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Simple Summary: The use of neoadjuvant therapy (NAT) in patients with pancreatic ductal ade-
nocarcinoma (PDAC) is increasing. Objective quantification of the histopathological response to
NAT may be used to guide adjuvant treatment and compare the efficacy of neoadjuvant regimens.
However, current tumor response scoring (TRS) systems suffer from interobserver variability, origi-
nating from subjective definitions, the sometimes challenging histology, and response heterogeneity
throughout the tumor bed. This study investigates if artificial intelligence-based segmentation
of residual tumor burden in histopathology of PDAC after NAT may offer a more objective and
reproducible TRS solution.

Abstract: Background: Histologic examination of resected pancreatic cancer after neoadjuvant therapy
(NAT) is used to assess the effect of NAT and may guide the choice for adjuvant treatment. However,
evaluating residual tumor burden in pancreatic cancer is challenging given tumor response heterogeneity
and challenging histomorphology. Artificial intelligence techniques may offer a more reproducible
approach. Methods: From 64 patients, one H&E-stained slide of resected pancreatic cancer after NAT
was digitized. Three separate classes were manually outlined in each slide (i.e., tumor, normal ducts, and
remaining epithelium). Corresponding segmentation masks and patches were generated and distributed
over training, validation, and test sets. Modified U-nets with varying encoders were trained, and F1
scores were obtained to express segmentation accuracy. Results: The highest mean segmentation accuracy
was obtained using modified U-nets with a DenseNet161 encoder. Tumor tissue was segmented with a
high mean F1 score of 0.86, while the overall multiclass average F1 score was 0.82. Conclusions: This
study shows that artificial intelligence-based assessment of residual tumor burden is feasible given the
promising obtained F1 scores for tumor segmentation. This model could be developed into a tool for the
objective evaluation of the response to NAT and may potentially guide the choice for adjuvant treatment.

Keywords: pancreatic cancer; histopathology; tumor response scoring; neoadjuvant therapy; artificial
intelligence; machine learning
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1. Background

Neoadjuvant therapy (NAT) is increasingly used for patients with locally advanced
and (borderline) resectable pancreatic ductal adenocarcinoma (PDAC). Recent clinical
studies have shown that NAT affects overall survival, disease-free survival, and margin-
negative resection rates positively [1–6]. Histologic examination of PDAC resection speci-
mens following NAT offers the opportunity to evaluate treatment response using various
tumor response scoring (TRS) systems [7,8]. TRS is believed to serve at least two important
purposes [7]. First, it may be used in clinical trials to compare the efficacy of different
neoadjuvant regimens in PDAC. Secondly, TRS may guide the choice for adjuvant therapy
in the individual patient. It is imperative that TRS accurately correlates with the oncological
outcome (i.e., overall survival) for both purposes.

Over the last few decades, researchers proposed several histopathological TRS systems
for PDAC to evaluate NAT responses [8–10]. Still, during the 2019 Amsterdam international
consensus meeting on histological assessment of tumor response of resected pancreatic
cancer after NAT, the international study group of pancreatic pathologists (ISGPP) stated
that most TRS systems suffer from flawed reasoning or lack objective definition criteria [7].
Most fundamentally, the interobserver agreement is highly insufficient for the most used
systems or has not been widely determined, likely related to the subjective nature of the
criteria used to define the different categories. Some TRS systems evaluate the ratio of
vital tumor rests versus treatment-induced fibrosis. However, distinguishing between
treatment-induced fibrosis and desmoplasia or pancreatitis-related fibrosis is at the very
least challenging and may, in fact, be impossible with the naked eye. Because of these
limitations, the ISGPP stated that a new TRS system should assess residual (viable) tumor
burden instead of tumor regression, and objective criteria for the different categories are
needed. Artificial intelligence (AI)-based techniques have the potential to fulfill these needs.
Artificial intelligence models may be developed to automatically segment and quantify
residual tumor burden in histological sections of neoadjuvantly treated and resected PDAC,
potentially providing the basis for an objective TRS system.

In this study, we investigated if AI-based segmentation of residual tumor burden
in histopathological slides after resection of PDAC after NAT is feasible and may offer a
foundation for a more objective and reproducible solution for TRS. To this end, we report
developing an AI-based segmentation tool in PDAC segmenting residual tumor burden in
histopathological slides of patients following NAT to study treatment response.

2. Materials and Methods
2.1. Data Acquisition

We retrospectively collected histopathological hematoxylin and eosin (H&E)-stained
slides of pancreatic cancer resection specimens of neoadjuvantly treated patients from
the archive of the Department of Pathology at Amsterdam UMC in the Netherlands.
Any amount or type of neoadjuvant chemo(radio)therapy was considered suitable to be
included in this study. Per patient, one representative H&E slide of the tumor bed was
selected by A.F. or J.V. and digitized using a Philips Intellisite Ultra-Fast Scanner (Philips,
Best, The Netherlands). Whole-slide images (WSI) were converted to BigTiff format and
downloaded from the image management system.

2.2. Data Handling

First, an expert pathologist (A.F. or J.V.) marked a representative region of interest
(ROI) on the WSI using the ‘ASAP’ software package [11]. Within the boundaries of these
ROI, histopathological structures were manually outlined at the pixel level using ASAP
with coordinates stored as XML. The following structures were annotated: (1) normal
ducts; (2) cancerous ducts; (3) in situ neoplasia; (4) islets of Langerhans; (5) acinic tissue;
(6) atrophic metaplastic parenchyma; (7) fat; (8) vessels; (9) nerves; and (10) lymphocytic
infiltrates. Detailed annotations were prepared in ASAP by B.J., R.T., and A.F., and when
made by non-pathologists (B.J. and R.T.), they were evaluated and, if necessary, corrected
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by expert pancreas pathologists. If a case was considered too difficult to annotate manually
reliably, it was excluded from further analysis.

The ROIs were converted from BigTiff to PNG format, and the same area ground-
truth annotation-based segmentation masks were generated as PNG files. Images and
corresponding masks were generated at a resolution of 0.5 µm/px (‘20×’). The original
classifications were pooled into three new classes for further analysis: (1) normal ducts;
(2) cancerous ducts and in situ neoplasia combined; and (3) the remaining non-tumorous
epithelial tissue (NTET), consisting of islets of Langerhans, acinic tissue, and atrophic
metaplastic parenchyma. The remaining classes (fat, vessels, nerves, and lymphocytic
infiltrates) were ignored and considered as background elements. Using a sliding window
approach, partly (50%) overlapping patches of 512 by 512 pixels were generated from the
H&E and corresponding mask image. Patches and corresponding mask images were only
included in the dataset if at least 10% of the patch’s surface area was occupied by one of
the segmentation classes. The maximum number of patches for each class was limited to
100 per case to limit class imbalance in the training data.

2.3. Machine Learning

A ‘standard’ U-net [12] and a selection of modified U-nets with different encoders,
including ResNet158, EfficientNet-b1, -b4, and -b7, DenseNet161 and −201, all pre-trained
on ImageNet, were used [13]. RGB intensity values of the H&E images were normalized
during training, and data augmentation was performed by performing random rotations
(90, 180, and 270 degrees) or horizontal or vertical flips. Binary cross-entropy was used as a
loss function, combined with the ADAM optimizer, using a learning rate of 1 × 10−5 and
weight decay of 0.1 every 10 epochs. Networks were trained for 30 epochs, and training
was stopped if the validation error did not improve for 7 epochs.

After training, the test set predictions were made using a sliding window approach,
followed by combining neighboring patches to a full ROI prediction. To avoid stitching
artifacts in the reconstructed prediction, we generated partly overlapping patches. The
weighted average of the segmentation probabilities was calculated and converted to either
binary or RGB prediction mask images, essentially as described by Cui et al. [14]. The
prediction accuracy of the test set was calculated for each class separately and expressed as
an F1 (also known as Dice) score. Machine learning and data handling were performed
with Python 3.6 and Pytorch 1.7 using one RTX3090 graphics processing unit with 24 GB of
internal memory.

3. Results
3.1. Dataset

Histopathological H&E-stained slides of 65 pancreatic cancer resection specimens
were collected. One specimen was not included because it was not feasible to segment
it manually due to its growth pattern. Of the 64 remaining specimens, 43 patients were
treated with FOLFIRINOX, 19 with gemcitabine-based chemoradiotherapy, and 2 with
gemcitabine in combination with nab-paclitaxel. Table 1 details all the included cases.
From the 64 specimens, 50 were used for training, 5 for validation, and 9 as a test set. Of
all the generated patches, approximately 3000 contained normal ducts against 6000 with
tumor tissue and 5000 with the remaining class, NTET. In total, 14,328 patches were used
for training and 2244 for validation.
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Table 1. Patient characteristics.

Characteristic Number (n) Percentage (%)

Tumor Location

Head 54 84.4
Body 6 9.4
Tail 4 6.3

Neoadjuvant Therapy

FOLFIRINOX × 8 20 31.3
FOLFIRINOX × 4 20 31.3

Gemcitabine × 3 + RTx × 1 19 29.7
Gem-nab-paclitaxel 2 3.1
FOLFIRINOX × 6 1 1.6
FOLFIRINOX × 2 1 1.6
FOLFIRINOX × 1 1 1.6

Legend: FOLFIRINOX = combined therapy of irinotecan, 5-fluorouracil, leucovorin, and oxaliplatin;
RTx = radiotherapy.

3.2. AI-Based Histopathological Classification of Pancreatic Tissue

The accuracy of the obtained algorithms for segmenting the tumor, normal pancreatic
ducts, and NTET in the H&E-stained histopathological sections is summarized in Table 2.
The differences between the best-performing models were minor, and the best mean results
were obtained when using the U-nets with a DenseNet161 encoder. The best results for
tumor segmentation only were obtained using a U-net trained using a ResNet152 encoder.
Notably, the modified U-nets with EfficientNet encoders performed relatively poorly; the
mean F1 scores for the tumor class and NTET were the lowest of all investigated models.
Moreover, these latter models appeared unable to segment normal ducts. The classic U-net
performed better than the EfficientNet variants but was approximately 5% less accurate
than the DenseNet or ResNet variants. In Figure 1, representative examples of three
different cases of the AI-based segmentation results on previously unseen test samples
are illustrated. In the figure, the H&E staining, the ground truth (as labeled by the expert
pathologists), and the model’s prediction (U-net with DenseNet161 encoder) are illustrated.
From this figure, it can be appreciated that the major (and large) structures were recognized
well, but clearly, some discrepancies between the ground truth labeling and the network’s
prediction were present.

Table 2. Obtained F1 scores using different U-net encoders.

Encoder Tumor
(F1, 95% CI)

Normal Ducts
(F1, 95% CI)

NTET
(F1, 95% CI)

Mean
(F1)

DenseNet161 0.86 ± 0.09 0.74 ± 0.12 0.85 ± 0.07 0.82
DenseNet201 0.85 ± 0.09 0.77 ± 0.13 0.85 ± 0.08 0.82

EffecientNet-b1 0.78 ± 0.15 0 0.77 ± 0.13 0.51
EffecientNet-b4 0.77 ± 0.14 0 0.61 ± 0.73 0.46
EffecientNet-b7 0.81 ± 0.12 0 0.82 ± 0.12 0.54

ResNet152 0.88 ± 0.06 0.77 ± 0.14 0.73 ± 0.15 0.79
None (‘standard’

U-net) 0.83 ± 0.10 0.69 ± 0.23 0.83 ± 0.15 0.78

Legend: F1 = Dice score; 95% CI = 95% confidence interval; NTET = remaining non-tumor epithelium;
Mean = unweighted average of F1 scores for the tumor, normal ducts, and NTET.
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Figure 1. Representative examples of AI-based predictions versus pathologist-based ground-truth
annotations of three different (previously unseen) patients with pancreatic ductal adenocarcinoma
after neoadjuvant treatment. Legend: H&E = hematoxylin and eosin staining (A,D,G); Ground
truth = annotations by the pathologist (B,E,H); AI prediction = prediction based on U-net with
DenseNet161 encoder (C,F,I); green = cancerous ducts and in situ neoplasia; gray = normal ducts;
blue = remaining non-tumorous epithelial tissue. The scale bar indicates a length of 1000 µm.

3.3. Discrepancies between Ground-Truth and AI-Based Predictions

To gain insight into the errors of the trained DenseNet161 network, the discrepancies
between the ground-truth and AI predictions were carefully optically compared with
the region of interest in the corresponding H&E section. Several kinds of mismatches
were observed. First, the model frequently correctly identified structures that were not
delineated during the annotation process, such as tumor buds (Figure 2A–C) or islets of
Langerhans (Figure 2D–F). Second, the model incorrectly marked non-cancerous structures
as cancerous. Figure 2G–I shows how the model incorrectly predicted ductal metaplasia as
malignant ducts. On other occasions, the model erroneously marked vascular structures
and folding artifacts as malignant ducts. Finally, the model also classified cancerous
structures as non-cancerous, as illustrated in Figure 2J–L.
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Figure 2. Discrepancies between the ground truth annotations and AI-based prediction of pancreatic
ductal adenocarcinoma. Legend: The network frequently correctly recognized structures that were
missed during annotating, such as tumor buds (A–C) or islets of Langerhans (D–F). The neural net-
work also made classification errors, such as classifying atrophic metaplastic epithelium as either nor-
mal or tumorous ducts (G–I) or classifying tumor ducts as being normal (J–L). H&E = hematoxylin
and eosin; Ground-truth = annotations by the pathologist; AI prediction = prediction by the ar-
tificial intelligence model; green = cancerous ducts and in situ neoplasia; gray = normal ducts;
blue = remaining non-tumorous epithelial tissue. The asterisks in A indicate cancerous tissue that
was missed during the annotation process. The scale bar indicates a length of 100 µm.
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4. Discussion

This study shows that it is feasible to segment the residual tumor burden of PDAC
after NAT using an AI-based approach. The highest mean segmentation accuracies were
obtained with modified U-nets, especially when trained with a DenseNet161, −201, or
ResNet152 encoder, all of which performed better than the standard U-net. Modified U-nets
with an EfficientNet-b1, -b4, or -b7 encoder, on the other hand, performed considerably
worse when compared with all other tested models, including the standard U-net.

To the best of our knowledge, this is the first report on an AI-based segmentation
model to identify residual tumor burden after NAT in PDAC. There are AI-based segmen-
tation models for colorectal, prostate, breast, liver, gastric, squamous, and basal cell cancers
published in the peer-reviewed literature [15–37]. Clinical purposes for these segmentation
tools vary, including detection and diagnosis, Gleason grading for prostate cancer, and
prognostic or predictive feature extraction. In one study, an AI-based segmentation tool
was used to measure the response to chemoradiotherapy in a cohort of patients with
hepatocellular carcinoma [28]. Moreover, one study reported a segmentation tool that was
developed in non-neoadjuvantly treated pancreatic cancer tissue [38]. This model reached a
pixel-based precision and recall of 98.6% and 95.1%, respectively. At first sight, these scores
appear to be better than our results in the present study. However, these data were obtained
on consecutive slides of a single case. Therefore, their model is not directly comparable
to ours. Their model was not developed to recognize the wide variety of heterogeneous
presentations of PDAC after NAT, but rather to create a three-dimensional representation
of histopathological micro-anatomy of one particular case. Therefore, model generaliz-
ability is likely to be poor. In terms of performance to similar studies in different cancer
types, our model, with a mean F1 score of 0.86, compares favorably against the published
performances, ranging from 0.353 to 0.9243 and a median F1 score of 0.835 [15–37]. When
comparing our approach to quantifying residual tumor burden to current TRS systems
in pancreatic cancer, several take a similar approach [9,10,39,40]. These systems aim to
objectively quantify tumor burden and demonstrate favorable performance in predictive
ability and reproducibility compared with some of the most-used TRS systems [9,10,40,41].
These studies indicate that objective quantification of residual tumor burden potentially
forms a good basis for TRS. Still, for these systems, interobserver variation originating from
human assessors remains an issue.

Although the highest unweighted mean (three class) accuracy was seen when we used
modified U-nets with a DenseNet161 or −201 encoder, the difference with a ResNet152
encoder was slight. If we only considered the accuracy for identifying tumor tissue in the
PDAC samples, the ResNet152 encoder, on average, marginally outperformed the DenseNet
variants. When comparing mistakes made by these models, they each exhibited all error
types, as shown in Figure 2. However, it should be noted that when we compared these three
models (DenseNet161, DenseNet201, and ResNet152), there was not one model that per-
formed best in all individual test cases. In some test cases, the DenseNet variants performed
best, while in others, the ResNet variant achieved the highest scores. Given that no one
model performed best in all individual test cases, we anticipate that the observed differences
in the mean F1 scores were mainly the result of the composition of the relatively small test
set, which may be more favorable to a single model. As such, we anticipate that performance
differences may diminish when a larger and thus more representative test set is used.

On the other hand, we did consistently see that DenseNet- and ResNet-modified
U-net models always performed better than the standard U-net. Interestingly, not all
modified U-nets performed better than the standard U-net. All evaluated EfficientNet
models performed considerably worse. The reason for this was not apparent. Still, maybe
this had to do with the class imbalance in our dataset and that modified U-nets with
EfficientNet encoders have more problems with underrepresented classes. Although we
attempted to limit class imbalance during the creation of patches for training, it was a
given that normal ducts in PDAC samples were relatively rare and not evenly distributed
between individual cases.
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Across all trained models, we always observed the lowest F1 scores for the normal duct
class. This could be partially explained by the previously mentioned class imbalance in our
training set. However, it is also important to note that even for the (experienced) human eye,
it can be difficult to classify a specific duct as normal or abnormal solely based on morphology.
Sometimes, aspects other than cytonuclear atypia are considered, like the architecture, the
position within the tissue, and the surroundings. Therefore, it might not be surprising that an
algorithm also has difficulty learning subtle characteristics of some malignancies.

The ground-truth annotations must be as accurate as possible to determine model per-
formance. In retrospect, evaluation of the discrepancies between the manually annotated
ground-truth and AI-based predictions revealed the manual segmentations to be subopti-
mal in several respects. In various instances, cancerous tissue was annotated inaccurately
or not annotated at all. The latter was, for example, the case with tiny tumor buds, which
were often correctly recognized by the algorithms but not manually annotated. In addition,
other structures like the islets of Langerhans were occasionally not annotated. The lack of
annotation of these structures was probably because annotations of small structures are
very labor-intensive and tedious. On the other hand, the dignity of some structures was
uncertain and therefore not annotated. It is difficult to predict the effect of these errors
on the calculation of the F1 score or even on training the network. Structures missed
in the ground-truth annotations but correctly predicted by the algorithms will therefore
downgrade the F1 scores. Still, careful identification of the mismatches between the ground
truth and the algorithm’s prediction can help to improve the ground-truth annotations
of our dataset, which ultimately will lead to improved performance of the algorithm, a
technique known as active learning [42].

While the current results are promising, the present study has several limitations,
and there is still plenty of room for improvement in segmentation performance and gen-
eralizability. For generalizability, it should be noted that the current dataset is relatively
small and that all data came from the same laboratory. Additionally, all sections were
digitized on only one type of scanner, and the same two pathologists essentially did all the
annotation and classification. To develop generally applicable algorithms that accurately
identify PDAC in histological samples, more data from different (international) laborato-
ries with patients who received various neoadjuvant regimens must be included. Further
improvement can be obtained if the annotation and classification of the pathologic struc-
tures are jointly performed by a larger group of expert pancreatic pathologists, and each
tissue section is evaluated and classified by multiple experts. Indeed, tissue regions were
frequently encountered that could not be classified as either normal or abnormal. Under
these circumstances, the study could benefit from a consensus diagnosis from different
experts. We should also note that we trained the current models on a relatively small
dataset, and all cases were relatively well-differentiated, allowing manual delineation. It
was practically impossible to manually annotate tumors with complex and reticular growth
patterns accurately, and therefore, one of these cases was not included in the current dataset.
Thus, the reported model performance might be optimistic for poorly differentiated tumors.
Finally, to better understand factors influencing the prediction accuracies, such as tumor
morphology, staining quality, and the age of the archived samples, future studies should
ideally provide model performance data on each sample.

In addition to developing more generalizable and better-performing models using
larger datasets, future research should optimize the data preparation and AI workflow.
The quality of the ground truth could be improved by researching techniques such as
antibody-supervised learning [43]. Immunohistochemistry-stained sections can typically
provide better contrast compared to H&E-stained sections. This improved contrast can aid
in identifying cells that could be mislabeled otherwise and may help to more easily create
or automatically generate annotations that follow the contours of structures very precisely.
This technique is especially relevant in cases with diffuse cancer growth and an abundance
of solitary cancer cells or tumor buds. Moreover, though very labor-intensive, the quality
of the ground truth could be further optimized using consensus-based segmentation of
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the same cases by multiple pathologists. To expand on this in the view of (international)
collaborative research, we could see additional benefits in online accessible segmentation
platforms. Finally, with the rapid development of AI, researchers should stay vigilant for
novel approaches to developing segmentation models. These approaches could involve
ensemble learning techniques, weight optimization techniques, alternative data augmenta-
tions, and segmentation approaches based on active, semi-supervised, or unsupervised
learning techniques.

Ultimately, a new AI-based TRS system quantifying residual tumor burden may
address the issues of currently used TRS systems such as subjectivity, handling with
response heterogeneity, and the inherent complexity of recognizing and quantifying diffuse
cancerous growth and solitary cancer cells. We hypothesize that solving these problems
will likely improve the clinical value of TRS. Next to providing a basis for an objective
TRS system, we anticipate that this segmentation model could form the basis for tools
that can extract relevant tissue features from segmentations on images to gain insight into
cancers’ molecular backgrounds. Insight into the molecular backgrounds of individual
cancers could aid patient stratification by, for example, identifying novel biomarkers
that correlate to the clinical outcome or by identifying molecular tumor subtypes with
differential responses to neo(adjuvant) therapies [44–46].

5. Conclusions

We demonstrated that AI-based segmentation of residual tumor burden in pancreatic
cancer after NAT is feasible and may form the basis for an objective TRS system. Further
research is required, focusing on the development of extensive training databases and
improving training data quality.
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