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Abstract: This study presents three-dimensional (3D) MoS2/reduced graphene oxide (rGO)/graphene
quantum dots (GQDs) hybrids with improved gas sensing performance for NO2 sensors. GQDs
were introduced to prevent the agglomeration of nanosheets during mixing of rGO and MoS2. The
resultant MoS2/rGO/GQDs hybrids exhibit a well-defined 3D nanostructure, with a firm connection
among components. The prepared MoS2/rGO/GQDs-based sensor exhibits a response of 23.2%
toward 50 ppm NO2 at room temperature. Furthermore, when exposed to NO2 gas with a concentra-
tion as low as 5 ppm, the prepared sensor retains a response of 15.2%. Compared with the MoS2/rGO
nanocomposites, the addition of GQDs improves the sensitivity to 21.1% and 23.2% when the sensor
is exposed to 30 and 50 ppm NO2 gas, respectively. Additionally, the MoS2/rGO/GQDs-based sensor
exhibits outstanding repeatability and gas selectivity. When exposed to certain typical interference
gases, the MoS2/rGO/GQDs-based sensor has over 10 times higher sensitivity toward NO2 than the
other gases. This study indicates that MoS2/rGO/GQDs hybrids are potential candidates for the
development of NO2 sensors with excellent gas sensitivity.

Keywords: three-dimensional structure; MoS2; reduced graphene oxide (rGO); graphene quantum
dots (GQDs); gas sensor

1. Introduction

Nowadays, with industrialization and the continuous development of technology and
science, the detection of nitrogen oxides (NOX) has attracted increasing attention [1–3]. Due
to environmental and health concerns, the development of a high-sensitivity gas sensor
that can accurately, reliably, and quickly detect low-concentration NO2 gas is essential for
air quality monitoring and protection of human health [4,5].

Up to now, a variety of materials have been used to synthesize NO2 sensors, including
metal oxides [6], conducting polymers [7], nanocarbon materials [8], and transitional
metal dichalcogenides [9]. Among these, graphene has received widespread attention as
a potential gas-sensing material. Being a typical p-type semiconductor material, reduced
graphene oxide (rGO) exhibits more structural defects and dangling bonds than pure GO,
which offers advantageous conditions for gas adsorption [10–12]. However, pure rGO-
based sensors generally show poor gas sensitivity toward NO2 gas at room temperature [13].
Therefore, several researchers have tried to combine rGO with other nanomaterials to
improve its gas-sensing performance [14–16]. It has been shown that the three-dimensional

Nanomaterials 2022, 12, 901. https://doi.org/10.3390/nano12060901 https://www.mdpi.com/journal/nanomaterials

https://doi.org/10.3390/nano12060901
https://doi.org/10.3390/nano12060901
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com
https://doi.org/10.3390/nano12060901
https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com/article/10.3390/nano12060901?type=check_update&version=1


Nanomaterials 2022, 12, 901 2 of 17

(3D) nanostructure of rGO composite can accelerate electron transport and improve the
conductivity of composite materials.

In recent years, few-layer or single-layer two-dimensional transition metal sulfides, in-
cluding TiS2 [17], WS2 [18], MoSe2 [19], MoS2 [20], and WSe2 [21], have attracted increasing
attention from the academic community. Among these, MoS2 has been widely used as a
gas-sensitive material in various gas monitoring applications because of its low cost, unique
electronic structure, and suitable bandgap. However, the pure MoS2 material exhibits few
accessible active sites, poor conductivity, and restacking of aggregations, which hinder
electron transport and gas adsorption [22,23]. Introduction of a second component to form
binary hybrids is considered an effective route to tackle these issues. Many low-dimensional
nanomaterials, including graphene [24], carbon nanotubes [25], carbon dots [26], graphene
quantum dots [27], etc., have been used to improve the gas sensing performance of MoS2
nanosheets through the formation of hybrid structures [28–30].

GQDs, with a size smaller than 20 nm, possess numerous characteristics in common
with graphene, including their boundary effects and unique quantum confinement effects.
Hence, they are widely used in biology, materials, chemistry, and other fields [31–33].
Several studies have shown that small-size graphene has high conductivity and superior
electron transport ability, which contribute to its gas sensitivity [34,35]. Binary hybrids of
MoS2 with rGO and GQDs have been proposed to improve the conductivity, increase the
number of active sites, and accelerate electron transport. The addition of rGO nanosheets
and GQDs can effectively avoid the agglomeration of MoS2, thereby supplying many
binding sites for the adsorption of gas molecules.

In this study, alternately stacked 3D structures based on MoS2/rGO/GQDs ternary
hybrids are prepared for NO2 gas sensing. The introduction of GQDs can prevent the
agglomeration of MoS2 and rGO nanosheets. The rGO nanosheets serve as a channel for
carrier transmission and a substrate for the growth of MoS2 nanoflowers. Additionally,
the 3D nanostructure of the composite material provides numerous good adsorption sites
for NO2 gas. These sites are beneficial for electron transmission and further enhance
the gas-sensing properties of the MoS2/rGO/GQDs hybrids. The results reveal that the
MoS2/rGO/GQDs-based sensor has high-magnitude response, good selectivity, excellent
stability, and quick response toward NO2 at room temperature.

2. Materials and Methods
2.1. Chemical Reagents

Sodium molybdate dihydrate (H4MoNa2O6), thiourea (CH4N2S), hydrochloric acid
(HCl), ethanol (C2H6O), sodium hydroxide (NaOH), and polyvinylpyrrolidone (PVP) were
obtained from Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China). Benzopyrene
was purchased from Tokyo Chemical Industry (Tokyo, Japan). Nitric acid (HNO3, 65–68%)
was obtained from Chinasun Specialty Products Co., Ltd. (Changshu, China). None of the
above chemical reagents required further purification.

2.2. Fabrication of the GQDs

The GQDs were synthesized using a modified version of the method reported by
Wang [36]. Typically, 1 g of benzopyrene was added to 80 mL of HNO3 and stirred for 12 h
at 80 ◦C to be nitrated. The mixed solution was washed by deionized water several times,
repeatedly filtered using 0.22 µm microfiltration membranes until the filtrate became color-
less, and freeze-dried at −52 ◦C for 12 h. Then, 1.5 g of the resulting yellowish powder was
dispersed into 300 mL of NaOH solution (2 mol/L) via ultrasonication for 3 h and stirred
for 5 h. The resulting liquid was poured into a reactor lined with polytetrafluoroethylene
and kept in an oven for 8 h at 200 ◦C. After cooling down to room temperature, the obtained
solution was filtered through a 0.22 µm microporous membrane with deionized water. In
order to remove the unfused small molecules and sodium salts, the filtrate was subjected to
a dialysis treatment for two days in a dialysis bag, and it was freeze-dried to obtain a dark
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brown GQDs powder. Finally, the obtained GQDs powder was dispersed into deionized
water to form a GQDs solution of 1 mg/mL for later use.

2.3. Fabrication of the MoS2 Nanoflowers

The MoS2 nanoflowers were prepared via the hydrothermal process. As in a typical
procedure, 1.21 g of sodium molybdate dihydrate and 2.36 g of thiourea were weighed into
a beaker and prepared into a 40 mL solution. After 3 h stirring, the mixture was poured
into an autoclave lined with polytetrafluoroethylene and placed in an oven for 12 h at
200 ◦C. When the solution cooled down to room temperature, the yellow supernatant was
removed with a dropper. The bottom sediment was washed several times with ethanol and
deionized water and collected by centrifugation. The resultant powder was transferred to a
vacuum drying oven and dried for 8 h at 60 ◦C to obtain black MoS2 powder.

2.4. Fabrication of the MoS2/rGO Nanocomposites

GO was synthesized using an improved version of Hummers’ method [37]. To syn-
thesize MoS2/rGO nanocomposites, 75 mg of MoS2 powder was dispersed into 25 mL of
deionized water and continuously stirred for 1 h. Then, 15 mL of about 1 mg/mL GO
solution was added. After 8 h of stirring, the mixture was placed in a reaction kettle and
kept in an oven for 12 h at 200 ◦C. Subsequently, after cooling down to room temperature,
the supernatant liquid was removed by a dropper. The product was then centrifuged
at 10,000 rpm for 5 min and washed three times with deionized water. After repeated
centrifugation and washing cycles, the black precipitate was placed in a vacuum drying
oven and then dried for 8 h at 80 ◦C to obtain MoS2/rGO nanocomposites.

2.5. Fabrication of the MoS2/rGO/GQDs Hybrids

The MoS2 powder, GO, and GQDs dispersion obtained through the above steps were
used to prepare the MoS2/rGO/GQDs hybrids. Briefly, 15 mL of the GQDs dispersion
(1 mg/mL) was dispersed into the obtained MoS2/rGO nanocomposites. The suspension
was then sonicated for 3 h and stirred for 5 h to achieve a homogeneous solution. The
obtained solution was placed into a polytetrafluoroethylene-lined reactor and heated for
12 h at 200 ◦C. Subsequently, the reactor was cooled down to room temperature. The
supernatant liquid was removed using a straw, and the remaining solution was centrifuged
for 10 min at 10,000 rpm. The precipitate was washed several times with ethanol and
deionized water and separated by centrifugation. Then, it was dispersed into an appropriate
amount of deionized water with a concentration of 1 mg/mL. The resulting thick solution
was placed in a refrigerator to be frozen and then freeze-dried for 16 h to prepare the
foamy MoS2/rGO/GQDs hybrids. The obtained MoS2, rGO, and GQDs were admixed
at a mass ratio of 50:10:10 at 200 ◦C for 12 h in the hydrothermal process. The obtained
MoS2/rGO/GQDs hybrids are here referred to as MoS2/rGO/GQDs-1. For comparison,
hybrids with mass ratios of 50:5:5, 50:3:3, and 50:2:2 were also synthesized and labeled as
MoS2/rGO/GQDs-2, MoS2/rGO/GQDs-3, and MoS2/rGO/GQDs-4, respectively.

2.6. Characterization

The morphology and structure were examined via atomic force microscopy (AFM,
Dimension Icon, Bruker, Billerica, MA, USA) and scanning electron microscopy (SEM,
Sigma300, Carl Zeiss, Oberkochen, Germany). A laser microscope confocal Raman spec-
trometer (λ = 514 nm, HR800, HORIBA Jobin Yvon, France) was used to acquire the Raman
spectra. An X-ray diffractometer (XRD, XPert-Pro MPD, Panalytical, Holland) was used to
analyze the crystal structures. The atomic valence and molecular structure of the samples
were determined via X-ray photoelectron spectroscopy (XPS, ESCALAB250XI, Thermo
Fisher Scientific, Waltham, MA, USA).
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2.7. Fabrication and Measurement of the Synthesized Sensors

The MoS2/rGO and MoS2/rGO/GQDs hybrids were used as the gas-sensitive materi-
als for the synthesis of NO2 sensors. Traditional microfabrication procedures were adopted.
First, the silicon wafer was hydrophilized, dried, and spin-coated with photoresist. It
was then exposed and developed with a mask. After Au sputtering and degumming,
interdigitated electrode fingers were obtained. Figure 1 shows that the resultant electrode
is about 720 µm long and 600 µm wide. An appropriate amount of the previously synthe-
sized MoS2/rGO/GQDs solution was dropped onto the interdigitated electrode using a
microsyringe and dried for the subsequent NO2 gas-sensitivity test.
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Figure 1. SEM image of the interdigitated electrode.

The gas-sensitivity measurement was carried out through a high-precision semicon-
ductor tester (Agilent 4156C, Santa Clara, CA 95051, USA). During the measurement, the
voltage was set to 5 mV, and the current change was recorded by the sensing device in
real time. NO2 gas was used as the test gas, and different concentrations of NO2 gas
were obtained by regulating the flow ratio between the background gas and NO2 gas.
At the beginning of the test, the background gas was introduced for 100 s to maintain
the output current in a stable range, and then, the background gas together with NO2
gas were introduced at a certain proportion. R0 refers to the initial resistance value of
the measured sensor under the background gas, while R denotes the real-time resistance
value of the measured sensor exposed to NO2 gas. The sensitivity can then be defined as
S = (R − R0)/R0 × 100%.

3. Results and Discussion
3.1. Nanocomposite Material Characterization

AFM measurements were conducted to characterize the morphology of the prepared
GQDs. The GQDs were more similar to discs rather than spherical objects. Figure 2 shows
that the diameters of the GQDs were in a range from 2 to 7 nm, and the average diameter
was about 4 nm. Furthermore, the aggregation of the GQDs can also be observed in
Figure 2. This aggregation may be due to the weak hydrogen bonds or the noncovalent bond
interactions among the oxygenated functional groups that are present in the GQDs [38,39].
The AFM morphology measurement of MoS2/rGO/GQDs hybrids was also performed
and an image is provided in the supplementary information (Figure S1) to confirm the
existence of GQDs in the MoS2/rGO/GQDs hybrids.
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Figure 2. AFM image of GQDs.

The microstructure of the prepared composites was characterized through SEM. GO
exhibits nearly transparent nanosheets with many wrinkles, as shown in Figure 3a [40,41].
It can be seen from Figure 3b that the pure MoS2 nanoflowers formed by the layered
nanosheets have noticeable ripples, and their diameter is about 500 nm. It can be clearly
observed from Figure 3c that the MoS2 nanoflowers anchored on the surface of rGO
nanosheets are not uniformly distributed. Instead, they are stacked together and aggregated
into nanospheres with the rGO nanosheets. The morphology of the MoS2/rGO/GQDs
hybrids is shown in Figure 3d. It can be observed that the introduction of GQDs greatly
improves the homogeneous distribution of rGO and MoS2 nanosheets. Additionally,
numerous 3D interconnected foldable nanostructures are present in the MoS2/rGO/GQDs
hybrids. The MoS2 nanoflowers and the small GQDs particles in the MoS2/rGO/GQDs
hybrids are distributed on the exposed active sites of the rGO nanosheets. The introduction
of GQDs provides nucleation sites for the formation of MoS2/rGO nanocomposites and
prevents their agglomeration [42]. The morphologies of MoS2/rGO/GQDs hybrids with
different ratios of GQDs are given in the supporting information (Figure S2).
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As shown in Figure 4, Raman spectroscopy was used to detect the nonpolar vibra-
tions between the same type of atom in the samples. The Raman spectra of GQDs, rGO,
MoS2/rGO, and MoS2/rGO/GQDs show two characteristic peaks at ~1350 and ~1580 cm−1

corresponding to the D and G bands of graphene, respectively. The D-band can be attributed
to the disorder degree or edge folding degree of graphene, whereas the G-band is due to
the first-order scattering of the E2g mode. Usually, the intensity ratio of the D-band and
G-band (ID/IG) reveals the extent of graphene reduction [43,44]. As shown in Figure 4, the
ID/IG values of GQDs, rGO, MoS2/rGO, and MoS2/rGO/GQDs are 0.975, 1.226, 1.244,
and 1.035, respectively. In comparison with MoS2/rGO, it can be clearly observed that
the ID/IG value of MoS2/rGO/GQDs decreased from 1.244 to 1.035, implying that some
of the defects of rGO were removed during the deposition of GQDs. The decrease in
ID/IG ratio proves that GQDs are successfully fabricated onto the MoS2/rGO/GQDs hy-
brids [45,46]. The peaks of pure MoS2 are located at 377 and 403 cm−1, which correspond
to the E1

2g and A1g vibrational modes, respectively [47]. The E1
2g peak corresponds to the

Mo–S in-plane vibration of the MoS2 lattice, while the A1g peak is attributed to the Mo–S
out-of-plane vibration [48]. In contrast to pure MoS2, the values of the E1

2g and A1g peaks in
the MoS2/rGO and MoS2/rGO/GQDs samples are significantly reduced, which confirms
that GQDs effectively inhibit the aggregation of MoS2.
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The crystallinity and crystal phase of the hybrids were revealed via XRD. Figure 5a
shows that the GQDs have two broad diffraction peaks at 15.8◦ and 22.6◦, which correspond
to the (001) and (002) crystal planes, respectively [49]. As displayed in Figure 5b, the four
diffraction peaks at 13.9◦, 33.3◦, 39.6◦ and 58.8◦ correspond to the (002), (100), (103) and
(110) planes, which are in agreement with the standard JCPDS card of 2H–MoS2 (JCPDS
No.37-1492) [50]. All the peaks of pure MoS2 are also observed in the XRD patterns of the
MoS2/rGO and MoS2/rGO/GQDs samples, which indicates the successful formation of the
MoS2 nanoflowers in these samples. In comparison with the sharp diffraction peak of pure
bulk MoS2 located at 2θ = 13.9◦, the diffraction peaks of MoS2/rGO and MoS2/rGO/GQDs
are wider, which may be due to the poorer crystallinity of the obtained samples and the
decrease in particle size [51]. Furthermore, a diffraction peak was observed around 22.5◦ in
rGO, MoS2/rGO and MoS2/rGO/GQDs samples corresponding to the (002) plane of rGO,
which confirms the presence of rGO and the successful reduction of GO in the composite
material [52]. It can also be seen that the diffraction peak of MoS2/rGO nanocomposites
located at 2θ = 22.5◦ shifted slightly to 2θ = 22.9◦ when GQDs were added to the MoS2/rGO
nanocomposites. This shift was due to the higher functionality of GQDs, as the surface
groups cause an increase in the lattice parameter of the rGO nanosheets [53]. This result
indicates the successful incorporation of GQDs into the MoS2/rGO nanocomposites. It is
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also important to note that compared to MoS2/rGO nanocomposites, the peak intensity
decreases for MoS2/rGO/GQDs hybrids, which verifies that the addition of GQDs can
effectively avoid the agglomeration of MoS2 nanoflowers and rGO nanosheets. The XRD
results demonstrate that the MoS2/rGO/GQDs hybrids were successfully fabricated.
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The MoS2/rGO/GQDs hybrids were analyzed via XPS. Figure 6a shows the spectrum
of the MoS2/rGO/GQDs hybrids. It can be clearly seen that the MoS2/rGO/GQDs hybrids
contain oxygen, carbon, sulfur, and molybdenum elements. Figure 6b illustrates that the
C 1s energy spectrum of the MoS2/rGO/GQDs hybrids can also be deconvolved into
five peaks: C=C (284.6 eV), C–C (285.2 eV), C–O (286.8 eV), C=O (288.4 eV), and O–C=O
(289.3 eV). In Figure 6c, two characteristic orbital peaks can be observed at 232.0 eV (3d3/2)
and 228.9 eV (3d5/2), which are ascribed to the Mo4+ ions of MoS2 [54]. Additionally, the
two small Mo6+ peaks at 235.1 eV (3d3/2) and 232.7 eV (3d5/2) confirm the presence of
Mo–O bonds, which may be caused by residual MoO4

2− in the precursor [55]. The presence
of S 2s in MoS2 is confirmed by the small peak located at 226 eV [56]. In Figure 6d, the two
dominant S 2p1/2 and S 2p3/2 peaks at 162.8 eV and 161.6 eV are attributed to the divalent
sulfide ions (S2−) in MoS2 [57]. These XPS results prove the successful synthesis of the
MoS2/rGO/GQDs hybrids using the hydrothermal process.

Figure 7 shows the FTIR spectra of GQDs, MoS2, MoS2/rGO, and MoS2/rGO/GQDs.
The sharp peak of the GQDs at 1579 cm−1 is related to the C=C stretching vibration [58],
suggesting that the GQDs are mainly composed of C=C bonds. The peaks located at 1070,
2987, and 3363 cm−1 are related to the C–O, C–H, and –OH stretching vibrations [59,60],
respectively. The peaks corresponding to the C–S and Mo–S bonds of MoS2 are located
at 1401 and 662 cm−1. The C=C stretching vibration of the GQDs can also be observed
at 1579 cm−1 in the MoS2/rGO/GQD hybrids, which indicates the existence of GQDs
in the composite materials. The common peaks at 1401 and 662 cm−1 in the MoS2/rGO
and MoS2/rGO/GQD hybrids are related to the C–S and Mo–S bonds, which confirms
the presence of MoS2 [61]. It is noteworthy that the characteristic peaks associated with
oxygenated groups, such as O–H, C=O, and C–O groups, were not clearly observed in
the MoS2/rGO nanocomposites, which verifies that GO was successfully reduced via the
hydrothermal approach [62].
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3.2. Gas-Sensing Properties

First, the gas-sensing performance was tested by detecting NO2 gas at room tempera-
ture. The experiment results show that pure GQD materials have basically no response to
NO2 gas. This may be due to the smaller size of the GQDs compared with that of the inter-
digitated electrode, which makes it difficult to form a stable conductive loop. The response
values of the MoS2/rGO and MoS2/rGO/GQDs hybrids exposed to 30 and 50 ppm NO2
gas at room temperature are shown in Figure 8. The MoS2/rGO nanocomposites showed
16.8% and 16.9% response values to 30 and 50 ppm NO2. Compared with the MoS2/rGO
nanocomposites, the addition of GQDs improved sensitivity to 21.1% and 23.2% when
the sensor was exposed to 30 and 50 ppm NO2 gas, respectively. The GQDs also act as
active sites, which can prevent the agglomeration of nanosheets during mixing of rGO
and MoS2 and provide numerous reaction sites for NO2 gas adsorption. Consequently, the
gas-sensing performance of the hybrids is enhanced [63].
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Generally, materials with a large effective surface area can provide more active parts for
gas adsorption and interaction, which contributes to the enhanced gas sensing performance.
A CV test was carried out to confirm the effective surface area of hybrids with and without
GQDs. Values of 2.253 and 1.165 can be calculated from the Randles–Sevcik equation (see
details in the supporting information, Figures S3 and S4), indicating a great enhancement
of effective surface area was achieved after the addition of GQDs [64–66].

As is well known, the nanostructure of gas-sensitive materials is crucial to improving
the gas-sensing properties of gas sensors [67,68]. The MoS2/rGO/GQDs hybrids with
3D nanostructures were expected to exhibit higher gas sensitivity. In order to explore
the effect of the GQDs content on the gas sensitivity, four types of MoS2/rGO/GQDs
hybrids were synthesized by changing the mass ratio of MoS2, rGO, and GQDs from
50:10:10 to 50:2:2. These prepared composites are sequentially labeled MoS2/rGO/GQDs-1,
MoS2/rGO/GQDs-2, MoS2/rGO/GQDs-3, and MoS2/rGO/GQDs-4. Figure 9 shows the
comparison between the responses of these different gas sensors. The response values to-
ward 5 ppm NO2 within 150 s were 12.1%, 15.2%, 11.3%, and 6.2% for MoS2/rGO/GQDs-1,
MoS2/rGO/GQDs-2, MoS2/rGO/GQDs-3, and MoS2/rGO/GQDs-4, respectively. The re-
sistance of all samples decreased remarkably when the sensor was exposed to NO2 gas and
rapidly returned to the initial value after stopping the exposure. The MoS2/rGO/GQDs-2-
based sensor exhibited better gas sensitivity than the MoS2/rGO/GQDs-1-based sensor,
which indicates that the uniform distribution of MoS2 nanoflowers in the hybrids can effec-
tively improve the gas-sensing performance of the composites. The enhanced gas sensitivity
can be attributed to the interaction of the MoS2 nanoflowers with the rGO nanosheets,
which results in the construction of a 3D network and improves the interconnectivity among
MoS2, rGO, and GQDs [69]. However, with a further decrease in the content of GQDs
in the hybrids, the gas sensitivity of the MoS2/rGO/GQDs-3 and MoS2/rGO/GQDs-4
hybrids decreased to 11.3% and 6.2%, respectively. Thus, the aggregation and restacking of
MoS2 nanoflowers are not conducive to improving gas adsorption. A possible reason for
this behavior may be that the aggregation of MoS2 nanoflowers weakens the supporting
effect of the rGO nanosheets and reduces the probability of NO2 gas adsorption on the
heterogeneous interface between the MoS2 nanoflowers and the rGO nanosheets, thereby
causing a decrease in gas sensitivity [70]. Therefore, due to its highest response value,
MoS2/rGO/GQDs-2 was selected to further study the gas-sensing performance.
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For the purpose of comparison, the response curves towards 5 ppm NO2 of the pristine
MoS2/rGO with various mass ratios of MoS2 and rGO are shown in the supplementary
information (Figure S5). The response values to 5 ppm NO2 gas at room temperature were
7.2%, 10.4%, 9.5%, and 5.2% for the MoS2/rGO-based sensors with the mass ratio of MoS2
and rGO varying from 50:10 to 50:2, respectively. The response values of pristine MoS2/rGO
samples were lower than those of MoS2/rGO/GQDs hybrids, indicating that the gas-
sensing properties of the MoS2/rGO/GQDs-based sensors can be effectively facilitated by
the addition of GQDs.

Figure 10 displays the dynamic gas-sensitive response curve of the sensor based on
the MoS2/rGO/GQDs-2 hybrids to different NO2 gas concentrations at room temperature.
As mentioned in previous reports, the gas sensitivity at high NO2 gas concentrations is
stronger than that at low concentrations because of adsorption and desorption during
the gas sensitivity tests [71,72]. At NO2 concentrations of 50, 30, 10, and 5 ppm, the
response values were 23.2%, 21.1%, 19.9%, and 15.2%, respectively. The response values
dropped with the decrease in NO2 gas concentration. The response and recovery times
remained stable at 150 s. It can be clearly observed that the gas-sensitive response of the
MoS2/rGO/GQDs-based sensor decreased sharply when exposed to NO2 and recovered
immediately after the exposure was stopped. Compared to the previous results, the
MoS2/rGO/GQDs-based sensor exhibited lower operating temperature, higher response,
and lower detection limit (Table 1).
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Table 1. Comparison of main properties and performance characteristics of nanomaterials used to
detect NO2 gas.

Material
Operating

Temperature
(◦C)

Concentration Sensitivity Reference

NiO/SnO2/rGO RT 60 ppm 62.27 [10]
MoS2/rGO 60 ◦C 2 ppm 59.8% [22]

3D MoS2/rGO 80 ◦C 1 ppm 2483% [54]
MoS2/WS2 RT 50 ppm 26.12 [56]

SnO2/(0.3%)rGO RT 10 ppm 2.021 [68]
SnO2/rGO 200 ◦C 4 ppm 4.56 [70]

MoS2/rGO/GQDs RT 50 ppm 23.2% this work
MoS2/rGO/GQDs RT 5 ppm 15.2% this work

To test the stability and repeatability of the MoS2/rGO/GQDs-2-based sensor response,
its gas-sensing properties were measured in four consecutive dynamic response processes.
Figure 11 displays the stability and repeatability of the response of the MoS2/rGO/GQDs-
based sensor exposed to 50 ppm NO2 gas at room temperature. The gas sensitivity, response
time, and recovery time of the sensor did not change significantly after four cycles. After
three cycles, the gas-sensitive response retained a value of 23.2%, which indicates the
excellent repeatability and stability of the MoS2/rGO/GQDs hybrids.
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In practical applications, NO2 is not found alone but is often accompanied by many
other toxic and harmful gases. Thus, selectivity is another important indicator typically
used to evaluate the performance of gas sensors in practical applications [73]. To explore
the gas selectivity of the obtained MoS2/rGO/GQDs hybrids, the sensor was used to
measure several conventional industrial organic gases, including isopropanol, acetone,
formaldehyde, ethyl acetate, trichloromethane, and n-hexane. The saturated vapor in the
solvent bottle was diluted with N2 to a concentration of 1%. Even though the concentration
of these vapors was greater than that of NO2, the test results revealed that the response
value to 50 ppm NO2 gas was more than 10 times the response to other vapors, as displayed
in Figure 12. It can be concluded that the MoS2/rGO/GQDs hybrids have an outstanding
reactivity to NO2 gas, while the reactivity to other vapors is negligible. Therefore, the
experimental results demonstrate that the MoS2/rGO/GQDs-based sensor exhibits high
selectivity toward NO2 and can be used in practical applications.
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3.3. Gas-Sensing Mechanism

It can be seen from Figure 13 that the generation of the heterojunction and the modi-
fication of the GQDs are responsible for the improvement in gas-sensing properties. The
ternary combination of MoS2, GQDs, and rGO results in the formation of many nanostruc-
tures similar to p–n junctions at the interfaces. These special nanostructures are essential
to improve the electron transmission efficiency. When the MoS2/rGO/GQDs hybrids
were exposed to background gas, oxygen was adsorbed onto the surface of the hybrids
because of the strong adsorption properties of rGO and MoS2. Since rGO has a greater
work function value (W = 4.7 eV) than MoS2 (W = 4.3 eV), electrons are transferred from the
conduction band of MoS2 to the conduction band of rGO until the Fermi level equilibrium
is reached [74,75]. In the meantime, the oxygen molecules attached to the surface of the
MoS2/rGO/GQDs hybrids are converted into oxygen anions (O−2 ) after capturing electrons,
owing to their high affinity toward electrons. The reaction is the following:

O2 + e− → O−2 (1)
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high in the background gas. When the MoS2/rGO/GQDs hybrids were exposed to NO2,
the NO2 molecules underwent a reaction with the minority carriers (electrons) and the
oxygen ions (O−2 ) [76] adsorbed onto the MoS2/rGO/GQDs hybrids to generate NO−3 ions
as follows:

2NO2 + O−2 + e− → 2NO−3 (2)

Due to this reaction, the captured electrons travel back to the conduction band of
MoS2 to increase the electron concentration in the hybrids. The above reaction leads to
decreased thickness of the charge layer between MoS2 and rGO, thereby decreasing the
resistance of the obtained sensor. In addition, the GQDs modification on the surface of the
MoS2/rGO heterojunction is also responsible for improving the sensing performance. The
GQDs serve as an electron mediator at the interface heterojunction, and supply numerous
active sites for the hybrids. The active sites allow chemisorbed oxygen to react with NO2,
which further improves the gas sensitivity of the hybrids [77,78].

4. Conclusions

A novel 3D structured sensor based on MoS2/rGO/GQDs hybrids was prepared
for detecting NO2 at room temperature. The MoS2/rGO/GQDs hybrids were obtained
by anchoring MoS2 nanoflowers and GQDs nanoparticles onto rGO nanosheets. The
introduction of the GQDs inhibited the agglomeration of the MoS2/rGO nanocomposites,
considerably improved the homogeneous distribution of rGO and MoS2 nanosheets, and
provided numerous reaction sites for NO2 gas adsorption. The prepared MoS2/rGO/GQDs-
based sensor had a response of 23.2% toward 50 ppm NO2 gas, while it retained a response
of 15.2% when exposed to NO2 concentration as low as 5 ppm. Furthermore, it was
also found that the MoS2/rGO/GQDs-based sensor exhibited a very low detection limit,
high response, excellent stability, outstanding repeatability, excellent selectivity, and quick
response/recovery characteristics toward NO2 gas at room temperature. The superior gas-
sensing ability was due to the synergistic effects of the 3D nanostructures, heterojunctions,
and GQDs in the MoS2/rGO/GQDs hybrids. The proposed MoS2/rGO/GQDs-based
sensor exhibits outstanding gas-sensing properties and, thus, has great potential in the
detection of NO2 gas.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/nano12060901/s1, Figure S1: AFM image of MoS2/rGO/GQDs;
Figure S2: SEM images of (a) MoS2/rGO/GQDs-1, (b) MoS2/rGO/GQDs-2 (c) MoS2/rGO/GQDs-3
and (d) MoS2/rGO/GQDs-4; Figure S3: Cyclic voltammograms of (a) MoS2/rGO nanocomposites
and (b) MoS2/rGO/GQDs hybrids in 10 mM [Fe(CN)6]3−/4− and 0.1 M KCl solution at different scan
rates from 25 to 300 mV·s−1; Figure S4: Peak currents as a function of scan rate for the determination
of the effective surface area; Figure S5: Response and recovery curves of MoS2/rGO-based sensors to
5 ppm NO2.
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