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BACKGROUND: Objective and early identification of hospitalized patients, and particularly
those with novel coronavirus disease 2019 (COVID-19), who may require mechanical
ventilation (MV) may aid in delivering timely treatment.

RESEARCH QUESTION: Can a transparent deep learning (DL) model predict the need for MV
in hospitalized patients and those with COVID-19 up to 24 h in advance?

STUDY DESIGN AND METHODS: We trained and externally validated a transparent DL algorithm
to predict the future need for MV in hospitalized patients, including those with COVID-19,
using commonly available data in electronic health records. Additionally, commonly used
clinical criteria (heart rate, oxygen saturation, respiratory rate, FIO2, and pH) were used to assess
future need for MV. Performance of the algorithm was evaluated using the area under receiver
operating characteristic curve (AUC), sensitivity, specificity, and positive predictive value.

RESULTS: We obtained data from more than 30,000 ICU patients (including more than 700
patients with COVID-19) from two academic medical centers. The performance of the model
with a 24-h prediction horizon at the development and validation sites was comparable
(AUC, 0.895 vs 0.882, respectively), providing significant improvement over traditional
clinical criteria (P < .001). Prospective validation of the algorithm among patients with
COVID-19 yielded AUCs in the range of 0.918 to 0.943.

INTERPRETATION: A transparent deep learning algorithm improves on traditional clinical
criteria to predict the need for MV in hospitalized patients, including in those with COVID-
19. Such an algorithm may help clinicians to optimize timing of tracheal intubation, to
allocate resources and staff better, and to improve patient care.
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The novel coronavirus pandemic, caused by severe acute
respiratory syndrome coronavirus 2, has strained global
health care systems1 and the supply of mechanical
ventilators,2 because approximately 3% to 79% of
hospitalized patients require invasive mechanical
ventilation (MV).3-7 Major concern exists regarding
whether the supply of mechanical ventilators is
insufficient for certain regions.8,9 Appropriate triage and
identification of patients at high risk for respiratory
failure may help hospital systems to guide resource
allocation better and to triage patients into treatment
cohorts.9,10 Additionally, identification of patients who
may need intubation allows health care providers to
prepare for endotracheal intubation (eg, by moving the
patient to a negative pressure room), thereby preventing
an emergent procedure that is inherently high risk and
aerosol generating.11-14 Related to fears of
contamination, many providers decided to intubate early
on the assumption that patients eventually will need MV
so as to avoid crash intubation.15 Others have called for
more judicious use of MV and to avoid high positive
end-expiratory pressure (PEEP) in poorly recruitable
lungs, which tends to result in severe hemodynamic
impairment and fluid retention.16 Both patient self-
inflicted lung injury and ventilator-associated lung
injury could exacerbate lung inflammation and
biotrauma.17 As such, objective and consistent methods
to determine who and when to intubate,18 how to
optimize treatment parameters, and when to extubate
patients safely are needed to lower the long-term
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complications and mortality rate in this very sick patient
population.

The field of machine learning (ML) refers to a subset of
artificial intelligence that automates analytical model
building to identify patterns in data to predict outcomes.
In particular, ML algorithms are powerful tools for the
detection of complicated and nonlinear outcomes when
traditional statistical methods (eg, linear regression or
decision trees) are overrun by a large number of
variables. Deep learning (DL) models, a branch of ML,
use multiple layers of processing (known as artificial
neural networks), which can capture nonlinearity and
complex interactions among clinical variables. Prior
studies using DL-based algorithms have been shown to
improve diagnostic accuracy and to predict outcomes
across a variety of clinical scenarios.19-26 Such
algorithms can interpret and make useful predictions
from large and dynamic data available in the electronic
health record (EHR). Recently, we have shown ML
algorithms to be superior to traditional metrics in the
prediction of sepsis.27

Current scoring systems that predict respiratory failure
and need for MV are limited by small sample size and
have low predictive power.28 Frontline providers have
called for urgent development of new warning systems
for patients in whom conservative management is likely
to fail and who will require MV.29 No reliable models
exist to predict the need for MV in patients with
COVID-19; therefore, we sought to use dynamic EHR
data at hourly resolution to determine if such an
approach would provide value over traditional methods
such as the ratio of pulse oximetry/FIO2 to respiratory
rate (ROX) ROX index or simple regression-based risk
scores.28 In this study, we trained and prospectively
validated a DL algorithm that predicts the need for
invasive MV in hospitalized patients and those with
known or suspected coronavirus disease 2019 (COVID-
19) up to 24 h in advance of tracheal intubation.

Methods
Development and reporting of the prediction model presented in this
study was in accordance with the checklist provided by the
Transparent Reporting of a Multivariable Prediction Model for
Individual Prognosis or Diagnosis Consortium.30

Patient Population and Outcomes

An observational, multicenter cohort consisting of all adult patients ($
18 years of age) admitted to the ICU between January 1, 2016, and
January 15, 2020, at two large urban academic health centers,
University of California San Diego Health (UCSD) and
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Massachusetts General Hospital (MGH), was considered in this study.
Throughout the article, we refer to the respective hospital systems as
the development and the validation sites. Additionally, both datasets
included prospectively collected temporal validation cohorts,
involving known or suspected patients with COVID-19 between
February 1 and May 4, 2020 (because of expansion of ICU care to
nontraditional floors, the MGH cohort included all hospitalized
patients with COVID-19 independent of explicit indication of ICU
level of care). Patients were excluded if (1) their length of stay was
less than 4 h or more than 20 days, or (2) the start of invasive MV
occurred before hour 4 of ICU admission (or hospitalization for the
MGH COVID-19 cohort), or (3) if they received noninvasive MV.
Institutional review board approval of the study was obtained at
both sites with a waiver of informed consent (UCSD Identifier:
191098; MGH Identifier: 2013P001024).

Data from both sites were abstracted into a clinical data repository
(Epic Clarity; Epic Systems) and included vital signs, laboratory
values, PEEP, Sequential Organ Failure Assessment scores, Charlson
comorbidity index scores, demographics, and length of stay. Data
were available to the treating clinician at the time of entry into the
electronic health record electronic health record (EHR) and input
into VentNet. Specific inputs to the model were prespecified and
included 40 clinical variables (34 dynamic and six demographic
variables) that were selected based on their availability in EHRs
across the two hospitals considered in our study, similar to our
previous work in the PhysioNet 2019 Challenge.31 These included
vital signs measurements (heart rate, pulse oximetry, temperature,
systolic BP, mean arterial pressure, diastolic BP, respiration rate, and
end-tidal CO2), laboratory measurements (bicarbonate, measure of
excess bicarbonate, FIO2, pH, PCO2, PO2, aspartate transaminase,
BUN, alkaline phosphatase, calcium, chloride, creatinine, bilirubin
direct, serum glucose, lactic acid, magnesium, phosphate, potassium,
total bilirubin, troponin, hematocrit, hemoglobin, partial
thromboplastin time, leukocyte count, fibrinogen, and platelets), and
demographic variables (e-Table 1). Additionally, for every vital sign
and laboratory variable, the slope of change since its last
measurement was included as an additional variable. All variables
were organized into 1-h nonoverlapping time bins to accommodate
different sampling frequencies of available data. All the variables
with sampling frequencies higher than once per hour were
resampled uniformly into 1-h time bins by taking the median values
if multiple measurements were available. Variables were updated
hourly when new data became available; otherwise, the old values
were kept (sample-and-hold interpolation). Mean imputation was
used to replace all remaining missing values (mainly at the start of
each record). To assist in model training, features in the
development site training set first underwent normality
transformations and then were standardized by subtracting the mean
and dividing by the SD. All other datasets were normalized using the
mean and SD computed from the development site training set.
2266 Original Research
Use of MV was defined as the first occurrence of simultaneous
recording of FIO2 and PEEP. For prediction purposes, we defined our
outcome of interest as continuous MV for at least 24 h or MV
followed by death. Patients who were placed on a mechanical
ventilator within 3 h of admission were excluded because our model
makes its first prediction at hour 4 of ICU admission (or
hospitalization in the case of the MGH COVID-19 cohort); this
allowed for the collection and processing of laboratory samples
required by the algorithm to make accurate predictions.

Model Development and Statistical Analyses

VentNet (a two-layer feedforward neural network of size 40 and 25) was
trained to predict the onset of MV 24 h in advance, starting from hour 4
into admission up to the time of MV or end of hospitalization.
Additionally, the predictions from VentNet were calibrated using
isotonic regression.32 VentNet was implemented in TensorFlow
version 1.12.0 (Google Brain) and machine learning frameworks for
Python version 2.7 (Python Software Foundation). The parameters of
VentNet were initialized randomly and optimized on the training data
from the development site using the gradient descent algorithm with
L1-L2 regularization to avoid overfitting.33 Model interpretability was
achieved by calculating the relevance score22 of each input variable for
every predicted risk score (e-Appendix 1).

The output of VentNet was a probability score between 0 and 1.
The decision threshold was chosen corresponding to an
80% sensitivity level. Any score beyond this threshold (0.03)
implied that in the given prediction window, the algorithm
predicted that the patient would undergo tracheal intubation
within the prespecified period. A score of less than the decision
threshold meant that VentNet did not predict tracheal intubation
within the prediction window.

Within the development cohort, 10-fold cross-validation (with an
80%-20% split within each fold) was used for training and testing
purposes. We report median and interquartile values of the area
under the receiver operating characteristic curve (AUC; and
specificity at 80% sensitivity) for the held-out testing sets within
the development cohort (details on precision-recall curves are
presented in e-Appendix 1). AUCs are reported under an end-
user clinical response policy in which the model is silenced for
6 h after an alarm is fired, and correct alarms that are fired up to
72 h before onset of MV are not penalized. The best performing
model at the development site then was fixed and used for
evaluation on the validation cohort and the prospectively collected
cohort of COVID-19 patients. Comparison of receiver operating
characteristic curves was performed using DeLong’s method.34 All
continuous variables are reported as medians with 25% and
75% interquartile ranges (IQRs). Binary variables are reported as
percentages.
Results

Patient Characteristics

After applying the exclusion criteria, a total of 18,528
and 3,888 ICU patients were included in the
development and validation cohorts, respectively.
Patient characteristics including the percentage of
ventilated patients before and after application of
exclusion criteria are presented in Table 1 and
e-Table 2. Additionally, data from 26 COVID-19
patients from the development site (UCSD) and
402 patients from the validation site (MGH)
were used for prospective validation (Table 2,
e-Table 3).

Model Performance on General ICU Populations

The median 10-fold cross-validated AUC on the held-
out development site testing set for prediction horizon of
24 h was 0.886 (IQR, 0.878-0.892), and the specificity
when measured at the 80% sensitivity level was 0.824
[ 1 5 9 # 6 CHES T J U N E 2 0 2 1 ]



TABLE 1 ] Demographic Comparisons of the UCSD and MGH General ICU Cohorts

Demographics

UCSD (Development Site) MGH (Validation Site)

Nonventilated Ventilated Nonventilated Ventilated

Patients 17,723 (95.6) 805 (4.4) 3,602 (92.6) 286 (7.4)

Age, y 61.3 (48.3-72.6) 61.2 (48.6-71.2) 62 (51-72) 64 (53-74)

Male sex 10,421 521 1,948 173

Race

White 9,659 440 2,925 229

Black 1,330 60 191 19

Asian 1,081 43 119 8

ICU LOS, h 48.3 (26.7-95.9) 221.5 (113.8-386.9) 50.9 (27.2-98.0) 183.7 (92.2-309.9)

CCI 3 (2-7) 3 (1-6) 4 (2-6) 4 (2-6)

SOFA score 0.6 (0-1.8) 3.3 (1.9-5.1) 0.9 (0.3-2.1) 4.1 (2.5-6.3)

Inpatient mortality 869 329 223 109

Time from ICU admission
to start of ventilation, h

N/A 20 (7.8-45) N/A 13 (6-33)

Data are presented as No. (%), No., or median (interquartile range), unless otherwise indicated. CCI¼ Charlson comorbidity index; LOS ¼ length of stay; MGH¼
Massachusetts General Hospital; N/A ¼ not applicable; SOFA¼ Sequential Organ Failure Assessment; UCSD ¼ University of California San Diego Health. Patients
were excluded if (1) their LOS was less than 4 h or more than 20 d or (2) the start of mechanical ventilation was before hour 4 of ICU admission.
(IQR, 0.818-0.838). We observed a drop in AUC when
the prediction horizon increased from 6 h to 48 h (from
0.950 [IQR, 0.948-0.952] to 0.845 [IQR, 0.838-0.869],
respectively) (e-Fig 1). Comparisons of the
VentNet algorithm against the ROX index28 and a
logistic regression model (baseline model 1) based on
commonly used clinical variables (namely, heart rate,
oxygen saturation, respiratory rate, and pH) are shown
TABLE 2 ] Demographic Comparisons of the Prospective V
UCSD and MGH

Demographics

UCSD COVID-19

Nonventilated

Patients 16 (61.5)

Age, y 57.6 (45.2-81.6) 52.8

Male sex 9

Race

White 7

Black < 5

Asian < 5

ICU LOS, h 51.4 (37.7-128.4) 368.7

CCI 4 (2.8-5.3)

SOFA 1.3 (0-2.1) 2

Inpatient mortality < 5

Time from ICU admission
to start of ventilation, h

N/A 2

Data are presented as No. (%), No., or median (interquartile range), unless othe
more than 20 d or (2) the start of mechanical ventilation was before hour 4 of IC
disease 2019; LOS ¼ length of stay; MGH ¼ Massachusetts General Hospital; N/A
University of California San Diego Health.

chestjournal.org
in Figure 1. VentNet significantly outperformed the
baseline models (P < .001) on the development site
testing set (AUC, 0.895 vs 0.738 and 0.769, respectively)
(Fig 1A). Performance of the VentNet on the external
validation cohort (Fig 1B) was comparable (AUC, 0.882
vs 0.782 and 0.773, respectively). See e-Figure 1A, 1B,
and e-Figure 2A, 2B, for additional information,
including precision-recall curves. Additionally, the
alidation Cohorts Consisting of COVID-19 Patients at

MGH COVID-19

Ventilated Nonventilated Ventilated

10 (38.5) 343 (85.3) 59 (14.7)

(42.3-65.9) 65 (47-78) 61.5 (50-73)

7 176 40

< 5 207 30

< 5 46 10

< 5 13 < 5

(247.0-430.0) 131 (87.5-230) 258.5 (141-396)

2 (1-4.3) 3 (1-6) 3 (1-5)

.5 (0-5.4) 0.1 (0-0.7) 3.0 (1.6-4.7)

< 5 24 14

3 (10-63) N/A 49.5 (20.6-143)

rwise indicated. Patients were excluded if (1) their LOS was less than 4 h or
U admission. CCI ¼ Charlson comorbidity index; COVID-19 ¼ coronavirus
¼ not applicable; SOFA ¼ Sequential Organ Failure Assessment; UCSD ¼
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Figure 1 – A-D, Line graphs showing the performance of the proposed and baseline models on the development and validation ICU cohorts and the two
COVID-19 prospective validation cohorts. For a prediction horizon of 24 h, comparison of the proposed model vs two baseline models is shown on the
development and validation ICU cohorts (A, B; P < .001) and prospective validation cohorts of patients with COVID-19 (C, D; P < .001). The baseline
model 1 was a logistic regression model based on commonly used clinical variables (namely, heart rate, oxygen saturation, respiratory rate, and pH).
AUC ¼ area under the receiver operating characteristic curve; COVID-19 ¼ coronavirus disease 2019; MGH ¼ Massachusetts General Hospital;
ROX ¼ ratio of pulse oximetry/FIO2 to respiratory rate; UCSD ¼ University of California San Diego Health.
calibration plots of VentNet on the development site
testing set and the external validation cohort are shown
in e-Figures 3, 4, 5A, 5B.

Figure 2A, 2B, shows heatmaps of the top 15 variables
contributing to the increase in risk score up to 12 h
before intubation for the development and the validation
2268 Original Research
cohorts, respectively. Some of the most predictive
features included respiratory rate, heart rate,
temperature, chloride, oxygen saturation, platelet count,
pH, and FIO2, among others. e-Figure 3 includes an
illustrative example of clinical trajectory of a patient in
the ICU, as well as the respective model predictions and
the top contributing factors. Note that as shown in
[ 1 5 9 # 6 CHES T J U N E 2 0 2 1 ]
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Figure 2 – A-C, Heatmaps showing the population-level plot of top contributing factors to the increase in model risk score. The x-axis represents hours
before onset time of mechanical ventilation. The y-axis represents the top factors (sorted by the magnitude of relevance score) across the patient
populations at the development site (A), external validation site (B), and prospective COVID-19 cohort (C). Only dynamically changing variables are
shown. Among the static factors, duration of time in hospital (to the current time) and sex (male) consistently were among the top factors. The heatmap
shows the percentage of ventilated patients for whom a given variable was an important contributor to the risk score up to 12 h before intubation. See e-
Appendix 1 and e-Figure 4 for more details. AST ¼ aspartate transaminase; D ¼ slope of change since last measurement; HR ¼ heart rate; O2Sat ¼
oxygen saturation; Resp ¼ respiratory; SaO2 ¼ saturation of arterial oxygen; Temp ¼ temperature.
e-Figure 4, a given risk factor can contribute to an
increase in risk score by taking values either above or
below the clinical reference range.

Model Performance on COVID-19 Populations

VentNet achieved superior performance when applied
prospectively to the UCSD and MGH cohorts of patients
with COVID-19 (AUC, 0.943 and 0.919, respectively).
The corresponding specificities measured at
80% sensitivity level were 88.8% and 84.5%, respectively.
See Figure 1C, 1D, and e-Figure 2C, 2D, for more
information. Across both cohorts, performance of the
VentNet was significantly better than the ROX score and
the baseline model 1 (P < .001) (Fig 1, e-Fig 2).
Additionally, the calibration plots of VentNet on both
the UCSD and MGH COVID-19 cohorts are shown in
e-Figure 5C, 5D.

Figure 2C shows a heatmap of the top 15 variables
contributing to the increase in risk score up to 12 h before
intubation for the COVID-19 cohort at the validation site.
In addition to features listed above, other factors frequently
contributing to the risk score in the COVID-19 population
included total bilirubin, aspartate aminotransferase,
fibrinogen, and phosphate, among others. Figure 3
includes an illustrative example of the clinical trajectory of
a COVID-19 patient, as well as the respective model
predictions and the top contributing factors.
Discussion
We demonstrated that a high-performing DL model
(AUC > 0.88) can predict future need for MV 24 h in
chestjournal.org
advance using commonly accessible EHR data. We
externally validated all findings in patients from a
separate academic center, as well as in two prospective
cohorts of patients with COVID-19 (Fig 1). Because the
proposed model can inform health care providers of the
most relevant features contributing to the need for MV
(Figs 2, 3), it provides an interpretable algorithm to aid
clinicians with optimizing timing of tracheal intubation,
better allocation of resources, and improving patient
care. Importantly, the goal of algorithms such as this is
not to replace clinical judgement, but rather to
complement bedside care by providing predictions that
can augment decision-making.

The COVID-19 pandemic has placed important strains
on the health care system as the surge and long tail of
critically ill patients continues to impact resource
availability.1 Despite having the highest number of
ventilators and critical care beds per capita among
developed countries, MV in the United States is still a
finite resource.8,9 Frontline providers in the pandemic
noted that traditional risk stratification tools such as
Modified Early Warning Score35 and Quick Sequential
Organ Failure Assessment score are inadequate to
predict respiratory failure accurately in patients with
COVID-19.36 Recent data have shown that the ROX
index has moderate usefulness for predicting tracheal
intubation in patients with COVID-19.37 However,
VentNet showed a significantly higher AUC at all
prediction windows compared with the ROX index. To
our knowledge, this is the first study to demonstrate
robust performance of a DL algorithm for early
2269
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Figure 3 – Illustrative example of a
patient’s trajectory over a 67-h win-
dow preceding intubation. The pro-
posed algorithm crossed the
prediction threshold at around hour
45 (highlighted by the red arrow),
roughly 24 h before the onset time of
mechanical ventilation. This 54-year-
old woman with a history of hypo-
thyroidism demonstrated fevers,
chills, muscle aches, fever, sore throat,
cough, and anosmia. She was
admitted to the hospital for hypox-
emia and a chest radiograph showing
basilar patchy opacities present in the
ED. She later showed positive results
for COVID-19. Her oxygen re-
quirements and work of breathing
increased with a marked drop in ox-
ygen saturation around hour 50. On
the afternoon of the third day (hour
65) of hospitalization, she demon-
strated rapidly progressive respiratory
failure, was intubated, and was
diagnosed with ARDS. For clarity, the
top relevant features are shown every
5 h under the estimated risk scores.
AST ¼ aspartate transaminase;
HR ¼ heart rate; MAP ¼ mean
arterial pressure; O2Sat ¼ oxygen
saturation; Resp ¼ respiratory;
Temp ¼ temperature.
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We designed VentNet to be implemented in real time to
augment clinician decision-making. All data input into
VentNet were available to clinicians at the time of entry
into the EHR. Such an algorithm can be implemented
into the EHR, and we are actively pursuing this
approach at our institutions. Previously, ML algorithms
have been implemented into clinical workflow with
improved clinical, statistical, or economic usefulness.38

Additionally, we have included varying prediction
windows to illustrate how VentNet performs at various
time frames to illustrate potential uses (e-Fig 1). A
shorter prediction horizon (eg, 6 h) may provide more
clinically actionable information, whereas a longer
prediction horizon (eg, 24-72 h) may inform
2270 Original Research
population-level resource allocation. As anticipated, we
observed a progressive drop in AUC when the
prediction horizon increased from 6 to 48 h (from 0.950
to 0.845, respectively).

Our findings are important for a number of reasons.
First, we developed and externally validated an
interpretable DL algorithm that predicts the need for
MV using commonly accessible clinical variables. Such
findings could be used to facilitate optimal triage, more
timely management, and resource use. Second, we
showed with high predictive value the ability of our
algorithm to function in different geographic settings in
the United States and in varying cohorts. Third, our
model used a sequential predictive approach such that
ongoing clinical status was assessed to make important
clinical predictions (see Fig 3 and e-Fig 3 for illustrative
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examples). This strategy has advantages over a baseline
assessment (eg, the Modified Early Warning Score and
Quick Sequential Organ Failure Assessment) given the
dynamic nature of critically ill patients. This approach
paves the way for future implementation in real time at
the point of care. Fourth, as shown in e-Tables 4 and 5
VentNet’s predictions do not rely heavily on a single or a
handful of clinical variables, and as such are more robust
to data missingness. Thus, our model has both
generalizability and portability and may have an impact
not only on the current COVID-19 pandemic, but also
on in the expected second wave and beyond.39

For a 24-h ahead prediction horizon, specificity of the
model (on the MGH COVID-19 cohort) at
50% sensitivity was 96.5% (with a positive predictive
value of 35.3%) vs 98.9% (with a positive predictive value
of 39.2%) for 6 h. In terms of model optimization, one
could argue the value in maximizing sensitivity,
specificity, or both. In particular, during the COVID-19
pandemic, it has been argued that the avoidance of
emergent procedures is a priority, because clearly a risk of
viral transmission to providers exists and delays in
intubation increase the risk of cardiovascular collapse.40,41

Thus, a highly sensitive model may help to minimize the
chance of a crash intubation,42 which leads to poor
clinical outcomes and may put providers at risk of
unnecessary viral exposure. However, a highly specific
model may be used to avoid unnecessary intubation,15

and the associated risks of ventilator-induced lung injury,
ventilator-associated pneumonia,43 and sedation and
associated delirium.44,45 Additionally, a shorter prediction
horizon (eg, 6 h) may provide more clinically
actionable information, whereas a longer prediction
horizon (eg, 24-72 h) may inform population-level
resource allocation.

Despite its many strengths, this study includes a
number of limitations. First, we defined the need for
invasive MV in the EHR database based on the
presence of PEEP and FIO2 measurements. We believe
that this definition is robust based on considerable
experience, but acknowledge that some mislabeling
(eg, noninvasive MV) could occur in any EHR-based
criteria. Similarly, the delivery of noninvasive oxygen
gives variable oxygen to the patient depending on
inspiratory flow demand and breathing pattern; thus,
our model likely could improve with more specificity
from the EHR. Nonetheless, we view such
misclassification as random and do not expect that
chestjournal.org
any potential misclassifications would improve our
model’s performance artificially. Second, more
generally, the proposed algorithm makes use of EHR
data that was not designed originally for the analysis
performed in our study. However, the superior
performance of our algorithm, even in the presence of
missing data, confirms its usefulness in a real-world
clinical setting. Third, the COVID-19 pandemic has
led to many changes in usual care, including
potentially earlier intubation and avoidance of
noninvasive ventilation, among others. Thus, one
could argue that the need for intubation of these
patients may be driven by factors unique to this
epidemic. However, our model was trained and
validated with historical data from major academic
centers before the COVID-19 pandemic. Thus, the
high observed AUCs speak to the robustness of the
model, even in the face of rapid changes in practice
patterns. Fourth, one could argue that the outcome of
intubation and need for MV is somewhat subjective
and could be a function of local practices or intrinsic
bias inherent in such decisions. However, our ability
to predict this clinically important outcome (need for
MV) 6 to 24 h in advance suggests the value of this
model. Moreover, traditional clinical parameters (heart
rate, respiratory rate, pH, oxygen saturation) used to
make intubation decisions performed relatively poorly
compared with our DL algorithm (AUC, 0.769
vs 0.895 on the development site testing cohort).
Despite these limitations, we view our new findings as
robust and likely to lead to important advances in the
care of COVID-19 patients. Furthermore, our
approach may extend beyond the COVID-19
pandemic to guide optimal clinical care using
advanced analytics as applied to the general ICU
population, for example, to determine timing and
selecting of appropriate pharmacologic therapies.
Interpretation
In this two-center observational study, we demonstrated
that high-performance models can be constructed to
predict the future need for MV in hospitalized patients,
including those with COVID-19. By using open-source
software, our validated algorithm is readily available for
prospective studies aimed at determining the clinical
usefulness of the proposed risk model for optimizing
timing of tracheal intubation, better allocation of MV
resources and staff, and improving patient care.
2271
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