d4 (TSP) in a 5 mm NMR tube for metabolomics analysis. 

1H NMR 
spectra were acquired using the CPMG pulse sequence with a fixed 
receiver-gain value and the main parameters were set as follows: re-
laxation delay, 4 seconds; acquisition time, 1.64 seconds/scan; data 
points, 32K; spectral width, 10 000 Hz; exponential line-broadening 
function, 0.3 Hz.

All NMR spectra were phase/baseline corrected automatically 
and referenced to the methyl signal of lactate at 1.33 ppm in Topspin 
3.0 software (Bruker BioSpin). Subsequently, all spectra were aligned 
using the “icoshift” procedure in MATLAB (R2012a, The Mathworks 
Inc).24 NMR spectra from 0.4 to 9.0 ppm excluding the residual water 
region from 4.0 to 5.0 ppm were subdivided and integrated to bin-
ning data with a size of 0.01 ppm for multivariate analysis.

Metabolite signals in NMR spectra were assigned by using 
Chenomx NMR suite 7.0 (Chenomx Inc) and the human metabolome 
database.25 To further confirm uncertain identifications, a two-di-
mensional 13C-1H heteronuclear single quantum coherence (HSQC) 
experiment was employed to analyze the representative samples. 
The level of each metabolite was indicated using its peak area.
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2.3 | Multivariate data analysis

Partial least-squares-discriminate analysis (PLS-DA) was per-
formed on auto-scaled data to obtain an overview of metabolic 
changes between COPD patients and normal individuals by using 
MetaboAnalyst 4.0.26 Moreover, a permutation test with 1,000 per-
mutations based on separation distance was used to validate the 
performance of PLS-DA models.26 In PLS-DA, variable importance 
in the projection (VIP) represents a quantitative statistical param-
eter ranking metabolites according to their ability to discriminate 
between COPD patients and normal individuals. In this study, me-
tabolites with VIP values more than 1.5 were selected as important 
indicators.

2.4 | Least-squares support vector machine (LS-
SVM) classifier

Least-squares support vector machine as an artificial intelligence 
model was used to distinguish COPD patients from normal in-
dividuals. For development of LS-SVM classifier, the selection 
of optimal kernels and parameters is crucial for model perfor-
mances. Therefore, in the present study, linear, polynomial and 
RBF kernels were compared, and leave one out cross-validation 

were used to select the optimal parameters of LS-SVM. All data 
were auto-scaled and randomly divided into two subsets for 
training (80%) and testing (20%) phases of LS-SVM classifiers. 
Receiver operating-characteristic (ROC) curve was plotted with 
sensitivity versus 1-specificity, and its area under curve (AUC) 
value was calculated to assess the diagnostic performance of 
LS-SVM classifiers. LS-SVM model with the highest AUC value 
was selected as the optimal model for COPD predictive diagno-
sis. LS-SVM was implemented using a LS-SVM toolbox27 under 
MATLAB environment (R2012a, The MathWorks, Inc, Natick, MA, 
USA).

2.5 | Statistical analysis

Metabolic difference between COPD patients and normal individu-
als was performed using Student's t test with Bonferroni correction 
in SAS software (SAS 9.2, SAS Institute Inc), and a statistically sig-
nificant difference was defined when a P value below .05. The vol-
cano plot was employed to identify potentially important metabolic 
markers according to fold change and P value of the metabolite using 
MetaboAnalyst 4.0.26 The AUC value of each metabolite for COPD 
predictive diagnosis was calculated by a classical univariate ROC 
analysis in MetaboAnalyst 4.0.26

COPDa  NORMb  P

n 54 74 –

Female, n (%) 7 (12.97) 43 (58.11) –

Age (y) 71.27 ± 7.37 65.09 ± 7.89 <.001

Height (cm) 162.64 ± 8.36 157.06 ± 11.77 .007

Weigh (kg) 60.68 ± 9.88 63.03 ± 10.16 .22

Smoking status: current, n (%) 32 (59.26) 27 (36.49) –

Smoking status: former, n (%) 23 (71.88) 12 (44.44) –

Passive smoking status: never, 
n (%)

16 (29.63) 35 (47.30) –

Passive smoking status: former, 
n (%)

10 (18.52) 9 (12.16) –

Passive smoking status: current, 
n (%)

18 (33.33) 32 (43.24) –

FVCc  (L) 2.3 ± 0.87 2.43 ± 0.69 .377

FVC (%) 74.25 ± 20.67 91.22 ± 19.76 <.001

FEV1d  (L) 1.28 ± 0.64 3.21 ± 10.45 .225

FEV1 (%) 51.2 ± 19.04 83.2 ± 21.11 <.001

FEV1/FVC (%) 53.67 ± 10.91 84.13 ± 6.76 <.001

Hypertension, n (%) 19 (35.19) 40 (54.05) –

Diabetes, n (%) 4 (7.41) 5 (6.76) –

aChronic obstructive pulmonary disease. 
bParticipants without chronic obstructive pulmonary disease. 
cForced vital capacity. 
dForced expiratory volume in 1 s. 

TA B L E  1   The clinical information of 
participants
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3  | RESULTS

3.1 | COPD patients possesses a peculiar metabolic 
phenotype

Typical 1H NMR spectrum acquired from serum in COPD patients 
is illustrated in Figure  1A, where we identified a series of serum 
metabolites, involving amino acid metabolism (alanine, valine, iso-
leucine, leucine, tyrosine, and histidine), glucose metabolism (lac-
tate and glucose), lipid metabolism (pUFA, polyunsaturated fatty 
acid; formate), and others (LOP, lipoprotein mainly include LDL and 
VLDL; NAG, N-acetyl-glycoprotein). To examine the difference of 
metabolic patterns between COPD patients and controls, a partial 
least-squares-discriminant analysis (PLS-DA) was used in this study 
based on serum metabolomes, as shown in Figure  1B. The result 
of PLS-DA shows a clear separation between COPD patients and 
controls. Then, we performed a permutation test with 1000 random 
permutations to test this model and found a statistically significant 
performance of PLS-DA model (Figure  1C, P  <  .001). Figure  1D 
shows variable importance in projection (VIP) scores of each me-
tabolite from PLS-DA model. Relative to other metabolites, NAG and 
LOP with VIP > 1.5 were identified as important differential metab-
olites between COPD patients and controls in this study. Moreover, 

volcano plot also shows that NAG and LOP had a higher fold change 
and more significant difference (Figure 1E).

Furthermore, we found that most of identified metabolites 
in serum were significantly decreased in COPD patients relative 
to normal controls, including NAG (Figure  2A), LOP (Figure  2B), 
pUFA (Figure 2C), glucose (Figure 2D), alanine (Figure 2E), leucine 
(Figure  2F), histidine (Figure  2G), valine (Figure  2H), and lactate 
(Figure 2I). However, COPD patients had a significantly higher level 
of serum formate than controls (Figure  2J, P  =  .02). In addition, 
there were no significant differences in serum isoleucine (Figure 2K, 
P = .51) and tyrosine (Figure 2L, P = .87) levels between COPD pa-
tients and controls.

3.2 | Diagnosis of COPD based on LS-SVM classifier 
using metabolic biomarkers

In this study, ROC curves analysis was employed to evaluate serum 
NAG and LOP that have been identified as important differential me-
tabolites for diagnosis of COPD. The corresponding area under curve 
(AUC) were 0.78 for NAG (Figure 3A) and 0.76 for LOP (Figure 3B). 
Subsequently, we developed LS-SVM classifiers equipped with dif-
ferent kernel functions for COPD diagnosis using NAG and LOP, as 

F I G U R E  1  NMR-based metabolomics analysis. A, A typical 600 MHz 1H NMR spectrum obtained from serum in patients with COPD: 
LOP, lipoprotein; NAG, N-acetyl-glycoprotein; ×4, 4 times magnification; B, PLS-DA-based classification of participators with and without 
COPD (COPD vs. NORM) using serum metabolomics data; C, A 1000-times random permutation test; D, VIP values of metabolites analyzed 
by PLS-DA; E, Volcano plot of metabolites analyzed by MetaboAnalyst. Important metabolites were selected when VIP value was >1.5 and P 
value <.05
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shown in Figure 3C. The development of LS-SVM classifier includes 
two steps: training and test phases. In the training phase, 80% of the 
data were randomly selected to generate the models. We found that 
LS-SVM classifier with radial basis function (RBF) kernel had a higher 
accuracy (Figure 3D) than the classifier with other two kernels. After 
training, LS-SVM classifiers were tested using an independent data-
set (20% of the data). The results reveal that the total classification 
accuracy of LS-SVM classifier with RBF kernel were dramatically 
decreased to 57.69% (Figure  3E), suggesting that this model was 
overfitting. During the test phase, we found that the classification 
accuracy of LS-SVM classifier with RBF kernel was only 41.67% for 
COPD patients and 71.43% for normal controls. For linear LS-SVM 
classifier, however, the classification accuracies were 83.33% and 
78.57% for COPD patients and normal controls, respectively, and 
the total accuracy rate was 80.77%, as shown in Figure 3E. For poly-
nomial LS-SVM classifier, the classification accuracy was 83.33% for 
COPD patients and 85.71% for normal controls, and the total accu-
racy rate was 84.62% (Figure 3E). In addition, linear (Figure 3F) and 
polynomial (Figure 3G) LS-SVM classifiers achieved the AUC values 
of 0.87 and 0.90 for COPD diagnosis in an independent dataset, re-
spectively; however, the AUC value of LS-SVM classifier with RBF 
kernel was only 0.61 (Figure 3H). Thus, for the diagnosis of COPD 
based on NAG and LOP, LS-SVM classifiers with linear and polyno-
mial kernels performed better than the classifier with RBF kernel.

4  | DISCUSSION

Abnormal metabolism plays an important role in most diseases, 
indicating that the onset and development of diseases would be 

accompanied by a peculiar metabolic change.28 Hence, metabo-
lomics might be contributed to explore the pathogenesis and treat-
ment of diseases as well as to predict and diagnose diseases. In the 
present study, we observed a hypometabolic state in COPD patients 
using an NMR-based metabolomics approach. This finding is consist-
ent with the result of Labaki et al, who reported that the severity of 
airflow obstruction is linked with downregulation of serum metabo-
lism in smokers.29 In addition, they also identified the most relevant 
metabolites, including tryptophan, histidine, valine and leucine.29 
Therefore, hypometabolism may trigger the progression of COPD.

In this study, we found that COPD patients had lower leucine 
and valine levels than normal controls. Leucine and valine belong 
to branched-chain amino acids (BCAAs) that have been shown to 
regulate protein turnover and glucose homeostasis.30 Decreased 
BCAAs levels in COPD patients have also been reported in previous 
studies.31,32 Additionally, Yoneda et al demonstrated that reduced 
BCAAs levels in COPD patients are specifically related to loss of 
body weight and muscle mass.33 Besides BCAAs, we also observed 
significantly decreased levels of alanine and histidine in serum of 
COPD patients relative to normal controls. For COPD, cachexia is 
regarded as a common and partly reversible feature, but adversely 
affects its progression and prognosis.34,35 Of note, amino acids have 
been shown to be implicated in COPD cachexia.32,35 In the body, 
amino acids not only are necessary constituents for protein synthe-
sis, but also replenish tricarboxylic acid (TCA) cycle intermediates for 
energy supply.36 Therefore, the reduction of amino acid metabolism 
could be a common characteristic in COPD patients and indicate the 
deterioration of COPD.

Chronic obstructive pulmonary disease has also been associ-
ated with disrupted lipid metabolism,37,38 but its effect is differed 

F I G U R E  2  COPD-driven serum metabolic changes. The metabolic difference between COPD patients (COPD) and normal individuals 
(NORM) was analyzed using Student's t test with Bonferroni correction, and a statistically significant difference was defined when a P 
value < .05. Metabolite: pUFA, polyunsaturated fatty acid; LOP, lipoprotein; NAG, N-acetyl-glycoprotein
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on blood lipid profiles. Titz et al reported that smokers with COPD 
can be clearly distinguished from never-smokers using serum lipid 
profiles.39 They also found that COPD patients had higher levels of 
glycerolipids and monounsaturated fatty acids as well as lower levels 
of polyunsaturated fatty acids (pUFA) and hydroxyoctadecadienoic 

acids.39 In addition, decreased pUFA level in COPD patients was 
also detected in other studies.40-42 In the current study, relative to 
normal controls, we observed a lower pUFA level and a higher for-
mate level in serum of COPD patients. Of note, a decrease in pUFA 
is a marker of oxidative stress,43,44 and an increase in formate has 

F I G U R E  3  AI-based COPD diagnosis using serum metabolic biomarkers. Values of the area under the curve of (A) N-acetyl-glycoprotein 
(NAG) and (B) lipoprotein (LOP) analyzed by receiver operating characteristics (ROC); (C) AI-based diagnostic procedure of COPD: (1) Serum 
collection, (2) Predictive diagnosis of COPD based on AI and metabolic biomarkers, and (3) Diagnosis report; (D) The diagnostic accuracies 
of COPD using LS-SVM classifiers equipped with different kernel functions and serum metabolic biomarkers (NAG and LOP): K1, linear 
function; K2, polynomial function; K3, radial basis function; (E) The diagnostic results using LS-SVM with different kernel functions and 
serum metabolic biomarkers based on an independent dataset including 12 COPD patients and 14 subjects without COPD (NORM); the 
ROC analyses and AUC values of LS-SVM with (F) linear, (G) polynomial, and (H) radial basis functions during the training and test phases
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been implicated in the inflammatory process.45 Therefore, changes 
in lipid metabolism proposed herein may indicate increases in ox-
idative stress and inflammation in COPD patients compared with 
normal controls, which could be potential inducements for COPD 
progression. Additionally, glucose metabolism was also vulnerable 
to be disturbed in COPD patients relative to normal individuals.46 In 
this study, we found that COPD patients had significantly lower lev-
els of glucose and lactate in serum than normal controls. This find-
ing suggests an impaired energy metabolism in COPD patients.47,48 
Together, our results imply that the disturbance of glucose and lipid 
metabolism could be one of main causes in COPD.

We speculate that the downregulation of amino acid, glucose 
and lipid metabolism would result in decreases in glycoprotein 
and lipoprotein. As expected, our data show that COPD patients 
had significantly lower levels of NAG (N-acetyl-glycoprotein) and 
LOP (mainly LDL and VLDL) in serum than normal controls. In 
our study, NAG and LOP were also identified as two important 
metabolites for distinguishing between COPD patients and con-
trols from both multivariable and univariate analyses. Therefore, 
we sought to develop an artificial intelligence (AI) model using 
these two potential biomarkers for predictive diagnosis of COPD. 
AI-based diagnostic approach has been used in COPD. For exam-
ple, Fernandez-Granero et al developed a decision tree classifier 
based on respiratory sounds of patients to early predict COPD ex-
acerbation.49 Feature-weighted survival learning machine using all 
risk factors in medical records was established for COPD failure 
prediction.50 Additionally, Goto et al also reported that machine 
learning approaches can predict disposition of COPD exacerba-
tion.51 In the present study, LS-SVM classifiers equipped with lin-
ear and polynomial kernels based on serum NAG and LOP levels 
can achieve the total accuracy rates of 80.77% and 84.62% and 
the AUC values of 0.87 and 0.90 for COPD diagnosis, respectively. 
Our results demonstrated that an integrated method of AI tech-
nique and biofluid biomarkers has a significant potential for auxil-
iary diagnosis of COPD.

5  | CONCLUSIONS

We used NMR-based serum metabolomics to examine metabolic 
differences between COPD and normal individuals and detected a 
hypometabolic state in COPD patients. The peculiar metabolic phe-
notype of COPD mainly included the decreases in amino acid, glu-
cose, and lipid metabolism. Moreover, we identified NAG and LOP 
as two important metabolites for distinguishing between COPD 
patients and normal individuals. LS-SVM classifiers based on NAG 
and LOP were developed for COPD diagnosis, and LS-SVM classi-
fiers with linear and polynomial kernels performed better than the 
classifier with RBF kernel. The highlight of the present study is to 
develop an integrated method of artificial intelligence and biofluid-
based biomarkers for auxiliary diagnosis of COPD. However, the 
proposed diagnostic method still needs to be further validated in a 
large clinical sample.
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