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Abstract: Almost every variety of medical imaging technique relies heavily on exogenous contrast
agents to generate high-resolution images of biological structures. Organic small molecule contrast
agents, in particular, are well suited for biomedical imaging applications due to their favorable
biocompatibility and amenability to structural modification. PET/SPECT, MRI, and fluorescence
imaging all have a large host of small molecule contrast agents developed for them, and there exists
an academic understanding of how these compounds can be developed. Optoacoustic imaging is
a relatively newer imaging technique and, as such, lacks well-established small molecule contrast
agents; many of the contrast agents used are the same ones which have found use in fluorescence
imaging applications. Many commonly-used fluorescent dyes have found successful application in
optoacoustic imaging, but others generate no detectable signal. Moreover, the structural features
that either enable a molecule to generate a detectable optoacoustic signal or prevent it from doing
so are poorly understood, so design of new contrast agents lacks direction. This review aims to
compile the small molecule optoacoustic contrast agents that have been successfully employed
in the literature to bridge the information gap between molecular design and optoacoustic signal
generation. The information contained within will help to provide direction for the future synthesis
of optoacoustic contrast agents.
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1. Introduction

1.1. MSOT Introduction:

Visualization of fluorescent dyes is highly limited to superficial levels, as the scattering of light
degrades spatial resolution at increased depths [1]. While the development of near-infrared dyes has
increased the depth of fluorescent detection, the visualization of these dyes remains limited to a few
millimeters. Emerging technologies, such as fluorescence molecular tomography, have improved this
to depths of up to 10 cm, the instrumentation for this has not yet reached a clinically-relevant size,
and cannot be used to provide real-time guidance [2–4]. To overcome these limitations of detection
depth, multispectral optoacoustic tomography (MSOT) has emerged as an alternative modality that
relies on the optoacoustic effect in which molecules within biological tissues absorb light, causing them
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to heat up and expand. This thermoelastic expansion generates ultrasonic waves which can be detected
and converted to an image [5]. Because most tissues are relatively transparent to light in the range of
650 to 900 nm, MSOT uses NIR light to excite molecules which generate soundwaves. These ultrasonic
waves are considerably less scattered in tissue than photons, which allows for deeper tissue penetration
(>3 cm) with higher accuracy and resolution than purely optical imaging [6,7]. While there are some
endogenous contrast agents used in optoacoustic imaging, the use of exogenous contrast agents such
as small molecule dyes is necessary for a wider range of biological activities including acidosis [8,9]
and ion trafficking [10,11] to be observed and monitored. This is especially evident when it is taken
into account that MSOT can identify and delineate multiple contrast agents in a single sample/image.
While fluorescence imaging requires fluorophores to emit light of distinct wavelengths with minimal
spectral overlap to resolve separate signals, MSOT is able to resolve contrast agents with similar
absorption profiles. Unlike fluorescence imaging, which records single wavelengths and requires
contrast to fluoresce at distinct wavelengths, MSOT records the entire optoacoustic spectral profile;
by using the entire spectrum, different contrast agents can be resolved based on the overall shape of
the spectrum.

Note that while we use the term “optoacoustic” here, the terms “photoacoustic” and
“optoacoustic” are used interchangeably in the literature. The deciding factor in preference for either
of the two seems to be geographical, with North America largely using “photoacoustic”, while Europe
prefers the term “optoacoustic”.

1.2. Exogenous Contrast for Optoacoustic Imaging

Exogenous contrast agents for optoacoustic imaging consist of three main classes of compounds:
organic dyes, nanoparticles, and organic polymers. Each class of contrast offers differing strengths
and weaknesses for in vivo imaging. Nanoparticles are highly tunable, which is their greatest strength
and weakness. Small changes in the shape or size of nanoparticles can vastly change their optical
properties, biodistribution, or toxicological profile [12,13]. Retention in the liver, spleen, and bone
marrow remains problematic for nanoparticles [12]. Often, tumor uptake of nanoparticles is only
by enhanced permeability and retention (EPR) effect, which results in only limited accumulation of
contrast in cancerous tissue, and has failed to translate to humans in clinical trials, although surface
modification with targeting peptides or antibodies can improve tumor uptake [14]. Semiconducting
organic polymers, like nanoparticles, rely heavily on EPR for tumor uptake, but, unlike nanoparticles,
are more difficult to functionalize with targeting ligands [15–17]. Fluorescent proteins have also been
successfully applied in optoacoustic imaging, allowing researchers to monitor genetically-encoded
contrast [18–20]. All of these classes have already been thoroughly reviewed in the current literature.
Organic dyes have extremely appealing properties for use in optoacoustic imaging; however, they have
not received as much attention as the other two classes of contrast agents. While novel nanoparticles
and semiconducting polymers have been reported in optoacoustic applications, the use of organic dyes
has been limited mostly to commercially-available dyes, which are poorly optimized for optoacoustic
performance. Reviews of optoacoustic contrast agents, similarly, have overlooked the design of organic
dyes, focusing instead on the design of molecular probes consisting of dyes and targeting agents or
activating groups [21–25].

1.3. Near-Infrared Organic Dyes Introduction

There is a wide variety of small-molecule dyes that absorb light in the near-infrared (NIR) region,
which makes them viable candidates for use as exogenous contrast agents for optoacoustic tomography.
Many of these NIR dyes generate a detectable signal (fluorescent or acoustic) [26]. Multiple families
of these dyes have been synthesized utilizing diverse scaffolds, including cyanines [27], bodipy [28],
phthalocyanines [29], and perylenes [30–32]. NIR dyes have raised a great deal of interest due to their
versatility in a wide array of applications, low energy absorption, and the synthetic modifiability of
the small molecule organic contrast agents [33–39]. NIR contrast agents for fluorescence imaging have
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been widely explored. Many libraries of NIR dyes have been generated and screened, and correlations
between physicochemical properties and function (biodistribution, quantum yield of fluorescence,
etc.) have been generated for NIR fluorophores; however, no comparable effort has been expended
for optoacoustic contrast agents [40]. It is well described that, for an optically absorbing body,
the amplitude of the ultrasonic wave produced upon excitation will be described by:

P = Γ × µa × Φ (1)

where Γ is the Grüneisen parameter of the system, µa is the absorption coefficient of the absorber,
and Φ is the fluence of the excitation light at the absorber [41–43]. The current, unmet need then
is determining the relationship between the Grüneisen parameter and the organic dye structure.
By determining what functional groups lead to more effective generation of optoacoustic signal,
improved contrast agents can be developed for this powerful imaging technology.

This review focuses on widely-used, commercially-available NIR dyes that are commonly used
in fluorescence imaging, and their potential for optoacoustic imaging. Physicochemical properties
were calculated for each dye along with optoacoustic signal testing in phantoms to give insight into
which properties of the NIR dye are important to yield an improved optoacoustic signal. There is
a current unmet need for improved contrast agents in optoacoustic imaging; however, too little is
known about what structural features of NIR dyes lead to effective optoacoustic signal generation.
By illustrating the utility of common dyes typically used in fluorescence imaging in optoacoustic
imaging while probing the structural features that enable these compounds to produce optoacoustic
signals, we hope to engage both dye chemists and imaging specialists in answering the unmet need
for improved contrast agents for optoacoustic imaging.

The contrast agents will be separated into three categories: dyes with absorbances below 720 nm,
dyes with absorbances above 720 nm, and dark quenchers. The rationale behind these categories
is due to the potential for multiplex imaging innate to optoacoustic imaging and the most common
absorbance wavelengths of common organic fluorophores. Dyes from each of the different categories
could be used simultaneously in a single co-injection to highlight separate anatomical structures.
Dark quenchers have been separated out as they are a less studied class of dyes; their normal use
is in Förster resonance energy transfer (FRET) -based applications, where they simply quench the
fluorescence signal. However, as they are strongly absorbing and non-fluorescent, they may be
applicable as optoacoustic probes in their own right.

2. Contrast Agents

2.1. Dyes with Absorbance < 720 nm

The majority of the dyes that absorb less than 720 nm are blue dyes. Blue dyes have a myriad
of different biological applications. Specifically, they are often utilized as various biological stains
due to the fact that they are often visible to the naked eye and are easily contrasted against common
biological media such as blood. Because much of their biological activity has already been explored
and reported, their potential to be used as in vivo exogenous contrast agents for optoacoustic imaging
is elevated. The applications of blue dyes as optoacoustic contrast agents are often an extension of
their already well-defined biological uses. Unfortunately, blue dyes absorb on the low end of the
desired 650–900 NIR range utilized in MSOT. This results in spectral overlapping with endogenous
contrast agents such as hemoglobin. Further, blue absorbance is on the edge of detection for most
MSOT instrumentation.

2.1.1. Evans Blue

Evans blue is an FDA-approved, non-toxic dye that has many biological applications, including
use in the measurement of blood volume [44] and permeability of the blood-brain barrier [45].
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Evans blue is a diazo-dye containing multiple conjugated aromatic rings. The inclusion of multiple
sulfonate substituents renders the dye highly water soluble.Molecules 2018, 23, x 4 of 23 
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visible and continuous with Evans blue injection. Figure from [48] reproduced with permission from 
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Unfortunately, the ability to bind albumin, which makes Evan’s blue ideal for vascular imaging, 
is also a major factor limiting its use as an optoacoustic contrast agent, as it prevents tissue specific 
uptake [50]. 

2.1.2. Methylene Blue 

Another FDA-approved blue dye that has been used in optoacoustic imaging is methylene blue. 
Methylene blue has been used for a broad range of medical applications since the early 19th century, 
when it was initially reported as a treatment for malaria [51]. In research settings, methylene blue is 
an extremely common biological and chemical stain most often used for bacteriology or as redox 
indicator. In terms of imaging, methylene blue is often utilized because it is easy to observe and 
monitor visually, without the need for specialized equipment; however, this use is, of course, limited 
to superficial levels or intraoperative procedures. 

The combination of its ability to tightly bind to serum albumin with its strong absorption in
NIR at 620 nm has made Evans blue an ideal contrast agent for the optoacoustic imaging of the
microvascular network [46,47]. In 2009, Evans blue was used to image capillary networks, as well as to
study the diffusion dynamics of the dye and clearance of the albumin-bound dye [48]. In the study,
optoacoustic images of the microvessels of a mouse’s ear were acquired at both 570 nm and 610 nm.
At 570 nm, hemoglobin has strong absorption, so there was high contrast and signal-to-noise ratio.
Larger veins and arteries contained more red blood cells, so they were uniformly bright. However,
smaller capillaries appeared discontinuous and broken (Figure 1a). As hemoglobin has very weak
absorption at 610 nm, the optoacoustic signal was considerably weaker (Figure 1b). Then, a 6% solution
of Evans blue was injected into the bloodstream of a nude mouse. Immediately after the injection of
Evans blue, the network of small capillaries no longer looked fragmented, with many of the previously
unseen smaller branching points becoming visible (Figure 1c). Evans blue has also been used as the
contrast agent for the noninvasive optoacoustic imaging of the cortical vascular network in mice [49].
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Figure 1. (a) Optoacoustic image of naked mouse ear before Evans blue injection at 570 nm
(b) optoacoustic image of naked mouse ear before Evans blue injection at 610 nm. (c) optoacoustic
image of naked mouse ear after Evans blue injection at 610 nm. Arrows indicated capillaries that
become visible and continuous with Evans blue injection. Figure from [48] reproduced with permission
from the publisher.

Unfortunately, the ability to bind albumin, which makes Evan’s blue ideal for vascular imaging,
is also a major factor limiting its use as an optoacoustic contrast agent, as it prevents tissue specific
uptake [50].

2.1.2. Methylene Blue

Another FDA-approved blue dye that has been used in optoacoustic imaging is methylene blue.
Methylene blue has been used for a broad range of medical applications since the early 19th century,
when it was initially reported as a treatment for malaria [51]. In research settings, methylene blue is an
extremely common biological and chemical stain most often used for bacteriology or as redox indicator.
In terms of imaging, methylene blue is often utilized because it is easy to observe and monitor visually,
without the need for specialized equipment; however, this use is, of course, limited to superficial levels
or intraoperative procedures.



Molecules 2018, 23, 2766 5 of 24

Molecules 2018, 23, x 5 of 23 

 

 

Methylene blue is a planar tricyclic phenothiazine which exists as a blue cation under 
physiological conditions. It is often commercially available as the hydrate. Methylene blue is highly 
water soluble, with a solubility of 50 milligrams per milliliter of water. Methylene blue is cleared 
through the kidneys, and is excreted either unchanged or as its metabolite leucomethylene blue 
[52,53]. Further, in solution, methylene blue can exist in either a monomeric or dimeric form, 
depending on its concentration or the salt concentration of the solvent, which can lead to a change in 
the absorbance spectrum (Figure 2) [54]. The monomeric form of methylene blue has a peak 
absorbance of 665 nm. 

 
Figure 2. (a) Absorbance spectra of different concentrations of methylene blue in water (b) 
Absorbance spectra of 80 μM solution of methylene blue in water with 4 different salt concentrations 
(grey dotted line is absorbance of dimer in water, black dotted line is absorbance of monomer in 
water) Figure from [54] reproduced with permission from the publisher. 

Methylene blue is the most utilized contrast agent for optoacoustic imaging, with a peak 
absorption less than 720 nm. One of the most discussed studies uses methylene blue as an exogenous 
agent for the optoacoustic detection of sentinel lymph nodes (SLN), a key procedure for the staging 
of early breast cancer. Early studies demonstrated the ability of optoacoustic systems to detect SLN 
in vivo at 635 nm in rats after an intradermal injection of 0.7 μL of a 3mM solution of methylene blue 
(Figure 3) [55]. 

 
Figure 3. (A) optoacoustic image of control without methylene blue at 635 nm (B) optoacoustic image 
of SLN 52 min after injection of MB at 635 nm. Figure from [55] reproduced with permission from the 
publisher. 

Methylene blue is a planar tricyclic phenothiazine which exists as a blue cation under physiological
conditions. It is often commercially available as the hydrate. Methylene blue is highly water soluble,
with a solubility of 50 milligrams per milliliter of water. Methylene blue is cleared through the kidneys,
and is excreted either unchanged or as its metabolite leucomethylene blue [52,53]. Further, in solution,
methylene blue can exist in either a monomeric or dimeric form, depending on its concentration or the
salt concentration of the solvent, which can lead to a change in the absorbance spectrum (Figure 2) [54].
The monomeric form of methylene blue has a peak absorbance of 665 nm.
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Methylene blue is the most utilized contrast agent for optoacoustic imaging, with a peak
absorption less than 720 nm. One of the most discussed studies uses methylene blue as an exogenous
agent for the optoacoustic detection of sentinel lymph nodes (SLN), a key procedure for the staging
of early breast cancer. Early studies demonstrated the ability of optoacoustic systems to detect SLN
in vivo at 635 nm in rats after an intradermal injection of 0.7 µL of a 3mM solution of methylene blue
(Figure 3) [55].
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Optoacoustic imaging of methylene blue-stained SLN was later combined with ultrasound
imaging of the surrounding tissue [56]. The combination of optoacoustic with ultrasound imaging
allows for easier, non-invasive identification of SLN and procurement of morphological information
such as size and shape of the SLN. This technology has continued to be developed, and is currently
being used in clinical studies. Optoacoustic imaging has allowed for the accurate identification of SLN
stained with methylene blue (a 3mM solution injected subcutaneously into a human breast) in human
patients [57]. The ultimate goal of this optoacoustic technology is to accurately guide percutaneous
fine needle aspiration biopsy, leading to a far less invasive procedure for lymph node staging.

Methylene blue has also been combined with microbubbles in order to develop a contrast agent
that was active for both optoacoustic and ultrasound imaging [58]. Interestingly, it was reported
that while the intensity of the optoacoustic signal was significantly affected by the concentration of
microbubbles, the intensity of the ultrasound signal was not similarly affected by the concentration of
the methylene blue. Further, methylene blue has been utilized as an optoacoustic contrast agent to
measure oxygen pressure in tumors [59], as well as encapsulated in nanoprobes in an effort to develop
targeted optoacoustic imaging [60].

Though it is a commonly-employed contrast agent for optoacoustic imaging, methylene blue still
has limitations. First, it is known for its relatively rapid body clearance; thus, is not ideal for extended
imaging [60]. Further, enzymatic reduction of methylene blue to leucomethylene blue leads to the loss
of the chromophore and of NIR absorption [61].

2.1.3. Coomassie Blue

Coomassie blue (CB) is another blue NIR dye that is most commonly used for staining proteins
in gel electrophoresis and Bradford-type assays for protein quantitation. In acidic conditions,
Coomassie blue binds to proteins via the basic amino acids. Once bound, the dye becomes a bright blue
color. Along with easy visual delineation, Coomassie blue is also compatible with mass spectrometry,
and protein-bound CB has been shown to fluoresce in the 700–800 nm range, allowing for multiple
modes of detection [62].
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Coomassie blue is a triphenylmethane dye. As there is a lack of many solubility enhancing
functional groups, Coomassie blue is largely insoluble in water. It absorbs in the near-IR region with a
peak at 595 nm.

As a contrast agent for optoacoustic imaging, Coomassie blue has only been used in conjunction
with nanoparticles. In 2011, optoacoustic imaging of F3 peptide-conjugated, hydrogel nanoparticles
containing Coomassie blue was used to delineate brain tumors from normal tissue in rats [63].
The nanoparticle encapsulating Coomassie blue had previously been developed to selectively target
brain tumors, and utilized to visually delineate brain tumors [64]. It was found that with the use of
optoacoustic imaging, tumors treated with doses of nanoparticles that were too low to be visualized by
the naked eye could still identified. The sensitivity of the optoacoustic system first became apparent
with phantom experiments (Figure 4). Concentrations of nanoparticles which were 7% Coomassie
blue by mass ranging from 0.5 mg/mL to 0.005 mg/mL were included into agarose phantoms,
and examined by the optoacoustic system. While the higher concentrations were clearly visible
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to the naked eye, concentrations below 0.04 mg/mL were no longer distinguishable (Figure 4a,b).
Alternatively, the optoacoustic system provided recognizable images for concentrations as low as
0.01 mg/mL, which is equivalent to 0.84 µM concentration of non-encapsulated Coomassie blue dye.
Ex vivo studies on tumors in rat brains further supported that tumors containing low doses of the blue
nanoparticles (125 mg/kg), while not visible to the naked eye, could be delineated from normal brain
tissue using optoacoustic imaging.

Molecules 2018, 23, x 7 of 23 

 

visible to the naked eye, concentrations below 0.04 mg/mL were no longer distinguishable (Figure 
4a,b). Alternatively, the optoacoustic system provided recognizable images for concentrations as low 
as 0.01 mg/mL, which is equivalent to 0.84 μM concentration of non-encapsulated Coomassie blue 
dye. Ex vivo studies on tumors in rat brains further supported that tumors containing low doses of 
the blue nanoparticles (125 mg/kg), while not visible to the naked eye, could be delineated from 
normal brain tissue using optoacoustic imaging. 

 
Figure 4. (a,b): photographs of phantoms with concentrations varying from 0.5 mg/mL (upper left 
corner of (a)) to 0.01 mg/mL (lower right corner of (b)) (c,d): optoacoustic images of the respective 
phantoms. Figure from [63] reproduced with permission from the publisher. 

Because Coomassie blue absorbs light around 595 nm, its spectrum often overlaps with the 
strong absorption from the blood. This overlap leads to high background signals in the imaging, 
significantly limiting the utility of Coomassie blue as a contrast agent for optoacoustic imaging. 
Further, its high affinity for binding to most proteins makes it unlikely to be used without being 
encapsulated in some capacity. 

2.1.4. Rhodamine Dyes 

Rhodamine dyes are a broad class of fluorophores. Because of their excellent photophysical 
properties and photostability, they have been used for a variety of applications, including 
mitochondria staining [65] and flow cytometry [66]. Unfortunately, the majority of commercially-
available rhodamine dyes absorb light which is significantly below the desired NIR range of 650–900 
nm necessary for optoacoustic imaging. 

Figure 4. (a,b): photographs of phantoms with concentrations varying from 0.5 mg/mL (upper left
corner of (a)) to 0.01 mg/mL (lower right corner of (b)) (c,d): optoacoustic images of the respective
phantoms. Figure from [63] reproduced with permission from the publisher.

Because Coomassie blue absorbs light around 595 nm, its spectrum often overlaps with the strong
absorption from the blood. This overlap leads to high background signals in the imaging, significantly
limiting the utility of Coomassie blue as a contrast agent for optoacoustic imaging. Further, its high
affinity for binding to most proteins makes it unlikely to be used without being encapsulated in
some capacity.

2.1.4. Rhodamine Dyes

Rhodamine dyes are a broad class of fluorophores. Because of their excellent photophysical
properties and photostability, they have been used for a variety of applications, including mitochondria
staining [65] and flow cytometry [66]. Unfortunately, the majority of commercially-available rhodamine
dyes absorb light which is significantly below the desired NIR range of 650–900 nm necessary for
optoacoustic imaging.
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exogenous contrast agent (B) Image with only ICG (C) Image with only CF-750 probe (D) Image with
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However, the commercially-available rhodamine dye, CF-750, the exact structure of which is
proprietary, does absorb in the desired range, and has been used as a contrast agent for optoacoustic
imaging [68]. In 2014, Hudson and Huang et al. conjugated CF-750 to epidermal growth factor (EGF)
for use as an optoacoustically-active probe for upregulated EGF receptors in orthotopic pancreatic
cancer [67]. The absorbance spectrum of CF-750 peaks at 750 nm, and was not significantly altered
after conjugation to EGF. The degree of labeling of EGF with CF-750 was found to be 1.32, and mice
were injected with a 100 nmol/L solution of the conjugated probe. The probe successfully targeted
and accumulated in tumors within which EGF receptors were upregulated. MSOT was then able to
non-invasively detect the probe-laden tumors at depths greater than 5 mm with great precision A
year later, it was demonstrated that CF-750, when conjugated to a pancreatic cancer-targeting protein,
could be distinguished from another contrast agent that was co-injected to the same animal model
(Figure 5) [69]. This is one of the first examples in which two distinct exogenous contrast agents were
distinguishable at depth via MSOT imaging.

Another commercially-available rhodamine dye which absorbs within the desired range for MSOT
is Rhodamine 800, which boasts a peak absorption of 682 nm. Rhodamine 800 is, of course, comprised
of the well-known xanthene core with two dialkylamino groups. The amine substituents are further
incorporated into additional ring structures, increasing the rigidity of the structure. This rigidity,
in combination with inclusion of the strongly-electron-withdrawing cyano group on the central carbon
of the xanthene core, significantly shifts the absorbance of Rhodamine 800 into the ideal NIR region [70].
Unfortunately, the structure does not contain a readily-accessible functional handle for conjugation
to various biomolecules necessary for targeting. Currently, there are no reports of Rhodamine 800
being used as a contrast agent for optoacoustic imaging. This may be due to its lack of an activated
functional handle, or due to the overall lack of knowledge of optoacoustic signals for rhodamine dyes.
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Unfortunately, in phantom studies, Rhodamine 800 did not perform as well as other
commercially-available and often-utilized dyes. While the intensity of the absorbance spectrum
of 10 µM of Rhodamine 800 measured on a spectrophotometer was comparable to other dyes at the
same concentration, when phantoms containing the dye were imaged using MSOT, its optoacoustic
signal was barely detectable. This makes it a less-than-ideal contrast agent for MSOT, especially when
considering the need for imaging at depth, as the intensity would decrease even further.

2.2. Dyes with Absorbance > 720

Longer wavelength dyes with absorptions above 720 nm are typically green dyes, and many are
based off of the cyanine scaffold. Of the far red dyes, only one is approved for human use by the FDA:
indocyanine green (ICG). These compounds offer less background noise than the lower wavelength
dyes, which enables their use at low concentrations. Due to this, they are often not detectable by the
naked eye; however, fluorescence and optoacoustic imaging can produce strong signals.

2.2.1. Indocyanine Green

Indocyanine green (ICG) is a heptamethine cyanine dye, and is one of the longest used NIR dyes
for fluorescence imaging in medicine. It was approved for human use by the FDA in 1959, and has been
widely used in medicine [71]. It has also seen use in optoacoustic imaging for numerous applications;
however, it is a far-from-optimal probe. ICG suffers from poor water solubility, despite the charged
sulfonate groups, and lacks a handle for covalent conjugation to targeting ligands, which prevents
imaging of specific tissues. After IV injection, ICG remains in the blood with an average half-life
of 3–5 min, and is filtered out largely by the liver (>97%) [72]. Due to its retention in blood and
well-characterized pharmacokinetics, it has found use in ophthalmic angiography and pulmonary and
hepatic function testing. Its highly-charged structure inhibits its use in any brain related imaging [73].
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As one of the most well-characterized in vivo fluorescence imaging agents, ICG has seen a good
amount of use in optoacoustic imaging as well. Buehler et al. have utilized ICG as a contrast agent
for recording video rate images of kidney perfusion [74]. Using a custom-built ultrasound transducer
array, they were able to obtain MSOT images of live animals at a 10 Hz frequency. Using this system,
they were able to visualize the perfusion of ICG in mouse kidneys after tail vein injection, as shown in
the representative MSOT images in Figure 6 (below).

Wang et al. introduced an encapsulation method to traffic emulsion-based drug delivery [75].
ICG shows good optoacoustic signal in both saline solution and plasma. Notably, the ratio of
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the signals at 800 and 860 nm decreases by a factor of 2.6, going from saline solution to plasma
(Figure 6) [75]. The authors attributed the difference to ICG binding to plasma protein [76]. They found
that after ultrasound disruption of the encapsulation, an observable difference in optoacoustic signal
was achieved.
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reproduced with permission from the publisher.

ICG has seen additional use for imaging several types of cancer as well as healthy tissues. In 2014,
the Burton lab group investigated the use of ICG for monitoring medication-induced gastrointestinal
intolerance [77]. Orally-dosed ICG was used to measure motility of the GI tract with MSOT shown in
Figure 7.
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Figure 7. Gastric motility imaging using oral delivery of ICG. (a) ICG distribution after administration,
(b) Ex vivo fluorescence verification in animals sacrificed after ICG dosing and (c) optoacoustic signal
intensity over time compared with ex vivo fluorescence verification (red squares). Figure from [73]
reproduced with permission from the publisher.

Additionally, the optical properties of ICG have been reported to vary significantly with solvent
choice, dye concentration, and environment [78,79]. While the intensity of the optoacoustic signal of
ICG is proportional to the concentration of the dye, the shape of the spectrum can vary, which decreases
its attractiveness of ICG as a contrast agent, especially as more dyes and targets are introduced [80].
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This change in shape was observed in phantom studies with two different concentrations giving
varying spectrums, which can be seen specifically with the loss of the left shoulder (Figure 16B).
This modulation of spectral shape is not seen for the other dyes tested.

2.2.2. IR780 Iodide

IR780 iodide is a cyanine dye similar to ICG, and features a maximum absorption at 780 nm.
IR780 suffers from worse water solubility than ICG due to the lack of any charged groups in its basic
structure. The central chlorine atom on IR780 permits substitutions to be made; however, multiple
synthetic steps and purification are required to attach a targeting ligand [81]. IR780 also lacks FDA
approval, so there is less literature for its use and safety. Nonetheless, IR780 and its derivatives have
seen widespread use in the scientific community.
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Additional reports exist of IR780 being used without synthetic modification by encapsulating 
the dye within nanostructures [83,84]. In 2017, Bhutiani et al. reported the detection of IR780 in mouse 

IR780 is suitable for optoacoustic imaging due to its optical properties. With respect to maximizing
optoacoustic signal, it is ideal that dyes have high molar absorptivity and low quantum yield.
The rigidity of the polymethine chain of IR780 due to the cyclohexene ring allows the dye to have a high
molar absorptivity and low quantum yield, making it desirable for optoacoustic imaging. Optimization
of these compounds is a key feature in their utility, and the presence of the central chlorine allows
for further development of this scaffold. Research done by the Westmyer group decorated IR780
with a calcium sensing functionality, which allowed optoacoustic tracking of calcium fluctuations [82].
In the presence of Ca2+, a hypochromic shift is observed on the absorption spectrum, and optoacoustic
signal loss occurs. Binding of calcium was reversible, as the addition of EDTA to the probe/calcium
solutions restored both the absorbance and optoacoustic signals (Figure 8A,B). Application of this
probe is limited, however, by the inverse relation between signal and calcium concentration.
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Figure 8. IR780-based probes have the potential to detect concentrations of calcium and serve as a
tracking dye for monitoring microparticle accumulation. (A,B) Response of an IR780 based probe to
calcium concentration. As calcium concentration increases, both absorbance and optoacoustic signal
decrease. Figure from [82]. (C)—MSOT imaging of IR780 impregnated polystyrene microspheres in
mouse liver after ileocolic vein injection. Figure from [83] reproduced with permission from the publisher.
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Additional reports exist of IR780 being used without synthetic modification by encapsulating the
dye within nanostructures [83,84]. In 2017, Bhutiani et al. reported the detection of IR780 in mouse
liver after polystyrene microsphere encapsulation. After injection into the ileocolic vein, the presence
of microspheres in the liver was quantifiable using MSOT imaging (Figure 8C).

MSOT imaging of phantoms containing different concentrations of IR780 demonstrates the
spectral stability with respect to concentration of the dye, as can be seen in Figure 8A,B. This spectral
stability results in IR780 being a more attractive optoacoustic contrast agent than the related ICG for
nanoparticle tracking.

2.2.3. IRDye800 CW

Another heptamethine cyanine with a maximum absorption at 795 nm, IRDye800 CW contains
multiple sulfonate groups, making it much more water soluble than ICG or IR780 iodide. Additionally,
IRDye800 CW is sold with multiple different reactive groups (NHS ester, maleimide, azide, etc.),
enabling facile conjugation to targeting ligands [85]. As with IR780 iodide, IRDye800 CW is not
approved for human use by the FDA; however, due to the wide use of IRDye800 CW in the scientific
literature, single-dose toxicity studies have been performed in rats, and 13 separate clinical trials for
human use are ongoing [26,86].
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It was found that while IRDye 800 CW and its conjugates were unable to penetrate the cell 
membrane of healthy or apoptotic cells, with the exception of the PEG-conjugated dye, all 
compounds showed selective uptake into necrotic cells with damaged membranes. Selective 
visualization of necrotic tissues would allow for improved tracking of chemotherapeutic efficacy 
during early stages of tumor treatment, when rapid evaluation of progression is key. 
  

IRDye 800 CW has seen widespread use in optoacoustic imaging due to its solubility and
conjugatable handle. It has been used for kidney function testing, necrosis, and general and whole
body imaging [87–90]. In 2015, the use of IRDye 800 CW and several of its conjugates was investigated
for assessing tumor necrosis during chemotherapy as shown in Figure 9 [90].
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Figure 9. Imaging tumor necrosis with IRDye800 CW and its conjugates (2DG—2-deoxyglucose,
EGF—endothelial growth factor, PEG—polyethylene glycol). IRDye 800 CW and its conjugates
except 800CW-PEG showed co-localization with TUNEL staining which highlights damaged DNA.
Figure from [90] reproduced with permission from the publisher.

It was found that while IRDye 800 CW and its conjugates were unable to penetrate the cell
membrane of healthy or apoptotic cells, with the exception of the PEG-conjugated dye, all compounds
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showed selective uptake into necrotic cells with damaged membranes. Selective visualization of
necrotic tissues would allow for improved tracking of chemotherapeutic efficacy during early stages of
tumor treatment, when rapid evaluation of progression is key.

2.2.4. Alexa Fluor 750

Alexa Fluor 750 is another heptamethine cyanine with a proprietary structure. Its maximal
absorption is at 750 nm. It is available for purchase with several active groups for covalent conjugation
to targeting ligands [91]. It is widely used in fluorescence imaging, and has seen a small amount use in
optoacoustic imaging as well. Alexa Fluor has been used in imaging matrix metalloproteinase 2 and
HER2+ breast cancer [92,93].

In 2008, Bhattacharyya et al. reported the use of Alexa Fluor 750 labeled Herceptin for imaging
HER2+ cancer cell lines [92]. In in vitro testing, researchers were able to differentiate between HER2+
and HER2− cells based on the optoacoustic signal from the probe, as shown in Figure 10.
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Figure 10. Imaging of HER2+ and HER2− cell lines with Alexa Fluor 750-Hercepin conjugates. Figure
from [92] reproduced with permission from the publisher.

Additionally, an interesting correlation was noted when testing the relative quantum yields (rQY)
of both fluorescence and optoacoustic signal. They found that as the degree-of-labeling increased,
the rQY of fluorescence decreased, while the rQY of optoacoustic signal increased proportionally as
shown in Figure 11.
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2.3. Quenchers

The majority of the exogenous contrast agents used for optoacoustic imaging have been fluorescent
dyes. However, part of the energy absorbed by these dyes is emitted in the form of fluorescence,
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weakening the optoacoustic signal. Thus, for fluorescent dyes used for optoacoustic imaging,
lower quantum yields are often desirable [94]. As an alternative, a group of dyes known as dark
quenchers have the potential to be more ideal contrast agents. Dark quenchers emit the energy that
was absorbed as heat instead of light. As heat is generated, so are sound waves, thus strengthening the
optoacoustic signal [95]. Exploration of dark quenchers as exogenous contrast agents for optoacoustic
imaging is still in its infancy. Only a few quenchers have been examined in vivo, and little is known
about their interaction with other optoacoustically active dyes. While it is known that they can have a
contact-quenching effect on a fluorescent probe’s absorbance spectrum [96], it is not known how or if
they would have the same effect on optoacoustic signals from other exogenous dyes. Much is to be
learned about their ability to be multiplexed.

2.3.1. IRDye QC-1

IRDye QC-1 is a relatively new, non-fluorescent quenching dye. Quenchers such as this one are
commonly used in combination with a fluorescent dye for FRET systems. FRET-based assays have
been used to probe protease activity [97] as well as real-time monitoring of PCR [98]. Structurally,
IRDye QC-1 is an unsymmetrical heptamethine cyanine dye with a dialkyl-amino substitution on the
indole ring. It has been proposed that this amino substituent is the reason for the lack of fluorescence as
well as the broadening of the absorbance spectra due to the lone pair of electrons on the nitrogen [99].
The use of multiple sulfonate groups again makes the dye somewhat water-soluble. QC-1 also comes
equipped with an activated NHS-ester functional handle for conjugation to biomolecules of interest.
In methanol, QC-1 has a very broad absorbance spectrum, with a peak at 737 nm. Because of its broad
absorbance, QC-1 is an effective quencher for a wide range of NIR-emitting fluorescent dyes.
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2.3.2. Black Hole Quencher 3 and QXL 680
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spectrum with peak absorption at 772 nm. In addition to FRET-based quenching, the BHQ series of
quenchers are thought to quench fluorescence through contact-mediated quenching as well, which may
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QXL 680 is another dark quencher optimized for Cy5 and Cy5.5 type dyes with maximum
absorption at 679 nm [52]. Its structure is proprietary, so no information on how its quenching operates
is known.

In a comparative study to develop activatable optoacoustic probes to detect overexpressed matrix
metalloprotease 2 (MMP-2), BHQ3 and QXL 680, along with several dyes, were tested for their
optoacoustic signaling potential [93]. Both quenchers gave a signal that was much stronger than any of
the fluorescent dyes, and the final activatable probe was developed using the two quenchers without
fluorescent dyes.

Using the two quenchers, the researchers designed a probe which gave a clear signal change after
enzymatic cleavage by MMP-2 as shown in Figures 12 and 13.
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In cell testing, the final probe gave a clearly differentiable signal for MMP positive cells versus the
negative control. However, this probe has yet to move into animal imaging.

2.3.3. QSY 21

QSY 21 is another dark quencher that has found use as an optoacoustic contrast agent. It has a
peak absorption at 710 nm and an NHS ester for conjugation to targeting groups. It has been used in
the noncovalent labeling of tumor-targeting single-walled carbon nanotubes (SWNTs) [101].
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multiplexed with ICG (780 nm) as shown in Figure 14.
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Figure 14. Comparison of absorbance (left) and optoacoustic signal (right) for ICG (green) and QSY 21
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In animal testing, cRGD peptide-labeled SWNTs were found to target U87MG tumor xenografts.
Moreover, spectral unmixing allowed for clear delineation of the two dyes, even in complex biological
media as shown in Figure 15.
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Figure 15. Animal testing of QSY 21 and ICG labeled SWNTs. Three separate subcutaneous injections
were performed on a single mouse as shown in (A). The first contained QSY labeled SWNTs, the second
contained ICG labeled SWNTS, and the third contained a mixture. These are shown respectively in
inset images (B–D). Figure from [101] reproduced with permission from the publisher.



Molecules 2018, 23, 2766 17 of 24

3. Summary and Outlook

While there are a variety of commercially-available small molecule dyes that have shown promise
as optoacoustic contrast agents, the need for more improved optoacoustic contrast agents is still great.
One method used for developing fluorescent probes has been correlating physicochemical properties
with in vivo behavior [102]. This method can be easily applied to optoacoustic imaging as well, and the
physicochemical properties for the discussed commercially-available optoacoustic probes are shown
in Tables 1 and 2 below. Table 1 contains the directly-observable or experimentally-derived properties
of the contrast agents, and Table 2 contains physicochemical properties calculated using ChemAxon
software. It is often suggested that optimal optoacoustic probes possess the properties of a high molar
extinction coefficient and a low fluorescent quantum yield [10]. It has also been speculated that the
number of rotatable bonds may have an effect on the suitability of a probe for optoacoustic applications.
Comparing the optoacoustic signal of methylene blue with ICG, IR780, and IRDye QC-1, methylene blue
shows the lowest optoacoustic signal as well as the fewest rotatable bonds, lending some credence to
this concept (Figure 16). Rhodamine 800, which showed no measurable optoacoustic response, likewise
has no rotatable bonds. The difference could be explained by the formation of a twisted intramolecular
charge transfer excited state for methylene blue [103]. Upon excitation, rotation of the amine groups
and the formation of a biradicaloid species quenches the fluorescence of methylene blue. For rhodamine
800, the bridged cyclic amines are unable to rotate due to the strain this would put on the rings.

Table 1. Observable/Experimental physicochemical properties of selected dyes and quenchers.

Molecular
Weight

Rotatable
Bonds

H-Bond
Acceptors

Molar Absorptivity
(M−1 cm−1)

Quantum
Yield (%)

DYES

ICG 751.97 10 6 183,000 3
MB 284.40 0 1 95,000 3

Evans Blue 868.85 4 20 7,810 N/A
IR780 iodide 540.20 4 0 274,000 7.6
IRDye800CW 1097.23 18 15 181,458 3.4

Rhodamine 800 396.50 0 2 113,302 25
Coomassie Blue 802.98 11 7 43,000 N/A

QUENCHERS

IRDyeQC-1 1188.82 23 15 96,000 N/A
BHQ3 535.66 7 7 42,700 N/A

BlackBerry Quencher 650 576.60 6 12 41,000 N/A
QSY21 779.88 4 5 90,000 N/A

Table 2. Physicochemical properties of selected dyes and quenchers calculated using ChemAxon.

Molecular Volume (Å3) LogD Surface Area (Å2) TPSA (Å2) Polorizability

DYES

ICG 686.93 5.53 1143.82 181.76 87.37
MB 261.02 −0.62 388.00 43.91 32.74

Evans Blue 658.20 −3.62 987.04 396.09 81.28
IR780 iodide 536.10 6.67 898.85 50.60 66.43
IRDye800CW 920.12 −1.86 1536.72 385.83 108.94

Rhodamine 800 363.29 1.09 584.65 87.53 48.92
Coomassie Blue 716.81 4.54 1167.33 216.29 93.26

QUENCHERS

IRDyeQC-1 1013.19 −0.69 1698.30 379.84 120.15
BHQ3 502.27 0.30 812.53 133.61 66.48

BlackBerry Quencher 650 503.94 0.94 828.01 157.09 61.17
QSY21 668.54 3.31 1055.44 173.18 89.10

LogD is calculated as an average of 3 methods.
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Within the last decade, there has been an enormous push to develop optoacoustic imaging that
can be used clinically. With that push has come the need for small molecule dyes that are both
optoacoustically active and well tolerated in vivo. Out of the dyes reviewed above, only three are
FDA-approved for clinical use. An additional two are currently being tested in clinical trials; however,
they are being evaluated for fluorescent applications, not for optoacoustic imaging [104]. Further,
the large majority of the reviewed dyes absorb light under 800 nm, while currently-developed MSOT
instruments deliver NIR light up to 950 nm. While there has been some development of fluorophores
such as polymers and metal nanoparticles that absorb light between 800–950 nm, they often suffer from
poor biocompatibility due to their lack of water solubility or their toxicity [100]. Again, this highlights
the need for optoacoustically-active, small molecule probes that absorb in this region and which may
be more amenable for biological imaging, and eventually, clinical use.

4. Materials and Methods for Optoacoustic Spectra in Figure 16

Dyes were diluted in distilled water at 1 µM and 10 µM respectively, and added to fixed cylindrical
tissue mimicking phantoms of 2 cm diameter. Phantoms were prepared using a gel made from distilled
water containing Agar (Sigma Aldrich, St. Louis, MO, USA) for jellification (1.3% w/w) and an
intralipid 20% emulsion (Sigma Aldrich, St. Louis, MO, USA) for light diffusion (6% v/v), resulting
in a gel presenting a reduced scattering coefficient of µs = 10 cm−1. Dyes were added to the 3 mm
diameter cylindrical opening in the tissue phantoms [69,105]. All samples were evaluated using an
inVision 512 MSOT (iTheraMedical, Munich, Germany) at each 5 nm between 680 nm–900 nm, as
previously described [84,106]. Optoacoustic spectra were identified using the region of interest (ROI)
method in a single slice and plotted in Figure 16.
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