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ABSTRACT Cleaning of the production environment is vital to ensure the safety and qual-
ity of dairy products. Although cleaning with chlorine-based agents is widely adopted, it has
been associated with detrimental effects on milk quality and safety, which has garnered
increasing interest in chlorine-free cleaning. However, the influence of these methods on the
milk microbiota is not well documented. This study investigated the factors that influence
the raw milk microbiota, with a focus on the differences when chlorine-based and chlorine-
free cleaning of milking equipment are used. Bulk tank raw milk was sampled during three
sampling months (April, August, and November), from farms across Ireland selected to cap-
ture the use of different cleaning methods, i.e., exclusively chlorine-based (n = 51) and chlo-
rine-free cleaning (n = 92) and farms that used chlorine-free agents for the bulk tank and
chlorine-based cleaning agents for the rest of the equipment (n = 28). Shotgun metage-
nomic analysis revealed the significant influence of seasonal and geographic factors on the
bulk tank milk microbiota, indicated by differences in diversity, taxonomic composition, and
functional characteristics. Taxonomic and functional profiles of samples collected in
November clustered separately from those of samples collected in other months. In
contrast, cleaning methods only accounted for 1% of the variation in the bulk tank
milk bacterial community, and samples collected from farms using chlorine-based ver-
sus chlorine-free cleaning did not differ significantly, suggesting that the chlorine-free
approaches used did not negatively impact microbiological quality. This study shows the
value of shotgun metagenomics in advancing our knowledge of the raw milk microbiota.

IMPORTANCE The microbiota of raw milk is affected by many factors that can control or pro-
mote the introduction of undesirable microorganisms. Chlorine-based cleaning agents have
been commonly used due to their effectiveness in controlling undesirable microorganisms,
but they have been associated with the formation of chlorine residues that are detrimental
to product quality and may impact consumer health. Chlorine-free alternatives have been rec-
ommended in some countries, but the influence of cleaning agents on the milk microbiota
is unknown. Here, we investigated the influence of cleaning methods and other factors on
bulk tank raw milk. Results showed that season and location had a greater influence on the
milk microbiota than the cleaning agents used. Indeed, the similar microbiota compositions
of raw milk from farms that used chlorine-based and those that used chlorine-free cleaning
methods supports the further use of chlorine-free cleaning agents in dairy production.
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The raw milk microbiota is complex, with many factors contributing to its composi-
tion (1). Understanding the factors that positively or negatively impact the micro-

biota of raw milk is important, as it can affect the safety and quality of foods produced.
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Cleaning of equipment is one important aspect of food processing that, if done inefficiently,
may cause the unwanted transfer of microorganisms from food production and processing
surfaces to product. Chlorine-based cleaning products have been commonly used in many
industries, such as agriculture, water treatment, and food processing, due to their efficient
killing of a broad range of microorganisms (2), including by disrupting protein synthesis and
by increasing cell membrane permeability (3, 4). In dairy production and processing, chlo-
rine, in the form of hypochlorites or gaseous chlorine, is widely used in cleaning products
for the disinfection of equipment (2, 5, 6). However, the use of chlorine has been associated
with the formation of total organic chlorine residues, which have been found to affect the
end product quality and may pose a health risk to consumers (7). Such chlorine residues
include trichloromethane, which has been classified as a potential carcinogen, and chlorite,
chlorate, and perchlorate, which have been found to cause oxidative stress in cells and/or to
cause thyroid dysfunction (6–8). As a result, alternative cleaning methods involving the use
of chlorine-free detergents and sanitizers have been recommended as substitutes. In this
regard, it is notable that chlorine-free detergents and a detergent containing sodium hypo-
chlorite resulted in similar posttreatment levels of bacteria, as determined by culture-based
approaches, in bulk tank milk (9). However, other culture-based investigations have revealed
that chlorine-based cleaning more effectively reduced levels of spore-forming bacteria than
chlorine-free (10) or mechanical cleaning (11). Greater resolution of the influence of the
cleaning detergents used in dairy production on the microbiological community in raw milk
will help determine if the removal of chlorine-based agents impacts milk quality.

High-throughput sequencing has been used to characterize the milk microbiome,
including to identify mastitis-associated pathogens and to assess the safety and quality
of milk for downstream use in dairy products (12). While amplicon sequencing, such as
the targeting of the 16S rRNA gene, has been most widely used, the greater taxonomic
resolution, to species level, afforded by shotgun metagenomic sequencing is needed
to distinguish harmless and undesirable taxa from the same genus (13) and to facilitate
further characterization of the functional profiles of the microbiota, including antibiotic
resistance and toxin determinants (14). Regardless of the approach taken, studies have
revealed that the composition of bulk tank milk is significantly affected by many factors,
including season, lactation stage, farm system, feed, and others (15, 16). The fluctuating
abundances of several taxa based on season can have important implications for the quality
and safety of milk (17–19). Moreover, different farm management practices and other environ-
mental factors also influence the microbiota of raw milk (20). Understanding these factors and
their influence on the raw milk microbiota can help inform food safety and quality decisions
for downstream processing. This present study was run concurrently with that of D. Gleeson,
L. Paludetti, B. O’Brien, and T. Beresford (submitted for publication), which investigated sam-
ples under the same experimental conditions using culture-based and chemical analyses. The
aim of this study was to determine the factors influencing the bulk tank raw milk microbiota
using shotgun metagenomics, with particular focus on differences in taxonomic or functional
characteristics associated with the use of chlorine-based and chlorine-free cleaning agents.

RESULTS
Sampling month and location had greater influence on the taxonomic diversity

and profiles of the bulk tank milk microbiota than cleaning method. A total of 171
raw milk samples collected from 57 bulk milk tanks across Ireland were sampled over
each of the three sampling months. Some farms changed their cleaning routine over
the sampling months and, as a result, 51 samples were from farms that used chlorine-
based agents in their cleaning routine (C), 92 samples were from farms that used a chlorine-
free cleaning routine (CF), and 28 samples were from farms that used chlorine-free agents
for bulk tank cleaning and chlorine-based cleaning methods for the rest of the equipment
(BTCF). There were varied sample sizes between sampling locations (A, n = 45; B, n = 45; C,
n = 57; D, n = 24). Further details on the breakdown of samples are given in Table S1 in the
supplemental material. Shotgun metagenomic sequencing of the raw milk samples gener-
ated an average of 7,204,026 (61,759,482) high-quality paired-end reads per sample. A high
proportion (mean, 98.01%; range, 82.1 to 99.5%) of metagenomic reads sequenced were
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host reads that aligned to the Bos taurus genome. An average of 62,976 (6106,273) reads
were assigned as nonhost reads (mean, 1.99%; range, 0.49 to 17.9%).

The alpha diversity (observed species and Shannon and Simpson metrics) of the bulk tank
milk microbiota was not significantly different across samples from the 3 different cleaning
methods (Fig. 1a). Compared by sampling month, the alpha diversity values of raw milk
sampled in April and August were not significantly different, and both were significantly lower
(P , 0.001), across all three metrics used, than the alpha diversity of raw milk sampled in
November. Between locations, the alpha diversity of location A was significantly higher than
those of locations B and D by all 3 metrics and that of location C by Simpson score (P, 0.05).
For beta diversity, samples did not cluster based on cleaning method, which was found to
only account for 1.6% of the variation of the bacterial community (Fig. 1b and Table 1). On the

FIG 1 Diversity analysis of the microbiota of bulk tank milk samples. (a) Observed species, Shannon, and
Simpson alpha diversity analysis of bulk tank milk samples. (b) Bray-Curtis principal-coordinate analysis (PCoA)
plots, with ellipses representing clustering by sampling month. Samples are from farms taken in 3 different
sampling months—April, August, and November—from 4 different sampling locations (designated A to D).
Samples are classified in 3 different groups of cleaning methods, with samples from farms where chlorine
agents are used for cleaning bulk tanks only (BTCF) and from farms which exclusively use chlorine (C) or
exclusively use chlorine-free agents (CF) in their cleaning routines.
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other hand, significant differences were apparent by sampling month, where November sam-
ples clustered distinctly apart from the April and August samples. Similarly, based on sampling
location, location B samples clustered separately from those from other locations. Both sam-
pling month and location contributed significantly to the variation in microbiota composition
(P, 0.01), accounting for 10.1% and 6.7%, respectively (Table 1).

Given the possibility of the cleaning method confounding the impact of sampling
month and location, results were stratified into the 3 cleaning methods, and diversity
analysis and permutational analysis of variance (PERMANOVA) were done to determine
the effect on community structure. November samples, irrespective of cleaning method, had
significantly higher alpha diversities and clustered separately from April and August samples
(P , 0.05) (Fig. S1). In terms of sampling location, alpha diversity was higher for location A
across all cleaning methods, and particularly significantly higher for all metrics in farms that
used chlorine-free cleaning routines (Fig. S1). Location B samples clustered slightly further
away from samples from other locations, with significant differences between locations found
for the other 2 cleaning methods apart from samples from farms that used chlorine-based
agents (Table S2).

A total of 56 species were present at average relative abundances greater than
0.01% across all samples, as shown in Fig. 2. Anaplasma phagocytophilum, Acinetobacter alben-
sis, and Murimonas intestini were the three most abundant species in all samples. No differen-
ces were found in the species abundances between cleaning methods, but significant differ-
ences between sampling months were found in 27 species and between sampling locations
in 24 species (P, 0.05) (Fig. S2 and Tables S3 and S4). Additional analysis for indicator species
was performed to determine if any particular species was significantly associated with any
cleaning method, sampling month, or sampling location. While no species were found to be
associated specifically with any cleaning method, 16 species were associated with at
least one sampling month, and 14 species were associated with at least one sampling
location. For sampling months, Ralstonia insidiosa and Microbacterium esteraromaticum_A
were associated with April (P , 0.05), and Corynebacterium xerosis, CAG-791 sp900101015,
Psychrobacter sp002352555, Microbacterium maritypicum, Aerococcus urinaeequi, Jeotgalicoccus
sp003513765, CAG-791 sp900320325, Psychrobacter sp001652315, Rhodococcus erythropolis_D,
Kocuria sp002295155, CAG-791 sp900318375, Facklamia_A sp003521095, RUG420
sp900317985, and Kocuria atrinae were associated with November samples (P, 0.05). For
sampling locations, CAG-791 sp900101015, Aerococcus urinaeequi, Escherichia coli_D,
Enterococcus faecalis, CAG-791 sp900318375, Facklamia_A sp003521095, Paracoccus

TABLE 1 PERMANOVA of taxonomic composition and functional properties (based on results
from SUPER-FOCUS) of the bulk tank milk microbiota

Model or variable R2 P
Taxonomic composition
Cleaning method 0.016 0.069
Sampling month 0.106 0.001
Sampling location 0.067 0.001
Cleaning method*sampling month 0.014 0.901
Cleaning method*sampling location 0.020 0.389
Sampling month*sampling location 0.054 0.001
Cleaning method*sampling month*sampling location 0.036 0.55
Residuals 0.687

Functional profiles
Cleaning method 0.011 0.477
Sampling month 0.041 0.001
Sampling location 0.037 0.003
Cleaning method*sampling month 0.017 0.859
Cleaning method*sampling location 0.021 0.541
Sampling month*sampling location 0.043 0.064
Cleaning method*sampling month*sampling location 0.040 0.661
Residuals 0.790
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sp000787695, RUG420 sp900317985, and Lactobacillus_C paracasei were associated
with location A (P , 0.05) and Anaplasma phagocytophilum, Clostridium_F botulinum_A,
Bacillus_AM sp001989355, Microbacterium esteraromaticum_A, and Mycolicibacterium mal-
mesburyense with location C (P , 0.05). No particular species were specifically associated
with locations B and D, though Acinetobacter spp. were detected in greater relative abun-
dances in both of these locations.

Climate data on the temperature, rainfall, and wind from sampling days was retrieved
in an effort to correlate these climatic data with seasonal and geographical differences
(Table S5). Analysis indicated that these climatic factors significantly influenced the micro-
biota (adjusted R2, 0.0785; P , 0.01). Redundancy analysis showed that in terms of the cli-
matic factors, the locations only differed slightly and still clustered closely together (Fig. S3).
Locations B and D cluster more closely together and separately from A and C, although
none of the climatic factors analyzed can visibly account for this.

Similarly, functional characteristics of the bulk tank raw milk microbiome were
influenced by sampling month and location. The functional potential of bulk tank
milk microbiomes was predicted using SUPER-FOCUS, with genes involved in the metabolism
of carbohydrates, proteins, and amino acids and derivatives being most abundant (Fig. 3).
Genes associated with oxidative stress response, such as glutathione-related genes or those
with protection from reactive oxygen species, are potentially related to chlorine resistance.
These genes were detected at very low relative abundances (0 to 0.1%), with no significant dif-
ferences detected between any cleaning method, sampling month, or sampling location. No
genes encoding proteins that respond to reactive chlorine species were found in any samples.
Overall, no significant differences in functional potential on the basis of cleaning method were
found. Between sampling months, a total of 11 functional groups at subsystem level 1 signifi-
cantly differed (P , 0.05) (Fig. S4 and Table S6). Significant differences were found between
sampling months for 28 functional groups at subsystem level 2 and for 98 groups at level 3
(P, 0.01) (Table S6). Abundances of genes related to protein metabolism were seen to grad-
ually increase, while those related to carbohydrates and fatty acids, lipids, and isoprenoids

FIG 2 Taxonomic profiles of the bulk tank milk microbiota at relative abundances greater than 0.01%. Samples were taken during 3 different sampling
months—April, August, and November—from 4 different sampling locations (designated A to D). Samples are classified in 3 different groups of cleaning
methods, with samples from farms where chlorine agents are used for cleaning bulk tanks only (BTCF) and from farms which exclusively use chlorine (C) or
exclusively use chlorine-free agents (CF) in their cleaning routines.
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gradually decreased over time (Table S6). Between sampling locations, no differences were
found at subsystem levels 1 and 2. However, at level 3, significant differences in abundances
were noted for 1 functional group, the ESAT-6 protein secretion system in mycobacteria
(locus ESX-1), which was significantly higher in location A samples (0.0367%) than in
those from the other locations (B, 0.0148%; C, 0.0129%; D, 0.0075%).

Higher numbers of antibiotic resistance gene marker reads were mapped to
samples from farms which used chlorine-based cleaning agents versus those that
used other cleaning methods. Genes encoding antibiotic resistance were identified
using ShortBRED, and within bulk tank milk samples, 32 unique antibiotic resistance
gene (ARG) markers were detected. These gene markers were found in 19 milk samples
(11.1% of all milk samples). Antibiotic resistance gene markers corresponded to 6 differ-
ent antibiotic classes, i.e., tetracycline, lincosamide, aminoglycoside, sulfonamide, rifampin,
and erythromycin. Although the same numbers of genes were detected between samples
from farms that used chlorine-free cleaning and chlorine-based cleaning (Fig. 4a), higher
reads per kilobase of reference sequence per million sample reads (RPKM) were seen in milk

FIG 3 Functional profiles of the bulk tank milk microbiota, based on SUPER-FOCUS subsystem level 1 functions. Samples were taken during 3 different
sampling months—April, August, and November—from 4 different sampling locations (designated A to D). Samples are classified in 3 different groups of
cleaning methods, with samples from farms where chlorine agents are used for cleaning bulk tanks only (BTCF) and from farms which exclusively use
chlorine (C) or exclusively use chlorine-free agents (CF) in their cleaning routines.

FIG 4 Antibiotic resistance genes (ARGs) found in milk samples from farms with different cleaning methods,
expressed as number of genes detected (a) and normalized reads per kilobase per million reads (RPKMs) (b).
Samples are classified in 3 different groups of cleaning methods, with samples from farms where chlorine
agents are used for cleaning bulk tanks only (BTCF) and from farms which exclusively use chlorine (C) or
exclusively use chlorine-free agents (CF) in their cleaning routines.
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from farms that used chlorine-based cleaning agents (Fig. 4b). Although not statistically dif-
ferent, average reads mapped to samples from farms that used chlorine-free agents for bulk
tank cleaning alone were lower (11.126 5.27 RPKM) than those for samples from farms that
used a chlorine-free cleaning routine (9.346 8.90 RPKM) and samples from farms that used
chlorine-based agents in the cleaning (30.066 49.30 RPKM).

DISCUSSION

Here, we investigated the factors influencing the bulk tank milk microbiota, and
particularly whether there were taxonomic and functional differences in the bulk tank
raw milk microbiota associated with the use of chlorine-free or chlorine-based cleaning
agents. Milk samples were collected across three sampling months and four different
sampling locations and their microbiome profile assessed. Overall, taxonomic profiles
of the raw milk sampled were somewhat different from those previously reported in
other studies on the raw milk microbiome. Acinetobacter, Lactococcus, Streptococcus,
Corynebacterium, and Pseudomonas have frequently been reported as the most commonly
detected genera in raw milk that are present in high relative abundances (12). Although these
genera were among the top 10 detected in this study, Anaplasma and Murimonas were also
found in high relative abundances. Both Anaplasma and Murimonas are host related, and
therefore their presence is not entirely unexpected (21, 22). The identification of Anaplasma in
raw milk had been previously reported, as several species have been known to cause disease
in cattle (23). Murimonas is part of the family Lachnospiraceae, which has been commonly
found in bovine milk and dairy farm environments (22, 24), although few studies have
assigned a particular genus or species. The improved taxonomic assignment of shotgun
sequencing could be the reason for the identification of Murimonas intestini in bulk tank raw
milk samples in this study.

The characterization of the microbiota revealed similar taxonomic compositions and func-
tional profiles regardless of the cleaning method used, which only accounted for 1% of the
variation in the bulk tank milk bacterial community. The results provide added evidence that
support previous culture-based investigations by Gleeson et al. (9), showing that the use of
chlorine or nonchlorine cleaning does not affect the composition of raw milk. Interestingly,
the taxonomic profiles and diversities of sampling locations B and D were more similar to
each other than to those of other locations, despite B having a mix of samples from farms
that used all three cleaning methods and D comprising only farms that used chlorine-free
cleaning. This result further shows that cleaning method (the use of chlorine or chlorine-free
cleaning agents) does not significantly impact the milk microbiome, and other factors have a
greater influence, as evidenced by cleaning method accounting for a small percentage of the
variation in taxonomic and functional profiles that was not found to be statistically significant
(Table 1).

Seasonality is known to impact the microbiota composition of raw milk, where distinct
seasonal differences in diversity and composition have been noted (17, 18, 25). In the cur-
rent study, seasonality had a significant influence on the raw milk microbiota, accounting
for 10% of the variation in microbiota composition, with significant effects of time also
found in culture-based analysis of the same set of samples done in the concurrent study by
Gleeson and colleagues (9). In Ireland, as milk production is based on seasonal calving, the
collection dates corresponded to spring/early lactation (April), summer/midlactation (August),
and winter/late lactation (November). Samples taken in November had the greatest diversity
and a distinct microbiota composition compared to those of samples taken in April and
August, corresponding to results previously reported (16). Although other studies completed
in the United States and China noted a higher alpha diversity in spring/summer, this could be
due to different farming practices, most notably Ireland’s predominantly pasture-based sys-
tem, and the diverse nature of the raw milk microbiota (15, 18). Despite this, some similarities
in specific taxa were evident, such as the increased abundance of species from the family
Lachnospiraceae and phylum Actinobacteria in winter (15, 16). Additionally, the species identi-
fied from indicator species analysis that were associated with November samples were mainly
host-related species, which reflect Irish farming practices in which cows are kept indoors in
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winter, which has been reported to impact the raw milk microbiota (20). Functional genes
related to the nutrient composition of milk were found to gradually increase (protein metabo-
lism) or decrease (carbohydrates and fatty acids), which indicated the influence of seasonality
or lactation stage on the milk microbiota and subsequently on nutrient composition.

Together with differences across sampling months, differences in the raw milk
microbiota were found across sampling locations, which was expected because geographi-
cal location and associated environmental and farming practices have previously been
shown to influence milk microbiota profiles (26, 27). In this study, analysis revealed that sam-
pling location had a significant influence on the bulk tank raw milk microbiota (Table 1). As
evidenced in the results, the microbiota of raw milk from locations B and D were more simi-
lar to each other than to those from the other locations, although no definite correlation
with climatic data was found (Fig. 2; see also Fig. S3 in the supplemental material). More in-
formation is required to better ascertain the influence of location on the milk microbiota.
Farm practices, environment conditions, animal health, and diet are some factors that previ-
ous studies have found to be contributing factors (18, 20).

Besides taxonomic profiling that adds support to previous culture-based studies,
sequencing-based methods allows for further characterization of the raw milk microbiota.
Access to shotgun metagenomic sequencing facilitated functional profiling, with significant
differences again being evident between sampling months and locations and not between
cleaning methods. In terms of antibiotic resistance, results in this study show that milk is a
reservoir of antibiotic resistance genes, which may proliferate in milk and be transferred to
surfaces during transport or downstream processing. The most abundant ARGs detected in
the milk samples were those that confer resistance to aminoglycosides and tetracycline and
which have been previously reported in raw milk (28, 29). Notably, Acharya et al. (30) found
that even after effective disinfection, bacterial cells and their DNA can persist in samples,
which could result in potential reservoirs for ARGs. Furthermore, incubation at room temper-
ature for short periods of time has been found to enrich ARGs in milk, which highlights the
importance of proper cold-chain practices (29). It has also been reported that chlorination
can enrich ARGs in drinking water (31, 32), and it has been found to promote the horizontal
transfer of plasmids by natural transformation, which result in the exchange of ARGs across
bacterial genera (33). These phenomena may explain why numerically more ARGs were
detected in raw milk from farms that used chlorine in their cleaning routine. Additionally,
while more research is needed for a deeper understanding of the resistome of bulk tank
milk and the implications of the presence and contribution of ARGs to antimicrobial resist-
ance along the dairy processing chain, this study demonstrates the use of sequencing as a
potential tool for monitoring ARGs without the isolation and culture of bacteria, which is val-
uable in terms of food safety.

It should be noted that while this study provides a deeper understanding of the raw
milk microbiota and its relationship with cleaning and other environmental or climatic fac-
tors, it has some limitations. First, sampling was performed on single days in each month,
and so we cannot conclusively state that the patterns are representative of broader seasonal
differences, although the patterns are consistent with previous studies. In addition, although
shotgun metagenomic sequencing is a valuable tool in the characterization of the raw milk
microbiota, it does not differentiate between viable and nonviable microorganisms. This
issue, however, is of greater concern when dealing with samples with high levels of intact
DNA from dead bacteria, such as recently pasteurized milk. Finally, the shotgun approach
involves sequencing all DNA present in samples, which has resulted in the identification of
high proportions of host DNA in each sample and low microbiological sequencing depth,
which may have hindered the further resolution of taxonomic, functional, and antibiotic re-
sistance profiling, as previously shown in other studies (34, 35). Since the conclusion of this
study, we have investigated approaches to overcome this problem (36) that we will utilize in
future studies.

Despite these challenges, the study clearly reveals that season and location have
greater impacts on the bulk tank raw milk microbiota than the use of chlorine or chlorine-
free cleaning methods. Our findings also show that chlorine-free cleaning methods are
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comparable with chlorine cleaning with respect to the net microbiota composition and its
functional potential and thus provide further reassurance when considering chlorine-free
approaches. Furthermore, this study shows the value that shotgun metagenomic sequenc-
ing adds in advancing our understanding of the raw milk microbiota.

MATERIALS ANDMETHODS
Sample collection and preparation. Raw bovine milk samples (100 ml) were collected from bulk

milk tanks from farms across Ireland on single days in April, August, and November 2019. Commercial
farms, located mainly in the southern region of Ireland, were identified by 4 milk processors (locations A
to D) to take part in the study. Farmers agreed to comply with the following three different cleaning
methods: the use of chlorine-free cleaning products for the bulk tank only (BTCF), chlorine-free cleaning
methods throughout the system (CF), and traditional chlorine cleaning protocols (C) throughout the
study period. Chlorine-free cleaning involved the use of hot water washes with acid, with five suggested proto-
cols available online for farmers to use for implementation (https://www.teagasc.ie/media/website/animals/dairy/
research-farms/Chlorine-free-wash-routines_2020.pdf). The samples were transported in a cooler box to the labo-
ratory and prepared as follows: 30 ml of the bovine milk sample was centrifuged at 4,500 � g for 20 min at 4°C.
After centrifugation, the cream and supernatant were discarded, and the pellets were subjected to two washing
steps, whereby the pellets were resuspended in sterile phosphate-buffered saline (PBS) and centrifuged at
13,000� g for 1 min, after which the supernatant was discarded and the pellet used for DNA extraction.

DNA extraction. DNA from samples was extracted on the same day of sample collection. Pellets
from the removal of cream were resuspended in 800 ml CD1 solution from the DNeasy PowerSoil Pro kit.
From this point, extraction was carried out according to the manufacturer’s instructions (Qiagen, West
Sussex, United Kingdom). The lysis step was performed using a TissueLyser II (Qiagen) for 10 min at
30 Hz, and DNA was eluted in 70 ml and stored at 220°C until use in library preparation.

DNA library preparation and shotgun metagenomic sequencing. DNA was quantified using the
Qubit double-stranded DNA (dsDNA) high-sensitivity assay kit (Bio-Sciences, Dublin, Ireland). All samples
were prepared for shotgun metagenomic sequencing according to Illumina Nextera XT library prepara-
tion kit guidelines, with the use of unique dual indexes for multiplexing with the Nextera XT index kit
(Illumina). Following indexing and cleanup, samples were pooled to equimolar concentration of 1 nM.
Samples were sequenced on an Illumina NextSeq 500 sequencing platform with a v2 kit, at the Teagasc
DNA Sequencing Facility, using standard Illumina sequencing protocols. Sequencing controls and nega-
tive controls were used to ensure consistency between runs, and in total, 181 samples were sequenced
(3 time points for each of 57 farms plus controls).

Bioinformatic analysis of shotgun metagenomic data. Raw metagenomic shotgun reads were
quality checked and trimmed with Cutadapt (v1.18) and FastQC (v0.11.8). Reads were then aligned to
the bovine genome (Bos taurus) to determine the number of host reads using Bowtie 2 (v2.3.4). Kraken2
was used for taxonomic classification of sample data using the Genome Taxonomy Database (release 89),
which contains bacteria and archaea (37–39). SUPER-FOCUS (40) was used to characterize the microbiolog-
ical functional potential of shotgun reads through the alignment of reads against a reduced SEED (41)
database using DIAMOND (42). Antibiotic resistance genes were quantified using ShortBRED, which maps
shotgun reads against markers from the Comprehensive Antibiotic Resistance Databases (CARD) (43), and
results are expressed as normalized reads per kilobase per million reads (RPKM) (44).

Climate data. Data on the rainfall (mm), maximum and minimum temperatures (°C), grass minimum
temperature (°C), and mean wind speed (knots) from weather stations that were representative of the
four sampling locations on the three sampling days were retrieved from the Irish Meteorological Service
website (www.met.ie).

Statistical analysis and data visualization. Statistical analysis and data visualization were performed in
R (v3.6.3) (45). Kruskal-Wallis and pairwise Wilcoxon rank sum tests with the Benjamini-Hochberg P value cor-
rection was used for comparison between cleaning methods, sampling months, and sampling locations.
Diversity analysis was done using the vegan package (46), with alpha diversity calculated as observed species,
Shannon, and Simpson metrics and beta diversity as Bray Curtis metrics, visualized in a principal coordinate
analysis plot. The “adonis” function from the vegan package was used to determine differences in composition
of the community between groups of samples (number of permutations = 999). Redundancy analysis (RDA)
was performed using the vegan package to determine differences in the effects of weather variables on micro-
biota composition between sampling locations. The “multiplatt” function from the indicspecies package was
used to find species that were significantly associated with particular cleaning methods, sampling, months and
sampling locations, by calculating Pearson’s phi coefficient of association and correcting for unequal group
sizes using the parameter “r.g” (47). Data cleaning and analysis and visualization was done using tidyverse,
ggplot2, ggord, and ggpubr packages (48–50).

Data availability. Sequence data generated during the current study have been deposited in the
European Nucleotide Archive under accession number PRJEB42046.
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