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Abstract: Bike sharing is increasingly attracting more riders in cities around the world for its benefits
regarding the urban environment and public health. The public bike sharing program of Seoul,
South Korea, first launched in October 2015, is now widely spread around the city and serves more
than 27,000 riders daily. However, concerns are being raised as rising air pollution levels in Seoul,
represented by particulate matter (PM) levels, in recent years may negatively discourage citizens
from using bike sharing. This study investigates the impact of PM10 and PM2.5 levels on bike sharing
use in Seoul and seeks to identify any seasonal differences. A series of negative binomial regression
models, which take into account control variables like weather conditions and calendar events, are
adopted to empirically measure the impacts. Results show that the PM levels yield statistically
significant negative impacts (p < 0.01) on bike sharing use throughout the year. The impacts are
particularly stronger in winter and spring, when the PM levels are higher. Findings suggest that PM
levels may operate as driving factors for bike sharing use in addition to meteorological conditions
like temperature, humidity, and precipitation.
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1. Introduction

The use of bike sharing as a means of transportation in urban areas throughout the world grew
over the last few decades. Following some of its seminal initiators of Amsterdam in the 1960s and
Copenhagen in the 1990s [1,2], recent successful implementations in Paris, Lyon, and London dispersed
the program to a larger number of cities around the world that seek new means of urban transportation.
Statistics testify that the number of bike sharing programs in operation worldwide more than doubled
since 2014 and exceeds 1600 as of 2018, where the total number of public-use bicycles worldwide
also more than doubled to 18.2 million in the same period [3]. Ease of use, lower prices than other
means, lack of congestion, and marriage with smart phone technologies make bike sharing ubiquitous.
It attracts numerous intracity travelers, as well as large investments from both public and private
sectors [4,5].

There are some criticisms, which include its benefits toward the privileged and marginalization of
lower classes [6–9], little impact on reducing automobile dependency [10,11], and increasing concerns
of rider safety [12–14]. Nevertheless, bike sharing is known to produce a wide range of benefits as
research suggests. It benefits the environment by reducing car dependency so as to curtail greenhouse
gas emissions [4,15–18]. Somewhat related to the first, it also relieves traffic congestion [19,20].
Another is its health contributions to the prevention of diseases and deaths by promoting physical
activities [16,17,21–24]. A fourth is the lower injury and fatality outcomes compared to non-sharing
environments [24,25]. Lastly, bike sharing realizes a multifaceted sharing economy by allowing cities
to function more efficiently [26–28].
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These benefits encourage cities to adopt and promote bike sharing. In doing so, key concerns
of planners and policymakers often target removing barriers and developing solutions based on the
varying contexts each city faces. Research is producing empirical findings to support them. One
frequently addressed issue is the supply of relevant road infrastructure to create a safer and more
predictable riding environment for bike sharing users [29,30]. Another would be the selection of
locations for bike sharing stations to provide the most optimum level of service and access within
constraints [31–33].

Another growing body of interest lies in the weather conditions that affect bike sharing users
and present contextual differences. Several studies carried out in North America found that high
temperatures and low quantity of snow positively affect bike sharing [34,35]. On the other hand,
a Brisbane study reported no significant effects of temperature because of the city’s subtropical climate,
while wind and rain yielded negative effects [36]. One study from Cork, a medium-size city in Ireland,
argued that warmer temperatures and longer hours of sunshine promote longer trips [37]. Another
from Daejeon, South Korea noted that temperatures over 30 ◦C, precipitation, humidity, and wind
speed negatively affect bike sharing users [38]. These studies in general commonly found that bad
weather conditions have adverse effects on using bikes as a commuting mode with some variances
between contexts [39–43].

A potential issue that receives less interest but requires further investigation is the impact of air
pollution on bike sharing or using bikes in general. Many studies looked into exposure of bicyclists
to air pollution [44–46]. On the other hand, only a handful studies reported that higher air pollution
levels yield a significant negative impact on bike sharing [47] and that air quality improvement has a
significant positive impact [48].

Building on what was addressed so far, this study looks into Seoul, South Korea, a relatively less
studied and unknown city, which enjoys rapidly growing bike sharing but at the same time suffers
from chronic high levels of air pollution, including particulate matter (PM) levels [49]. Specifically,
it empirically investigates how PM10 (particles with diameters equal to or less than 10 micrometers)
and PM2.5 (particles with diameters equal to or less than 2.5 micrometers) levels affect bike sharing
use in Seoul daily. It also examines whether seasonal differences exist in the effects and takes into
consideration the wide variance found in Seoul’s annual PM levels. Findings of this study may help
unveil the relationship between PM levels and bike sharing. It may also inform transportation and
environmental planning and policymaking to achieve a more livable urban environment.

2. Case Context

After the successful launch of South Korea’s first bike sharing program in Changwon in 2008 [1,50],
that of Seoul, or Ddareungi in local terms, started its service in October 2015. As Figure 1 illustrates,
the program showed rapid growth over the past few years. From 2016 to 2019, the total annual number
of trips almost decupled. In 2019, the number exceeded 16.1 million. This is comparable to that of New
York City’s Citi Bike which served 17.6 million trips in 2018 [51] and also that of London’s Santander
Cycles which accommodated 10.5 million in the same year [52]. Figure 2 presents that around 20,000
shared bikes and 1537 stations distributed throughout Seoul are in operation as of mid-2019.
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Figure 2. (a) A bike sharing station in Seoul; (b) locations of bike sharing stations in Seoul as of mid-2019. 

A closer look at Seoul’s bike sharing data presents clear seasonal fluctuations over the year. As 
Figure 3 shows, bike sharing use is the least in winter (December–February) with usually fewer than 
20,000 trips daily, and it gradually increases through spring (March–May). During summer months 
(June–August), the use keeps increasing at first but decreases in August. In fall (September–
November), bike sharing is the most used with up to more than 60,000 trips daily but decreases 
toward November. 
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A closer look at Seoul’s bike sharing data presents clear seasonal fluctuations over the year.
As Figure 3 shows, bike sharing use is the least in winter (December–February) with usually fewer than
20,000 trips daily, and it gradually increases through spring (March–May). During summer months
(June–August), the use keeps increasing at first but decreases in August. In fall (September–November),
bike sharing is the most used with up to more than 60,000 trips daily but decreases toward November.
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One critical issue that Seoul is currently facing is the serious air pollution levels. The city’s
PM10 and PM2.5 levels maintained considerably high levels in the past few years. Especially in 2018,
as Figure 4 illustrates, the number of days with PM10 levels higher than 50 micrograms per cubic
meter, a World Health Organization (WHO) guideline for 24-h mean (annual mean: 20 micrograms
per cubic meter), was 91, and that with PM2.5 levels surpassing 25 micrograms per cubic meter, also a
WHO guideline for 24-h mean (annual mean: 10 micrograms per cubic meter), was 124. The mean
PM levels of Seoul are significantly higher than those of major cities in the Organization for Economic
Co-operation and Development (OECD) member countries [49]. In 2016, the annual mean PM10 level
of Seoul was 40 micrograms per cubic meter, while that of Paris was 28, that of London was 23, that
of Hong Kong was 34, and that of Melbourne was 19. Likewise, the annual mean PM2.5 level was
23 micrograms per cubic meter, while that of Paris was 16, that of London was 12, that of Hong Kong
was 23, and that of Melbourne was 8 in the same year [53].
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Metropolitan Government uses daily average concentrations of all stations in Seoul as the representative
PM level of the city.

Exposure to PM is associated with a number of adverse health outcomes, including
cardiovascular [54–57] and respiratory diseases [58–60] and various types of cancer [61–63]. Impacts
on children [64], pregnant women [65], and the elderly [66,67] are reported to be more severe. In this
sense, a recent OECD report warns that, by 2060, 1109 premature deaths per every one million people
due to serious air pollution is expected in South Korea if further policy measures are absent [68].

Clear seasonal fluctuations characterize Seoul’s PM levels. As Figure 4 presents, some months of
the year show higher PM10 and PM2.5 levels than others. Recent reports by local scientists present that
heating, electricity production, and manufacturing, all of which heavily rely on fossil fuel-based energy
in several neighboring countries during colder seasons, as well as the prevailing westerly winds, are
responsible for up to 82% of Seoul’s PM concentration in high-PM seasons and around 30% in low-PM
seasons [69]. They suggest that such fluctuations increase difficulty, inconsistency, and uncertainty in
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understanding Seoul’s PM levels and establishing relevant strategies and policies [70,71]. For these
reasons, there is a strong need to recognize the seasonal differences when addressing Seoul’s PM levels.

3. Methods

So as to examine the effects of PM levels on bike sharing use in Seoul, this study adopts a range of
variables as Table 1 summarizes. The dependent variables include daily total number of trips, total
traveled distances, and total traveled times. Data were downloaded from Seoul Open Data Plaza
(https://data.seoul.go.kr/), a publicly accessible website run by the Seoul Metropolitan Government.

Table 1. List of variables used in this study a.

Variable Unit Data Source

Dependent variables

Total number of trips -
Seoul Open Data PlazaTotal traveled distances meter

Total traveled times minute

Independent variables
Mean PM10 level µg/m3

Seoul Metropolitan Government
Air Quality InformationMean PM2.5 level µg/m3

Control variables

Mean temperature ◦C

Korea Meteorological
Administration

Precipitation mm

Heavy rain b 1: precipitation ≥ 15;
0: precipitation < 15

Mean wind speed m/s

Mean humidity %

Weekday b 1: weekday;
0: Saturday, Sunday, and

public holidays

Notes: a All variables are measured daily; b dummy variable.

The independent variables are daily mean PM10 and PM2.5 levels of Seoul. The local government
operates 50 air quality monitoring stations (BAM-1020, Met One Instruments, Inc. (Grants Pass,
OR, USA)) as of 2019. They are relatively evenly distributed throughout the city and are installed
on publicly owned land. The government averages readings from each station to come up with a
representative PM10 and PM2.5 level value for Seoul. The Seoul Metropolitan Government Air Quality
Information (http://cleanair.seoul.go.kr/) provides related data.

Building on findings from the existing literature, a number of control variables are considered
which are daily mean temperature, precipitation, mean wind speed, and mean humidity. Heavy
rain (1: daily precipitation ≥15 mm; 0: daily precipitation <15 mm) and weekday (1: weekday;
0: Saturday, Sunday, and public holidays) are included as dummy variables so as to incorporate
their categorial effects. Related data were acquired from the Korea Meteorological Administration
(https://data.kma.go.kr/), a central government-level public agency responsible for collecting and
sharing meteorological information in South Korea and providing forecasts. Due to data availability
and completeness issues, the year 2018 at the daily level was used for analysis, since the number of
missing values in data from 2016 and 2017 was considerably large enough to potentially distort results.

The three dependent variables are provided as mostly positive integers and a small number of zeros.
This results in the need to adopt statistical models that effectively deal with count data. Furthermore,
all the dependent variables present over-dispersion, meaning that the conditional variance exceeds the
conditional mean, and they require using negative binomial regression for statistical analysis instead of
Poisson regression because the confidence intervals are more likely to be narrower. Negative binomial
regression is a highly robust statistical model favored in a wide range of fields, and it was proven to be
highly effective in a number of existing studies that shared similar research interests [32,34,38,72].

So as to recognize the seasonal variations in Seoul’s PM levels and bike sharing trips, the regression
models are applied to each of the four seasons, as well as for the whole year for reference. To address

https://data.seoul.go.kr/
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the problem of multiple hypothesis testing, Bonferroni correction is followed in the regression models.
Moreover, since PM10 and PM2.5 levels are usually strongly correlated to each other, each regression
model includes only one of the two as the independent variable. To complement and confirm the
significance of the regression models, sensitivity analysis which includes seasonal dummy variables
with a multiplicative interaction term is carried out (see Appendix A).

4. Results and Discussion

4.1. Results

Table 2 summarizes descriptive statistics of all variables, as well as frequencies of dummy variables,
for each season. As for all seasons, an average of 27,560 trips were made daily, each traveling more
than 125 million meters and 757 thousand minutes in total. The average PM10 and PM2.5 levels were
39.7 and 22.8 micrograms per cubic meter, respectively. In spring, the total number of trips and the
traveled distances and times were smaller than the annual average. On average, 22,833 trips traveled
around 107 million meters for 682 thousand minutes daily. The average PM10 and PM2.5 levels in
spring were above the yearly average at 48.7 and 27.5, respectively.

Bike sharing in summer was used more frequently and longer. An average of 36,353 trips were
made daily, and the total traveled distances and times exceeded 169 million meters and one million
minutes, respectively. The average PM10 levels remained below 28, and those of PM2.5 remained at 17.8.

In fall, the numbers peaked when the number of daily trips exceeded 42 thousand, traveled
distances neared 194 million meters, and traveled times reached 1.15 million minutes, while the average
PM10 and PM2.5 levels were 33.3 and 17.5, respectively.

Lastly, in winter, the overall numbers for bike sharing use fell sharply as the average daily number
of trips dropped to 9257. Total traveled distances and times in this season were 31.5 million meters and
182 thousand minutes, respectively, and PM10 and PM2.5 levels rose to 49.2 and 28.7, respectively.

It is noteworthy that the standard deviations of the PM10 levels in summer (12.8) and of the PM2.5

levels in summer (9.4) and fall (12.6) are smaller than other seasons. This may result in regression
coefficients being insignificant because of lack of information.

Table 3 presents negative binomial regression results in estimating bike sharing use for all seasons
using PM10 level data. In all three cases, the mean PM10 level presents significantly negative impacts
(p < 0.01) on bike sharing use. Specifically, for a one-unit increase in the mean PM10 level, the expected
log count of the number of trips decreases by 0.0034, traveled distances decrease by 0.0043, and
traveled times decrease by 0.0041. Similar findings are shown with PM2.5, as Table 4 suggests. Again,
the mean PM2.5 level yields significant negative influences (p < 0.01) on bike sharing use. The regression
coefficients in estimating number of trips, traveled distances, and traveled times are −0.0080, −0.0094,
and −0.0087, respectively. It can be interpreted that, throughout the year, bike sharing use in all three
ways is negatively affected by PM10 and PM2.5 levels and that the latter shows larger impacts. With
regard to the control variables, temperature presents significant positive impacts (p < 0.01) on bike
sharing use, while precipitation, wind speed, and humidity exhibit negative effects (p < 0.01) in all cases.

Results for spring slightly differ. As Table 5 suggests, when estimating bike sharing use with
PM10 level data, significant negative impacts (p < 0.1) are found for traveled distances and times
but not for the number of trips. For a one-unit increase in the mean PM10 level, the expected log
count of traveled distances decreases by 0.0029 and that of traveled times decreases by 0.0027. Table 6
presents comparable results for PM2.5. Significant negative impacts (p < 0.1) of the mean PM2.5 level
are evident for traveled distances and times, and the regression coefficients are −0.0043 and −0.0041,
respectively, as opposed to the number of trips. In sum, higher PM levels may not influence bike
sharing trip numbers but clearly reduce the lengths of each trip distance- and time-wise. Among the
control variables, temperature shows significant (p < 0.01) positive impacts, and precipitation and
humidity present significant negative influences (p < 0.01) in the two models. The impacts of wind
speed are no longer statistically significant.
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Table 2. Descriptive statistics of variables by season.

Season Variable Mean or Frequency SD Min Max

All seasons

Total number of trips 27,560 16,575 1036 64,644

Total traveled distances (million meters) 125 86 3 390

Total traveled times (thousand minutes) 757 544 19 2486

Mean PM10 level (µg/m3) 39.7 23.1 6 124

Mean PM2.5 level (µg/m3) 22.8 15.3 3 99

Mean temperature (◦C) 13.0 11.5 −14.8 33.7

Precipitation (mm) 3.5 12.0 0 97

Heavy rain 1 23 - - -

Mean wind speed (m/s) 1.7 0.6 0.7 4.1

Mean humidity (%) 57.5 15.1 23 97

Weekday 1 261 - - -

Spring

Total number of trips 22,883 11,550 1036 43,468

Total traveled distances (million meters) 107 62 3 252

Total traveled times (thousand minutes) 682 419 19 1800

Mean PM10 level (µg/m3) 48.7 27.6 7 121

Mean PM2.5 level (µg/m3) 27.5 17.9 4 99

Mean temperature (◦C) 13.1 5.7 −0.7 23.2

Precipitation (mm) 4.5 12.7 0 83

Heavy rain 1 8 - - -

Mean wind speed (m/s) 1.9 0.6 0.9 4.1

Mean humidity (%) 59.2 16.3 23 97

Weekday 1 64 - - -

Summer

Total number of trips 36,352 10,248 4357 49,519

Total traveled distances (million meters) 169 54 18 275

Total traveled times (thousand minutes) 1018 370 102 1784

Mean PM10 level (µg/m3) 27.8 12.8 7 59

Mean PM2.5 level (µg/m3) 17.8 9.4 3 38

Mean temperature (◦C) 26.6 3.7 20.2 33.7

Precipitation (mm) 6.1 17.1 0 61

Heavy rain 1 10 - - -

Mean wind speed (m/s) 1.6 0.4 0.7 2.6

Mean humidity (%) 65.1 12.8 39 95

Weekday 1 66 - - -

Fall

Total number of trips 42,004 13,130 2728 64,644

Total traveled distances (million meters) 194 80 8 390

Total traveled times (thousand minutes) 1153 543 44 2486

Mean PM10 level (µg/m3) 33.3 22.1 6 124

Mean PM2.5 level (µg/m3) 17.5 12.6 3 71

Mean temperature (◦C) 14.1 6.4 1.9 25.5

Precipitation (mm) 2.8 10.2 0 64

Heavy rain 1 4 - - -

Mean wind speed (m/s) 1.5 0.5 0.9 3.2

Mean humidity (%) 59.2 12.4 27 94

Weekday 1 65 - - -

Winter

Total number of trips 9256 6107 2640 24,620

Total traveled distances (million meters) 32 22 8 99

Total traveled times (thousand minutes) 182 122 46 575

Mean PM10 level (µg/m3) 49.2 19.9 21 114
Mean PM2.5 level (µg/m3) 28.7 16.5 8 88

Mean temperature (◦C) −2.1 5.5 −14.8 11.5
Precipitation (mm) 0.6 2.9 0 25
Heavy rain 1 1 - - -
Mean wind speed (m/s) 1.9 0.8 0.7 3.8
Mean humidity (%) 46.3 12.1 26 87
Weekday 1 64 - - -

1 Dummy variables.
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Table 3. Estimation results for bike sharing use using PM10 level data in all seasons.

Total Number of Trips Total Traveled Distances Total Traveled Times
Coeff. p Coeff. p Coeff. p

Mean PM10 level −0.0034 ** 0.011 −0.0043 ** 0.007 −0.0041 ** 0.007
Mean temperature 0.0527 *** 0.000 0.0663 *** 0.000 0.0686 *** 0.000
Precipitation −0.0192 *** 0.000 −0.0215 *** 0.000 −0.0231 *** 0.000
Heavy rain −0.1121 0.613 −0.0531 0.842 0.0252 0.20
Mean wind speed −0.2036 *** 0.000 −0.2213 *** 0.000 −0.2001 *** 0.000
Mean humidity −0.0075 *** 0.004 −0.0094 *** 0.003 −0.0097 *** 0.001
Weekday 0.1157 0.071 −0.0376 0.626 −0.1341 0.065

N 365 365 365
2 Log Likelihood −7871.343 −14,064.148 −10,298.510
AIC 7889.3 14,082 10,317

** p < 0.05, *** p < 0.01. Note: Bonferroni-corrected p-values are applied to remove the problem of multiple
hypothesis testing.

Table 4. Estimation results for bike sharing use using PM2.5 level data in all seasons.

Total Number of Trips Total Traveled Distances Total Traveled Times
Coeff. p Coeff. p Coeff. p

Mean PM2.5 level −0.0080 *** 0.000 −0.0094 *** 0.000 −0.0087 *** 0.000
Mean temperature 0.0512 *** 0.000 0.0647 *** 0.000 0.0672 *** 0.000
Precipitation −0.0203 *** 0.000 −0.0227 *** 0.000 −0.0243 *** 0.000
Heavy rain −0.1283 0.558 −0.0684 0.795 0.0133 0.957
Mean wind speed −0.2278 *** 0.000 −0.2479 *** 0.000 −0.2250 *** 0.000
Mean humidity −0.0055 * 0.035 −0.0073 ** 0.022 −0.0076 ** 0.010
Weekday 0.1037 0.102 −0.0525 0.492 −0.1484 * 0.039

N 365 365 365
2 Log Likelihood −7862.803 −14,056.852 −10,291.406
Akaike information
criterion 7880.8 14,075 10,309

* p < 0.1, ** p < 0.05, *** p < 0.01. Note: Bonferroni-corrected p-values are applied to remove the problem of multiple
hypothesis testing.

Table 5. Estimation results for bike sharing use using PM10 level data in spring.

Total Number of Trips Total Traveled Distances Total Traveled Times
Coeff. p Coeff. p Coeff. p

Mean PM10 level −0.0016 0.146 −0.0029 * 0.028 −0.0027 * 0.043
Mean temperature 0.0766 *** 0.000 0.0878 *** 0.000 0.0904 *** 0.000
Precipitation −0.0332 *** 0.000 −0.0399 *** 0.000 −0.0388 *** 0.000
Heavy rain 0.2009 0.264 0.3107 0.142 0.2927 0.187
Mean wind speed 0.0191 0.719 −0.0197 0.752 −0.0202 0.757
Mean humidity −0.0108 *** 0.000 −0.0128 *** 0.000 −0.0124 *** 0.000
Weekday 0.0648 0.309 −0.1177 0.116 −0.2431 *** 0.002

N 90 90 90
2 Log Likelihood −1793.18 −3334.478 −2430.358
Akaike information
criterion 1811.2 3352.5 2448.4

* p < 0.1, *** p < 0.01. Note: Bonferroni-corrected p-values are applied to remove the problem of multiple
hypothesis testing.

Estimation results for summer show considerable differences. As Tables 7 and 8 commonly
suggest, PM10 and PM2.5 levels no longer operate as critical influencers on bike sharing use. Rather,
temperature, precipitation, and humidity all yield significant negative impacts (p < 0.01). Results
suggest that bike sharing users are more sensitive to the hot and humid weather conditions of summer
and less affected by the PM levels, which are the lowest on average among the four seasons.
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Table 6. Estimation results for bike sharing use using PM2.5 level data in spring.

Total Number of Trips Total Traveled Distances Total Traveled Times
Coeff. p Coeff. p Coeff. p

Mean PM2.5 level −0.0025 0.128 −0.0043 * 0.030 −0.0041 * 0.048
Mean temperature 0.0757 *** 0.000 0.0862 *** 0.000 0.0889 *** 0.000
Precipitation −0.0335 *** 0.000 −0.0403 *** 0.000 −0.0392 *** 0.000
Heavy rain 0.2059 0.251 0.3227 0.127 0.3061 0.167
Mean wind speed 0.0014 0.979 −0.0498 0.428 −0.0492 0.455
Mean humidity −0.0104 *** 0.000 −0.0121 *** 0.000 −0.0118 *** 0.000
Weekday 0.0608 0.339 −0.1243 0.098 −0.2500 *** 0.002

N 90 90 90
2 Log Likelihood −1793.002 −3334.58 −2430.548
Akaike information
criterion 1811.0 3352.6 2448.5

* p < 0.1, *** p < 0.01. Note: Bonferroni-corrected p-values are applied to remove the problem of multiple
hypothesis testing.

Table 7. Estimation results for bike sharing use using PM10 level data in summer.

Total Number of Trips Total Traveled Distances Total Traveled Times
Coeff. p Coeff. p Coeff. p

Mean PM10 level 0.0009 0.633 0.0002 0.928 0.0006 0.792
Mean temperature −0.0260 *** 0 −0.0332 *** 0 −0.0454 *** 0.000
Precipitation −0.0178 *** 0 −0.0197 *** 0 −0.0212 *** 0.000
Heavy rain 0.0245 0.859 −0.0055 0.973 −0.0004 0.998
Mean wind speed −0.0187 0.748 −0.0187 0.782 −0.0267 0.693
Mean humidity −0.0077 *** 0.002 −0.0087 *** 0.002 −0.0105 *** 0.000
Weekday 0.1384 ** 0.011 0.0190 0.763 −0.0486 0.441

N 92 92 92
2 Log Likelihood −1904.752 −3483.012 −2539.546
Akaike information
criterion 1922.8 3501 2557.5

** p < 0.05, *** p < 0.01. Note: Bonferroni-corrected p-values are applied to remove the problem of multiple
hypothesis testing.

Table 8. Estimation results for bike sharing use using PM2.5 level data in summer.

Total Number of Trips Total Traveled Distances Total Traveled Times
Coeff. p Coeff. p Coeff. p

Mean PM2.5 level 0.0007 0.789 −0.0003 0.925 0.0002 0.944
Mean temperature −0.0262 *** 0 −0.0333 *** 0 −0.0456 *** 0.000
Precipitation −0.0178 *** 0 −0.0197 *** 0 −0.0213 *** 0.000
Heavy rain 0.0217 0.875 −0.0089 0.956 −0.0038 0.981
Mean wind speed −0.0167 0.773 −0.0170 0.801 −0.0246 0.715
Mean humidity −0.0077 *** 0.001 −0.0087 *** 0.002 −0.0105 *** 0.000
Weekday 0.1394 ** 0.010 0.0201 0.749 −0.0474 0.452

N 92 92 92
2 Log Likelihood −1904.901 −3483.011 −2539.607
Akaike information
criterion 1922.9 3501 2557.6

** p < 0.05, *** p < 0.01. Note: Bonferroni-corrected p-values are applied to remove the problem of multiple
hypothesis testing.

Fall shows relatively similar results to summer. Tables 9 and 10 present that PM10 and PM2.5

levels do not show any clear impacts on bike sharing use. As the temperatures gradually drop in this
season, higher temperatures seem to be significant positive influencers (p < 0.01), while humidity
significantly reduces the use (p < 0.01). Impacts of other control variables are minimal.
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Table 9. Estimation results for bike sharing use using PM10 level data in fall.

Total Number of Trips Total Traveled Distances Total Traveled Times
Coeff. p Coeff. p Coeff. p

Mean PM10 level −0.0003 0.853 −0.0017 0.315 −0.0020 0.281
Mean temperature 0.0367 *** 0 0.0531 *** 0 0.0597 *** 0.000
Precipitation −0.0074 0.399 −0.0003 0.979 0.0042 0.717
Heavy rain −0.5192 0.198 −0.8230 0.090 −0.9827 0.062
Mean wind speed −0.0383 0.500 −0.0621 0.364 −0.0754 0.308
Mean humidity −0.0122 *** 0 −0.0169 *** 0 −0.0189 *** 0.000
Weekday 0.0485 0.401 −0.0784 0.265 −0.1729 ** 0.023

N 91 91 91
2 Log Likelihood −1930.961 −3493.132 −2571.092
Akaike information
criterion 1949 3511.1 2589.1

** p < 0.05, *** p < 0.01. Note: Bonferroni-corrected p-values are applied to remove the problem of multiple
hypothesis testing.

Table 10. Estimation results for bike sharing use using PM2.5 level data in fall.

Total Number of Trips Total Traveled Distances Total Traveled Times
Coeff. p Coeff. p Coeff. p

Mean PM2.5 level 0.0026 0.362 0.0005 0.883 0.0005 0.900
Mean temperature 0.0398 *** 0 0.0567 *** 0 0.0638 *** 0.000
Precipitation −0.0045 0.617 0.0026 0.811 0.0075 0.527
Heavy rain −0.5932 0.142 −0.8990 0.067 −1.0728 * 0.043
Mean wind speed −0.0222 0.703 −0.0477 0.499 −0.0599 0.433
Mean humidity 0.0140 *** 0 −0.0182 *** 0 −0.0204 *** 0.000
Weekday 0.0519 0.372 −0.0777 0.272 −0.1718 ** 0.025

N 91 91 91
2 Log Likelihood −1930.163 −3483.008 −2572.10
Akaike information
criterion 1948.2 3501 2557.6

* p < 0.1, ** p < 0.05, *** p < 0.01. Note: Bonferroni-corrected p-values are applied to remove the problem of multiple
hypothesis testing.

Estimation results for winter are clearly different from the other seasons. As Table 11 presents,
the mean PM10 level shows significant negative impacts (p < 0.01) on bike sharing use. Specifically,
for a one-unit increase in the mean PM10 level, the expected log count of the number of trips decreases
by 0.0152, traveled distances decrease by 0.0165, and traveled times decrease by 0.0152. PM2.5 also
shows significant negative impacts (p < 0.01) on all three dependent variables, as found in Table 12.
For a one-unit increase in the mean PM2.5 level, the expected log count of the number of trips decreases
by 0.0174, traveled distances decrease by 0.0191, and traveled times decrease by 0.0175, demonstrating
relatively larger impacts than PM10. As for the control variables, temperature generates significant
positive impacts (p < 0.01) while precipitation generates significant negative impacts (p < 0.01) in
both cases.

Table 11. Estimation results for bike sharing use using PM10 level data in winter.

Total Number of Trips Total Traveled Distances Total Traveled Times
Coeff. p Coeff. p Coeff. p

Mean PM10 level −0.0152 *** 0 −0.0165 *** 0 −0.0152 *** 0.000
Mean temperature 0.1110 *** 0 0.1330 ** 0 0.1285 *** 0.000
Precipitation −0.1240 ** 0.013 −0.1337 ** 0.005 −0.1318 *** 0.003
Heavy rain 1.9941 0.101 2.1959 0.060 2.0818 0.051
Mean wind speed −0.0304 0.650. −0.0403 0.529 −0.0314 0.591
Mean humidity −0.0062 0.298 −0.0094 0.103 −0.0080 0.125
Weekday 0.2774 ** 0.005 0.1680 0.077 0.1607 0.064

N 90 90 90
2 Log Likelihood −1712.240 −3162.796 −2222.028
Akaike information
criterion 1730.2 3180.8 2240

** p < 0.05, *** p < 0.01. Note: Bonferroni-corrected p-values are applied to remove the problem of multiple
hypothesis testing.
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Table 12. Estimation results for bike sharing use using PM2.5 level data in winter.

Total Number of Trips Total Traveled Distances Total Traveled Times
Coeff. p Coeff. p Coeff. p

Mean PM2.5 level −0.0174 *** 0 −0.0191 *** 0 −0.0175 *** 0.000
Mean temperature 0.1012 *** 0 0.1224 *** 0 0.1187 *** 0.000
Precipitation −0.1212 ** 0.019 −0.1314 ** 0.008 −0.1290 *** 0.005
Heavy rain 1.9035 0.128 2.1141 0.079 1.9939 0.070
Mean wind speed −0.0747 0.289 −0.0893 0.188 −0.0761 0.219
Mean humidity −0.0041 0.530 −0.0069 0.270 −0.0059 0.303
Weekday 0.2790 ** 0.006 0.1691 0.083 0.1618 0.069

N 90 90 90
2 Log Likelihood −1715.924 −3167.469 −2226.91
Akaike information
criterion 1733.9 3185.5 2244.9

** p < 0.05, *** p < 0.01. Note: Bonferroni-corrected p-values are applied to remove the problem of multiple
hypothesis testing.

4.2. Discussion

For a more compact discussion of the results, Table 13 summarizes the coefficients of the mean
PM10 and PM2.5 levels in estimating bike sharing use from each of the 10 regression models. Both PM10

and PM2.5 levels present significant negative impacts on the number of bike sharing trips, traveled
distances, and traveled times in all seasons and winter, while controlling for meteorological conditions.
In spring, the PM10 and PM2.5 levels show significant negative impacts on traveled distances and times,
while no significant impacts are identified in summer and fall.

Table 13. Summary of regression coefficients of mean PM10 and PM2.5 levels.

Season PM Total Number of
Trips

Total Traveled
Distances

Total Traveled
Times

All seasons Mean PM10 level −0.0034 ** −0.0043 *** −0.0041 ***
Mean PM2.5 level −0.0080 *** −0.0094 *** −0.0087 ***

Spring Mean PM10 level −0.0016 −0.0029 * −0.0027 *
Mean PM2.5 level −0.0025 −0.0043 * −0.0041 *

Summer Mean PM10 level 0.0009 0.0002 0.0006
Mean PM2.5 level 0.0007 −0.0003 0.0002

Fall Mean PM10 level −0.0003 −0.0017 −0.0020
Mean PM2.5 level 0.0026 0.0005 0.0005

Winter Mean PM10 level −0.0152 *** −0.0165 *** −0.0152 ***
Mean PM2.5 level −0.0174 *** −0.0191 *** −0.0175 ***

* p < 0.1, ** p < 0.05, *** p < 0.01. Note: Bonferroni-corrected p-values are applied to remove the problem of multiple
hypothesis testing.

These results evidently demonstrate the seasonal differences that exist in the impacts of PM levels
on bike sharing use in Seoul. In general, bike sharing users are largely affected by PM levels in high-PM
seasons like spring and winter but not as so in low-PM seasons like summer and fall. Between spring
and winter, the negative impacts of PM levels are more apparent and sizable in winter even though
the mean PM10 and PM2.5 levels of the two seasons do not differ considerably from each other, as
previously shown in Table 2. This may be attributed to the temperate weather conditions in spring,
making bike sharing users relatively less concerned about air quality.

One noteworthy finding from the series of negative binomial regression results is the strong impacts
of meteorological conditions. Similar to what previous studies identified [38,40,43], temperature was
found to be statistically significant in all cases, and precipitation and relative humidity were statistically
significant in a number of cases. Many of their regression coefficients presented larger impacts than
those of PM10 and PM2.5 levels. Especially in summer, temperature, precipitation, and humidity
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strongly discourage bike sharing use, while PM levels do not make any difference. However, this does
not indicate that the PM impacts are relatively minor but that they may also operate as key factors for
bike sharing use in spring and winter in addition to meteorological conditions.

5. Conclusions

This study investigated how PM10 and PM2.5 levels affect bike sharing use in Seoul, South Korea,
a city that experiences rapidly increasing use of bike sharing and high PM levels all year round. It also
examined whether seasonal differences in the effects exist. A series of estimations using negative
binomial regression models present that PM10 and PM2.5 levels negatively affect bike sharing use
in winter and mostly in spring, when the PM levels are generally higher, as well as in all seasons,
but show no significant impacts in summer and fall, when the levels are lower. In addition, significant
impacts of meteorological conditions on bike sharing are clearly witnessed throughout the year.

There are several shortcomings of this study. It investigated only for one year due to data
issues. This may weaken generalizability of the findings so as to be applied elsewhere or other times.
Additional concerns, including personal preferences of bike sharing users the spatial variation of PM in
Seoul, which may also affect bike sharing use, were not considered. The study did not also incorporate
road congestion or safety concerns, both of which may considerably affect bike sharing use. Another
shortcoming would be that the seasonal approach taken by this study may not successfully reveal
critical conditions like very high-PM events which may yield different outcomes. Lastly, no distinction
was made between work and non-work rides, which may yield differing outcomes when analyzed
using hourly data, suggesting the need for further investigation. Future research may consider
incorporating these issues into analysis, as well as considering adopting lag models to measure PM’s
temporal impacts.

However, this study makes several contributions to the literature. It is one of the very first studies
to empirically identify the impacts of air pollution in addition to meteorological conditions on bike
sharing, and de facto the first for Seoul, taking the city’s seasonal fluctuations in PM levels and bike
sharing use into account. Furthermore, it successfully unveils differences in the seasonal impacts, as
well as those between the impacts of PM10 and PM2.5 levels. As a seminal research, it triggers further
in-depth investigation in the near future at various levels using a wider range of information.

This study suggests some useful implications for planners and policymakers. It requires stronger
omnidirectional measures to be adopted in cities to combat the high concentration of air pollutants.
It also presents the need to actively address critical constraints like air pollution when promoting bike
sharing and calls for seasonal approaches in developing solutions. Installing various infrastructures
for bike lanes, such as buffers like half-walls or planters between car lanes [73] and street trees with
high PM absorption capacities [74,75], would decrease concerns during high-PM seasons.
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Appendix A

Table A1. Estimation results for bike sharing using multiplicative interaction variables for seasons and
PM10 level data.

Total Number of Trips Total Traveled Distances Total Traveled Times

Coeff. p Coeff. p Coeff. p

Mean PM10 level −0.0031 ** 0.011 −0.0033 ** 0.034 −0.0026 * 0.068

(Mean PM10 level) × (Summer) −0.0041 * 0.080 −0.0074 *** 0.009 −0.0086 *** 0.001

(Mean PM10 level) × (Fall) 0.0125 *** 0.000 0.0117 *** 0.000 0.0101 *** 0.000

(Mean PM10 level) × (Winter) −0.0049 *** 0.002 −0.0071 *** 0.000 −0.0078 *** 0.000

Mean temperature 0.0534 *** 0.000 0.0668 *** 0.000 0.0685 *** 0.000

Precipitation −0.0182 *** 0.000 −0.0206 *** 0.000 −0.0224 *** 0.000

Heavy rain 0.0308 0.870 0.0887 0.707 0.1488 0.504

Mean wind speed −0.0975 ** 0.033 −0.1187 ** 0.038 −0.1119 ** 0.036

Mean humidity 0.0192 *** 0.000 −0.0120 *** 0.000 −0.0118 *** 0.000

Weekday 0.1092 ** 0.049 −0.0375 0.586 −0.1251 * 0.051

N 365 365 365

2 Log Likelihood −7760.657 −13,974.815 −10,202.575

Akaike information criterion 7784.7 13,998.8 10,266.6

* p < 0.1, ** p < 0.05, *** p < 0.01.

Table A2. Estimation results for bike sharing using multiplicative interaction variables for seasons and
PM2.5 level data.

Total Number of Trips Total Traveled Distances Total Traveled Times

Coeff. p Coeff. p Coeff. p

Mean PM2.5 level −0.0048 ** 0.015 −0.0046 * 0.062 −0.0034 0.141

(Mean PM2.5 level) × (Summer) −0.0058 * 0.096 −0.0108 ** 0.012 −0.0126 *** 0.001

(Mean PM2.5 level) × (Fall) 0.0228 *** 0.000 0.0213 *** 0.000 0.0186 *** 0.000

(Mean PM2.5 level) × (Winter) −0.0067 *** 0.007 −0.0098 *** 0.001 −0.0109 *** 0.000

Mean temperature 0.0551 *** 0.000 0.0688 *** 0.000 0.0706 *** 0.000

Precipitation −0.0181 *** 0.000 −0.0206 *** 0.000 −0.0223 *** 0.000

Heavy rain 0.0344 0.857 0.0918 0.701 0.1523 0.499

Mean wind speed −0.1104 ** 0.019 −0.1337 ** 0.023 −0.1246 ** 0.023

Mean humidity −0.0102 *** 0.000 −0.0118 *** 0.000 −0.0117 *** 0.000

Weekday 0.1126 ** 0.043 −0.0349 0.615 −0.1227 * 0.058

N 365 365 365

2 Log Likelihood −7764.990 −13,979.984 −10,208.968

Akaike information criterion 7789.0 14,004.0 10,233.0

* p < 0.1, ** p < 0.05, *** p < 0.01.
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