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Abnormal accumulation of misfolded proteins in the endoplasmic reticulum and their
aggregation causes inflammation and endoplasmic reticulum stress. This promotes
accumulation of toxic proteins in the body tissues especially brain leading to
manifestation of neurodegenerative diseases. The studies suggest that deregulation
of proteostasis, particularly aberrant unfolded protein response (UPR) signaling,
may be a common morbific process in the development of neurodegeneration.
Curcumin, the mixture of low molecular weight polyphenolic compounds from
turmeric, Curcuma longa has shown promising response to prevents many diseases
including current global severe acute respiratory syndrome coronavirus 2 (SARS-CoV-
2) infection and neurodegenerative disorders. The UPR which correlates positively
with neurodegenerative disorders were found affected by curcumin. In this review, we
examine the evidence from many model systems illustrating how curcumin interacts with
UPR and slows down the development of various neurodegenerative disorders (ND),
e.g., Alzheimer’s and Parkinson’s diseases. The recent global increase in ND patients
indicates that researchers and practitioners will need to develop a new pharmacological
drug or treatment to manage and cure these neurodegenerative diseases.

Keywords: Alzheimer’s disease, Parkinson’s disease, neurodegenaration, unfolded protein response, ER stress,
curcumin, ROS—reactive oxygen species, cell death

INTRODUCTION

The global burden of neurological diseases are rising, and considered as one of the leading causes
of mortality and disability across the globe (Gammon, 2014; Feigin et al., 2019). The correct folding
and packaging of the proteins are essential in regulation of many neurological diseases. All proteins
bound to organelles and extracellular spaces are subject to proteostasis (Wang and Kaufman, 2016).

Frontiers in Aging Neuroscience | www.frontiersin.org 1 November 2021 | Volume 13 | Article 767493

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/journals/aging-neuroscience#editorial-board
https://www.frontiersin.org/journals/aging-neuroscience#editorial-board
https://doi.org/10.3389/fnagi.2021.767493
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fnagi.2021.767493
http://crossmark.crossref.org/dialog/?doi=10.3389/fnagi.2021.767493&domain=pdf&date_stamp=2021-11-19
https://www.frontiersin.org/articles/10.3389/fnagi.2021.767493/full
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/aging-neuroscience#articles


fnagi-13-767493 November 16, 2021 Time: 14:27 # 2

Mukherjee et al. Curcumin Ameliorates Neurodegenerative Diseases

The abundance of too many secretory proteins in the
endoplasmic reticulum (ER) induces the unfolded protein
response (UPR) and in case of chronic ER-stress this leads to
apoptotic cell death (Taniguchi and Yoshida, 2011; Hetz et al.,
2013; Shah et al., 2015; Figure 1). Thus, the UPR protects cells
against deformed proteins and maintains cellular homeostasis
(Smith and Mallucci, 2016). There are three signal transducers
inside the ER, which are inositol requiring enzymes 1 (IRE1) α

and β, protein kinase R-like ER kinase (PERK) categorized as type
I, and activating transcription factor 6 (ATF6), α and β as type
II (Shah et al., 2015; Hetz and Papa, 2018). Various transcription
factors activate these signal transducers to restore proteostasis
and enhance ER and Golgi biogenesis (Hetz et al., 2020).
Neurodegenerative diseases (NDs) are characterized by the
degeneration and death of neurons (Pohl et al., 2018). While, the
misfolded proteins cause ER-stress-induced neuronal apoptosis
in progressive neurodegenerative diseases like Alzheimer’s
disease (AD), Parkinson’s disease (PD) (Hetz and Mollereau,
2014; Scheper and Hoozemans, 2015; Figure 1). AD which
accounts for 60–80% and other forms of dementia are the world’s
fifth leading cause of death, and its prevalence is expected to
triple by 2050, according to WHO (Voulgaropoulou et al., 2019).
While, PD is the most common neurodegenerative disease
(20–30%) after Alzheimer’s, with a prevalence of 150/100,000
(Schapira, 1999).

Curcumin, a primary natural polyphenol derived from
Curcuma longa rhizome is found affecting a number of
diseases including current SARS-CoV-2 infection (Gupta
et al., 2013; Noorafshan and Ashkani-Esfahani, 2013; Marton
et al., 2020; Sharifi-Rad et al., 2020; Ahmadi et al., 2021).
The antioxidant, anti-inflammatory, anti-mutagenic, anti-
parasitic, antimicrobial and anti-cancerous properties of
curcumin are quite explored (Reddy et al., 2005; Aggarwal
and Harikumar, 2009; Gupta et al., 2013; Vera-Ramirez
et al., 2013; Lestari and Indrayanto, 2014; Hewlings and
Kalman, 2017). Recently curcumin was characterized as a
pharmacophore by X-ray micro-crystallography of fiber-forming
tau fragments with small molecule binders, binding to the
β-pleated layer in tau’s paired helical filaments (Landau et al.,
2011). Reports suggest that curcumin further scavenges the
toxic reactive oxygen species (ROS) and increases Superoxide
dismutase (SOD), Na+-K+ ATPase, catalase, glutathione,
and mitochondrial complex enzyme levels (Reeta et al., 2010;
Barzegar and Moosavi-Movahedi, 2011; Li et al., 2020). It also
reduces lipid peroxidation by reducing Malondialdehyde, nitrite,
and acetylcholinesterase (Abdel-Diam et al., 2019; Kheirouri
and Alizadeh, 2019). Curcumin affects neurogenesis in brain
regions involving the Canonical Wnt/-Catenin Pathway (Tiwari
et al., 2014). It activates nuclear factor erythroid 2-related factor
(Nrf2), the antioxidant master regulator, to protect dopaminergic

FIGURE 1 | A schematic representation of interplay of curcumin, UPR and factors of Alzheimer’s disease and Parkinson’s disease. The yellow highlighted genes,
component and pathway represents the effect of Curcumin. The star shape (yellow) denotes curcumin. Green arrow shows signaling pathway for PD while Blue of
AD. ER, endoplasmic reticulum; IRE1, inositol requiring enzymes 1; PERK, protein kinase R-like ER kinase; ATF4, Activating transcription factor 4; ATF6, Activating
transcription factor 6; CHOP, C/EBP Homologous Protein; elF2a, Eukaryotic translation initiation factor 2 alpha.
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neurons (Dong et al., 2018). Furthermore, curcumin increases
the expression of β-tubulin, neuroD1, doublecortin, neurogenic,
neuroligin, and neuregulin while decreases the expression of
the signal transducer and activator of transcription 3 (STAT3)
(Karlstetter et al., 2011). Curcumin further helps in inhibition of
neuroinflammation possibly by binding to the sensile plaques,
inhibiting Aβ plaque aggregation, plaque pathology, and
decreasing amyloid levels (Lim et al., 2001; McClure et al.,
2017; Mei et al., 2020). It also inhibits several dysregulated cell-
signaling pathways (Su et al., 2020; Ege, 2021). Curcumin also
safeguards against AD (Desai and Patravale, 2018; Nebrisi et al.,
2020). Recently, curcumin and curcuminoids were reported
as a promising candidate against NDs (Gregory et al., 2021;
Ryskalin et al., 2021; Silvestro et al., 2021; Simeonova et al., 2021).
Here we review the curcumin’s potential role in NDs and UPR
regulations. Given the volume of literature, we chosen to focus
on with common NDs like AD and PD in relation to UPR.

UNFOLDED PROTEIN RESPONSE AND
NEURODEGENERATIVE DISEASES: A
COMMON CONNECTION AND
CONSEQUENCES

UPR activation has been observed in many NDs (Scheper and
Hoozemans, 2015). Activated astrogliosis, brain aggravation, and
microglial multiplication cause ADs (Haass and Selkoe, 2007).
The amyloid-β (Aβ) peptide aggregates in specific brain areas
like the neocortex, hippocampus, and limbic region which further
causes synaptic failure and neuronal death (Chyung et al.,
2005). UPR is a cellular stress reaction caused by misfolded
proteins in the ER, while misfolded proteins accumulate in
PD (Taylor et al., 2002). Thus, the UPR is linked to PD in
cell models (Hoozemans et al., 2007). In PD, Lewy bodies and
protein incorporation in neurites were increased (Mahul-Mellier
et al., 2020). Synuclein, a small presynaptic protein, is a major
component of Lewy bodies (Clayton and George, 1999; Breydo
et al., 2012). The PD patients were also found correlated with
higher levels of pPERK, peIF2, and pIRE1 than non-neurological
controls (Hoozemans et al., 2007). pPERK-positive neurons
had increased diffuse cytoplasmic synuclein immunoreactivity.
These findings suggest a link between synuclein accumulation
and ER stress in dopaminergic neurons. Further, heat shock
reactions and ER or mitochondrial unfolded protein reactions are
examples of misfold UPR (Lee et al., 2011; Kakkar et al., 2014;
Chiti and Dobson, 2017; Shamsi et al., 2017). By upregulating
atomic chaperones and proteasome components, the authors
reported the increase in the ability to unfold and refold
misfolded proteins, as well as eliminate misfolded proteins
(Ciechanover and Kwon, 2017).

CURCUMIN AND
NEURODEGENERATIVE DISEASES:
INTERVENTIONS AND MODALITIES

This section reviews curcumin’s use and effects on NDs, while
focusing on PD and AD. Curcumin’s neurological effects make it

one of the most promising natural therapies for AD (Noorafshan
and Ashkani-Esfahani, 2013; Eghbaliferiz et al., 2020). The lower
prevalence of AD in India among adults aged 70–79 years (4.4
times lower than in the US) is attributed to higher curcumin use
(Ganguli et al., 2000; Yang et al., 2005). Curcumin’s ability to bind
to Aβ-pleated structure reduces plaque stress in most AD plaque
pathogenesis models (Yang et al., 2005; Garcia-Alloza et al., 2007;
Cheng et al., 2013). Curcumin is also known for directly binding
and inhibiting the aggregation of Aβ-sheet conformations found
in many NDs (Cole et al., 2007; Mishra and Palanivelu, 2008;
Forouzanfar et al., 2020; Radbakhsh et al., 2021).

Curcumin inhibits tau aggregation by binding to
neurofibrillary tangles (Brunden et al., 2010; Mohorko et al.,
2010; Mutsuga et al., 2012). Several β-pleated layer complexes,
such as huntingtin, prion aggregates and α-synuclein, are found
interacting with curcumin (Caughey et al., 2003; Ono et al.,
2004; Pandey et al., 2008). Curcumin interacts directly with heat
shock proteins (HSPs), such as HSP90 and HSP70, in Aβ-infused
rats, tau transgenic mice and human models (Ma et al., 2013).
It affects phagocytic cell association with plaque structures and
stimulates clearance of Aβ aggregates in human cell lines and
rodent AD models, similar to the amyloid vaccine (Frautschy
et al., 2001; Cole et al., 2004). Curcumin also inhibits NF-κ B and
Activator Protein 1 (AP1). A dysfunctional transcription factor
pathway limits the resolution of inflammation in AD. Curcumin’s
inhibition of AP1 transcription results in hyperphosphorylation
of tau (Singh and Aggarwal, 1995; Xu et al., 1997; Cho et al.,
2007). According to recent research, curcumin seems to decrease
peroxisome proliferator activated receptor (PPAR) activation
by inhibiting Toll-like receptor 4 complex homodimerization.
Wang et al. (2010) report that curcumin directly increases PPAR
expression. The PPAR forms heterodimers with Retinoid X
receptor alpha to control microglial activation and phagocytosis
(Heneka et al., 2005). PPAR inhibits pro-inflammatory cytokines
that promote tau kinase hyperactivity, pTau buildup, and
oxidative damage. Curcumin also promotes oligodendrocyte
progenitor (OP) differentiation and inhibits tumor necrosis
factor-induced OP maturation arrest through PPAR (Bernardo
et al., 2021). Curcumin directly inhibits β-site amyloid precursor
protein-cleaving enzyme 1 (BACE1), which catalyzes the N
terminal cleavage of transmembrane amyloid precursor protein
(APP) (Lin et al., 2008), which further indirectly inhibits
BACE1 (Huang et al., 2020). Curcumin also reduce Aβ levels
by delaying APP maturation in the secretory route (Zhang
et al., 2010). The anti-inflammatory properties of curcumin have
been linked to improved learning and memory in ApoE4 mice
(Kou et al., 2021).

Curcumin combats AD in various ways, according to recent
research (Serafini et al., 2017; Su et al., 2020). It inhibits the
production of β-amyloid, tau, and acetylcholinesterase, controls
microglia, and chelates metals (Tang et al., 2017; Voulgaropoulou
et al., 2019). Curcumin binds to Aβ and inhibits harmful
aggregate formation (Ono et al., 2004; Kim et al., 2005; Yang
et al., 2005). However, the diketone bridge in curcumin is
not necessary for curcumin’s anti-inflammatory actions, since
reduced curcumin (tetrahydro curcumin) has strong anti-
inflammatory characteristics (Begum et al., 2008). By deactivating
Glycogen synthase kinase 3 (GSK-3), it reduced Aβ generation
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and plaque formation by downregulating the ROS/JNK pathway.
Curcumins inhibition of BACE1 by GSK3 resulted in reduction
of Aβ plaques (Durairajan et al., 2012). The precise means by
which curcumin regulates these processes are unknown. It seems
like that curcumin is a potential antioxidant for treating AD, and
that combining carriers and targeting agents to enhance brain
delivery is highly effective. In future, more research on curcumin’s
mechanism of action related to NDs are required.

INTERPLAY OF CURCUMIN AND
UNFOLDED PROTEIN RESPONSE

The ER has vital cellular functions including protein folding,
post-translational modification, protein translocation, lipid
synthesis, and Ca2+ storage (Schwarz and Blower, 2016).
Under ER-stress, evolutionarily conserved UPR response system
corrects ER homeostasis by activating transcription factors
(ATF4, ATF6, and XBP1) that inhibit protein translation, and
promotes unfolded protein destruction (Zhao and Ackerman,
2006; Limonta et al., 2019). In cases of persistent ER stress,
the UPR initiates intrinsic apoptotic pathway and cell death
(Sano and Reed, 2013). UPR may also be triggered by non-
ER stress associated mechanisms (Hetz et al., 2020). For
example, vascular endothelial growth factor signaling promotes
angiogenesis through the UPR pathway (Urra and Hetz, 2014).
Considering the vastness of this topic, we have chosen to
concentrate on curcumin’s role in UPR regulation in NDs.

Curcumin as a Suppressor or Inducer of
Unfolded Protein Response in
Neurological Diseases
Curcumin Function in Brain Injury
Diffuse axonal injury (DAI) associated with abnormally expressed
β-APP and p-tau proteins in neurons leds to ER-stress induced
cell death. Curcumin treatment in rat DAI model increased
PERK phosphorylation and decreased CHOP expression and
therefore prevented aberrant protein accumulation and inhibited
UPR pathway activation (Huang et al., 2018). In another study,
curcumin protected against glutamate-induced hippocampus
neurotoxicity. The therapeutic role of curcumin against various
human diseases are well explored (Shakeri et al., 2019).

Mutation Associated Neuropathies
Besides having a protective impact on brain injuries, curcumin
treatment has also improved peripheral neuropathies. For
example, Trembler-J is caused by accumulation of mutated
myelin proteins (PMP22) that led to ER stress, UPR activation,
and Schwann cell death, which were minimized by curcumin
treatment (Okamoto et al., 2013). The second most prevalent
autosomal dominant hereditary demyelinating neuropathy is
Charcot–Marie–Tooth disease type 1B (CMT1B), caused by
activation of UPR components coupled with accumulation of
mutant protein myelin protein Zero (P0, MPZ), as a consequence
of ER stress (Santoro et al., 2004; Khajavi et al., 2005; Saporta
et al., 2011). Using the CMT1B mouse model of human

neuropathy, researchers discovered that these mice exhibited
motor impairment and axonal abnormalities linked with aberrant
UPR activation (Patzkó et al., 2012). It was noted that curcumin
formulation could influence the treatment outcomes. Oral
curcumin in sesame oil enhanced neurophysiological state
and Schwann cell myelination in CMT1B mouse model with
decreased UPR signaling (Patzkó et al., 2012). Using the HT22
mouse hippocampus cell line, Chhunchha et al. (2013) discovered
that curcumin has anti-oxidative and anti-ER stress properties.
Curcumin therapy increased peroxiredoxin 6 (Prdx6) expressions
and decreased ER stress in hypoxic HT22 cells (Chhunchha et al.,
2013). ApoE4 is the major genetic risk factor for AD associated
with dementia. Kou et al. (2021) found that ApoE4 transgenic
mice had impaired cognitive capacity, which is linked to ER
stress and activation of inflammatory signaling in the nervous
system; these were reversed by curcumin treatment in AD
mice. Curcumin is also found effective in Pelizaeus-Merzbacher
disease of mice model (Gow et al., 1998; Hübner et al., 2005;
Yu et al., 2012).

Analogs of Curcumin and Unfolded
Protein Response in Neurological
Diseases
The low bioavailability of curcumin leads to its poor absorption,
requiring large doses of curcumin to reach a definite level
in plasma. Curcumin plasma levels have been improved by
dissolving it in various solutions, coating it with nanoparticles,
forming emulsions and by creating its analogs (Sasaki et al.,
2011; Zhongfa et al., 2012; Ramalingam and Ko, 2015). There are
multiple curcumin analogs have been generated those presented
profound effect in modulating ER stress in various cancers
model including ovarian, colon, lung, prostrate, gastric, acute
promyelocytic leukemia, glioblastoma, melanoma, and triple
negative breast cancer cells (Zhang et al., 2012; Qu et al., 2013; Tan
et al., 2014; Yoon et al., 2014; Zheng et al., 2014; Chen et al., 2016;
Gao et al., 2017; He et al., 2021). However, curcumin mimics’
effects on neurodegenerative disorders are poorly documented.

Treatment with CNB-001, a curcumin derivative, reduced
intracellular soluble-amyloid build up in AD transgenic mice
by activating the UPR’s eIF2/ATF4 signaling (Valera et al.,
2013). Protein disulfide isomerase (PDI) is an ER-resident
chaperone that is modified to S-nitroso-PDI in the presence of
high levels of nitric oxide (NO), which disrupts PDI’s redox
activity and resulted in the accumulation of misfolded in AD
and PD model (Uehara et al., 2006). Curcumin analog 3,5-
bis (2-flurobenzylidene) piperidin-4-one (EF-24) pretreatment
of neuroblastoma cell line SHSY-5Y cells prevented rotenone-
induced (a mitochondrial reactive oxygen species elevator)
reduction in PDI expression and ER stress associated protein
aggregation (Pal et al., 2011). Glioblastoma is the most common,
highly invasive and malignant form of brain cancer currently
treated with surgery, radiotherapy and chemotherapy. In a study
published by Sansalone et al. (2019) have generated 19 curcumin
analogs, out of which 4 have induced glioma stem cells (GSC)
death and prevented neurosphere formation. Mechanistically,
curcumin analog robustly induced UPR signaling as detected by
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TABLE 1 | Curcumin and its analogs are associated with UPR modulation in neurological disorders.

Compound Disease type/cell line Effects on ER stress markers and UPR
signaling

References

Curcumin DAI model of rat ↑ (Nrf2, p-PERK), ↓ (CHOP) Huang et al., 2018

Curcumin Hippocampus or SH-SY5Y cells ↑ (AMPK), ↓ (p-IRE1α, p-PERK, NLRP3,
TXNIP/NLRP3)

Li et al., 2015

Curcumin Mouse hippocampus cell HT22 ↑ Prdx6, CHOP, Grp78), ↓ (ROS) Valera et al., 2013

Curcumin Pmp22 Trembler-J mice ↓ (Atf3 and Ero1-lβ) Okamoto et al., 2013

Curcumin dissolved in sesame oil or
phosphatidylcholine

MPZR98C knock-in mice ↓ (Bip, ATF6, spliced XBP1), no change in
CHOP expression

Patzkó et al., 2012

Curcumin ApoE4 transgenic mice
(SCXK2016-0004)

↓ (NFkβ, APoE4, Grp78, IRE1α) Kou et al., 2021

Curcumin Transgenic myelin synthesis deficient
model

No changes in expression of Grp78, CHOP,
Gadd45a, calnexin, calreticulin, Herpud1

Yu et al., 2012

CNB-001 (Curcumin analog) huAPPswe/PS1E9 transgenic mice and
MC65 cells

↑ (p-PERK, eIF2α, HSP90, ATF4), ↓ (5-LOX,
β-amyloid)

Valera et al., 2013

EF-24 (Curcumin analog) SHSY-5Y ↑ (PDI expression), ↓ (AD associated protein
aggregation)

Pal et al., 2011

Bis-chalcone 4j (Curcumin analog) GSC lines Glio3, Glio4, Glio9, Glio11
and Glio14

↑ (CHOP, p-jun and caspase 12) Sansalone et al., 2019

C-150 (Curcumin analog) GBM1-6, U87 MG, U251 MG and
U373 MG

↑ (Grp78, GADD153, ATF4, XBP1), ↓ (NFkβ,
Akt, PKCα kinase activity)

Hackler et al., 2016

DAI, diffuse axonal injury; Nrf2, nuclear factor erythroid-derived 2-like 2; CHOP, CCAAT-enhancer-binding protein homologous protein; AMPK, AMP-activated protein
kinase; NLRP3, NLR family pyrin domain containing 3; ApoE4, Apolipoprotein E4; GSC, glioma stem cells; AD, Alzheimer’s disease; XBP1, X-binding protein-1; ATF,
activating transcription factor; Grp78, 78-kDa glucose-regulated protein; PDI, protein disulfide-isomerase; HSP90, heat shock protein 90; GADD153, growth arrest- and
DNA damage-inducible gene 153; PKCα, protein kinase C; eIF2α, eukaryotic translation initiation factor 2A; Bip, binding immunoglobulin protein; Ero1, endoplasmic
oxidoreductin-1; Prdx6, peroxiredoxin-6; ROS, reactive oxygen species.

increased expression of CHOP, p-jun and caspase 12 markers
(Sansalone et al., 2019). Another study by Hackler et al. (2016) has
demonstrated the cytotoxic effect of curcumin derivative C-150
(Mannich-type) on eight glioma cell lines. C-150 treatment in
gliomas cells significantly affected expression of UPR proteins,
Akt, and PKCα activity.

Overall, curcumin and its derivatives are neuroprotective
in various neurological disorders and kill cancer cells via
modulating UPR signaling (Table 1). The main difficulty
is to formulate curcumin or its counterpart in the correct
dosage and administer it in a proper manner. This includes
undoubtedly to overcome poor absorption, rapid metabolism and
poor bioavailability of curcumin and substantially improve its
beneficial activities.

CURCUMIN, UNFOLDED PROTEIN
RESPONSE AND NEURODEGENERATIVE
DISEASES: A TRIVIAL CONNECTION
AND FUTURE PERSPECTIVES

The studies suggest that deregulation of proteostasis, particularly
aberrant UPR signaling, may be a common pathogenic
mechanism in the development of ND. While modulation
of the UPR in animal illness models, including AD, has
shown early promises. To determine whether UPR signaling
is a protective mechanism or actively contributes to disease
development, neuropathological data alone cannot be used.
The idea of targeting the UPR, and specifically the PERK

signaling is extremely interesting (Das et al., 2015). Some
protein misfolding in NDs appear to benefit from selectively
increasing protein synthesis upstream or downstream of
eIF2a-P to avoid pancreatic toxicity associated with systemic
PERK inhibition.

Researchers also discovering novel UPR activation methods,
e.g., mitochondria-associated ER membranes are gaining
popularity as a possible therapeutic target in NDs. Disrupted
connections between the ER and mitochondria have been
identified were curcumin seems to influence ER-mitochondrial
interactions (Paillusson et al., 2016). Curcumin as licensed
drug delaying the development of dementia in different model
systems, this is an intriguing idea and a major step forward in
the quest for a therapeutic agent for neurodegeneration. The
next issue will be identifying how best and when to regulate the
PERK pathway in patients, given that there are many proven
therapeutic targets along the route. What remains unclear if
curcumin may directly interfere in neurodegeneration without
engaging UPR components?

Curcumin affect the action of many factors such as NF-κ B
and AP-1 (Han et al., 2002). Curcumin binds to different proteins
and enzymes and modulate their conformation and biological
activities. Curcumin’s linker length and flexibility make it ideal
for binding to Aβ aggregates. Curcumin’s unique structure, which
consists of an, α, β-unsaturated β-diketone moiety linked by a
seven carbon heptadiene chain, allows it to remain in keto–enol
tautomeric forms in solution depending on the pH. When the
pH is between 3 and 7, it is in the keto form, whereas the enol
form is found around pH 8. Curcumin retains its coplanarity
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and extends the double-bond conjugation through six membered
hydrogen bonding at the center when it is in the enol form which
has strong Aβ aggregate binding activities. Curcumin, on the
other hand, has very low binding activities for Aβ aggregates
when it is in the keto form. Studies have shown that to be able
to bind to Aβ aggregates, compounds need to be coplanar and
have a double-bond conjugation of certain length. Curcumin,
however, has certain disadvantages too, which includes its low
water solubility and bioavailability. Dissolving it into organic
solvent improves it solubility but its absorption remains poor
(Ege, 2021; Jia et al., 2021). Some recent articles addressed the
methods to enhance curcumin’s effectiveness in treating AD (Fan
et al., 2018; Francesco et al., 2019; Ege, 2021). In future curcumin
compounds must be chemically screened on target enzymes and
proteins to facilitate more information.

Overall, the studies suggest that curcumin may prevents or
postpones the onset of NDs by decreasing ER stress which
seems to be responsible for NDs through a complicated processes
(Figure 1). Additional mechanistic studies are needed to establish
curcumin’s role in reducing ER stress. Despite promising
preclinical findings, there are currently no clinical data to support
curcumin as part of a drug therapy against NDs. The recent rise
in the number of NDs patients across the globe suggests that
researchers and practitioners will need to discover an effective

pharmaceutical medication or therapy to successfully treat these
illnesses in the future. Curcumin’s interaction and mechanism
of action against NDs warrants a more research to accomplish
this goal.
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