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Abstract: Anti-vascular endothelial growth factor (VEGF) therapy has revolutionized the treatment
of retinal vascular diseases. However, constitutive VEGF also acts as a trophic factor on retinal
non-vascular cells. We have studied the effects of aflibercept and ranibizumab on human
Müller cells and photoreceptors exposed to starvation media containing various concentrations
of glucose, with or without CoCl2-induced hypoxia. Cell survival was assessed by calcein-AM cell
viability assays. Expression of heat shock proteins (Hsp) and redox proteins thioredoxin 1 and 2
(TRX1, TRX2) was studied by Western blots. The production of neurotrophic factors in Müller
cells and interphotoreceptor retinoid-binding protein (IRBP) in photoreceptors was measured by
enzyme-linked immunosorbent assays. Aflibercept and ranibizumab did not affect the viability of
both types of cells. Neither aflibercept nor ranibizumab affected the production of neurotrophic factors
or expression of Hsp60 and Hsp90 in Müller cells. However, aflibercept but not ranibizumab affected
the expression of Hsp60, Hsp9, TRX1 and TRX2 in photoreceptors. Aflibercept and ranibizumab both
inhibited the production of IRBP in photoreceptors, aflibercept more so than ranibizumab. Our data
indicates that the potential influence of aflibercept and ranibizumab on photoreceptors should be
specifically monitored in clinical studies.
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1. Introduction

The functional integrity of the retinal vasculature is important for eye health. Neovascular
age-related macular degeneration (AMD) and diabetic retinopathy are characterized by vascular leak
and growth of abnormal blood vessels [1,2]. Disruption of the balance between angiogenic stimulators
and inhibitors in pathological conditions can lead to vascular leak and growth of new blood vessels [1].

AMD is the leading cause of irreversible blindness among people aged ≥65 years in the developed
world. Neovascular AMD comprises only 10%–15% of all AMD cases but it accounts for >80% of severe
vision loss or legal blindness resulting from the disease [3]. Diabetic retinopathy is widely considered to
be a neurovascular disease. Diabetic macular edema occurs when the blood retinal barrier is disrupted,
causing vascular leak and accumulation of extracellular fluid and protein deposits [4]. Despite their
different etiologies, vision loss in AMD and diabetic retinopathy is ultimately caused by neuronal
degeneration. Vascular leak and neovascularization may exacerbate the underlying neuronal damage,
thus contributing to vision loss.
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Vascular endothelial growth factor (VEGF) is a trophic endothelial growth factor that promotes
endothelial migration, proliferation, survival and differentiation [1]. Overexpression of VEGF promotes
vascular leak and ocular neovascularization. The advent of anti-VEGF agents such as ranibizumab
(Lucentis) and aflibercept (Eylea) has revolutionized the treatment of retinal vascular diseases.
Ranibizumab is a fully humanized small chain fragment that binds with high affinity to human
VEGF-A, thereby preventing binding of VEGF-A to its receptors VEGFR-1 and VEGFR-2. Intravitreal
injections of ranibizumab effectively reduce vascular leak and inhibit ocular neovascularization in
clinical studies [1]. Aflibercept is a soluble VEGF decoy receptor that specifically recognizes and binds
to VEGF-A, -B and placental growth factor (PLGF) [1,5]. Aflibercept is the newest anti-VEGF agent to
be approved for treatment of neovascular AMD [1,5].

A growing body of evidence indicates that constitutive VEGF also acts as a trophic factor on
non-vascular cells and plays an important role in the maintenance and function of retinal ganglion
cells, Müller cells, photoreceptors, the retinal pigment epithelium (RPE) and choriocapillaries [6–14].
Therefore, chronic inhibition of VEGF may cause unwanted adverse effects on these retinal and
choroidal cells.

Müller cells are the major type of glial cells in the retina. Ensheathing all retinal neurons including
photoreceptor cells, Müller cells protect retinal neurons via release of neurotrophins and the antioxidant
glutathione [15]. Müller cells have been reported to release neurotrophic factors such as neurotropins,
including brain-derived neurotrophic factor (BDNF), neurotrophins 3 and 4 (NT3 and NT4) and
pigment epithelium derived factor (PEDF), contributing to the health of photoreceptors and other
neurons in the retina [16–19].

A number of studies have recently tested the safety profiles of ranibizumab [20–23] and
aflibercept [20,23] using human RPE cells [20–23], rat ganglion cell-like/neuronal progenitor cells [23]
and mouse 661w photoreceptor cells [23]. However, currently there is little information on the
effects of anti-VEGF therapy on human Müller cells and photoreceptors in vitro. In this study,
we assessed the effects of clinical doses of ranibizumab and aflibercept on cell survival and differential
expression of cell stress markers by human MIO-M1 Müller cells and Y79 photoreceptors under various
stressed conditions. The effects of aflibercept and ranibizumab on the production of neurotrophic
factors in Müller cells and interphotoreceptor retinoid-binding protein (IRBP) in photoreceptors were
also evaluated.

2. Results

2.1. Effects of Hyperglycemia and Hypoxia on the Survival of Müller Cells and Photoreceptors

We compared Müller cells exposed to various stressed conditions with those cultured in medium
containing 10% fetal calf serum (FCS) + low glucose (LG, 5 mM). We found that stress conditions
consisting of 10% FCS + LG + CoCl2, 1% FCS + LG and 10% FCS + high glucose (HG, 25 mM) did
not significantly affect the viability of Müller cells (Figure 1A). However, the combination of 1% FCS
starvation with CoCl2-induced hypoxia or HG significantly reduced the Müller cell viability (Figure 1A).
In Y79 photoreceptors, significant reduction of cell viability was observed when photoreceptors were
incubated under stressed conditions including 10% FCS + CoCl2, 1% FCS starvation alone or 1% FCS
starvation + CoCl2, regardless of the concentration of glucose (Figure 1B). High glucose (25 mM, HG)
also significantly reduced the viability of Y79 cells compared with cells incubated in RPMI medium
containing 10% FCS and 11 mM glucose (LG) (Figure 1B).
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Figure 1. Effects of serum starvation, high glucose and hypoxia on cell survival of Müller cells and 
photoreceptors. Cell survival was measured by calcein-AM cell viability assays 24 h after incubating 
cells in test media. (A) Müller cell viability assays. Grey bars: 5 mM glucose. Black bars: 25 mM 
glucose. * p < 0.05, n = 6/group; (B) Y79 cell viability assays. Grey bars: 11 mM glucose. Black bars: 25 
mM glucose. * p < 0.05 and ** p < 0.01 respectively, n = 6/group. FCS, fetal calf serum. 

2.2. Effects of Cell Stress on Vascular Endothelial Growth Factor (VEGF)-A Production and  
Hypoxia-Inducible Factor 1α (HIF1α) Expression in Müller Cells and Photoreceptors 

In order to study the effects of stress on VEGF production by Müller cells and photoreceptors, 
we collected conditioned media for VEGF ELISA 24 h after culturing both types of cells in starvation 
media containing 1% FCS and various concentrations of glucose with and without CoCl2-induced 
hypoxia (Figure 2A). As expected, CoCl2-induced hypoxia significantly increased VEGF production 
in Müller cells and photoreceptors compared with the corresponding groups without hypoxia (Figure 
2A). However, HG appeared to have little effect on the production of VEGF in both types of cells 
when compared with the corresponding groups cultured in media containing low glucose (Figure 
2A). 

As HIF1α regulates VEGF expression, we next performed Western blots to study changes in 
HIF1α expression in Müller cells and Y79 photoreceptors after exposure to starvation media 
containing 1% FCS and various concentrations of glucose, with and without CoCl2-induced hypoxia 
(Figure 2B). Consistent with the results of VEGF production, CoCl2-induced hypoxia significantly 
increased HIF1α expression in both types of retinal cells compared with the corresponding groups 
without hypoxia, while HG had little effect on HIF1α expression when compared with the 
corresponding groups cultured in LG media (Figure 2B). 

Figure 1. Effects of serum starvation, high glucose and hypoxia on cell survival of Müller cells and
photoreceptors. Cell survival was measured by calcein-AM cell viability assays 24 h after incubating
cells in test media. (A) Müller cell viability assays. Grey bars: 5 mM glucose. Black bars: 25 mM
glucose. * p < 0.05, n = 6/group; (B) Y79 cell viability assays. Grey bars: 11 mM glucose. Black bars:
25 mM glucose. * p < 0.05 and ** p < 0.01 respectively, n = 6/group. FCS, fetal calf serum.

2.2. Effects of Cell Stress on Vascular Endothelial Growth Factor (VEGF)-A Production and Hypoxia-Inducible
Factor 1α (HIF1α) Expression in Müller Cells and Photoreceptors

In order to study the effects of stress on VEGF production by Müller cells and photoreceptors,
we collected conditioned media for VEGF ELISA 24 h after culturing both types of cells in starvation
media containing 1% FCS and various concentrations of glucose with and without CoCl2-induced
hypoxia (Figure 2A). As expected, CoCl2-induced hypoxia significantly increased VEGF production in
Müller cells and photoreceptors compared with the corresponding groups without hypoxia (Figure 2A).
However, HG appeared to have little effect on the production of VEGF in both types of cells when
compared with the corresponding groups cultured in media containing low glucose (Figure 2A).

As HIF1α regulates VEGF expression, we next performed Western blots to study changes in
HIF1α expression in Müller cells and Y79 photoreceptors after exposure to starvation media containing
1% FCS and various concentrations of glucose, with and without CoCl2-induced hypoxia (Figure 2B).
Consistent with the results of VEGF production, CoCl2-induced hypoxia significantly increased HIF1α
expression in both types of retinal cells compared with the corresponding groups without hypoxia,
while HG had little effect on HIF1α expression when compared with the corresponding groups
cultured in LG media (Figure 2B).



Int. J. Mol. Sci. 2017, 18, 533 4 of 16Int. J. Mol. Sci. 2017, 18, 533  4 of 16 

 

 

Figure 2. Effects of cell stress on VEGF-A and HIF1α expression in Müller cells and Y79 
photoreceptors. (A) VEGF-A was measured by ELISA using conditioned media collected from MIO-
M1 and Y79 cells, n = 4–5/group in Müller cells and n = 8/group in Y79 photoreceptors, ** p < 0.01; (B) 
Western blots for HIF1α using cellular proteins, n = 4/group, ** p < 0.01. For MIO-M1 Müller cells: 
Grey bars: 5 mM glucose. Black bars: 25 mM glucose. For Y79 photoreceptors: Grey bars: 11 mM 
glucose. Black bars: 25 mM glucose. NS, not significant; LG, low glucose; HG, high glucose. 

2.3. Effects of Aflibercept and Ranibizumab on Müller Cell Survival 

After establishing the in vitro cell stress model in MIO-M1 Müller cells, we next tested the effects 
of anti-VEGF therapy on cell viability 24 h after incubating Müller cells in various stress media 
containing clinical doses of aflibercept (Eylea, 0.5 mg/mL) and ranibizumab (Lucentis, 0.125 mg/mL). 
Fluorescence microscopy of Müller cells stained with calcein-AM did not reveal changes in Müller 
cell morphology under the tested stress conditions (Figure 3A–L). Measurements of fluorescence 
intensity after calcein-AM staining indicated that CoCl2-induced hypoxia significantly reduced the 
Müller cell viability (Figure 3M). However, treatment with ranibizumab and aflibercept did not affect 
Müller cell survival when compared with each corresponding group cultured in starvation media 
containing various concentrations of glucose, with or without CoCl2-induced hypoxia (Figure 3M). 

Figure 2. Effects of cell stress on VEGF-A and HIF1α expression in Müller cells and Y79 photoreceptors.
(A) VEGF-A was measured by ELISA using conditioned media collected from MIO-M1 and Y79 cells,
n = 4–5/group in Müller cells and n = 8/group in Y79 photoreceptors, ** p < 0.01; (B) Western blots for
HIF1α using cellular proteins, n = 4/group, ** p < 0.01. For MIO-M1 Müller cells: Grey bars: 5 mM
glucose. Black bars: 25 mM glucose. For Y79 photoreceptors: Grey bars: 11 mM glucose. Black bars:
25 mM glucose. NS, not significant; LG, low glucose; HG, high glucose.

2.3. Effects of Aflibercept and Ranibizumab on Müller Cell Survival

After establishing the in vitro cell stress model in MIO-M1 Müller cells, we next tested the effects
of anti-VEGF therapy on cell viability 24 h after incubating Müller cells in various stress media
containing clinical doses of aflibercept (Eylea, 0.5 mg/mL) and ranibizumab (Lucentis, 0.125 mg/mL).
Fluorescence microscopy of Müller cells stained with calcein-AM did not reveal changes in Müller cell
morphology under the tested stress conditions (Figure 3A–L). Measurements of fluorescence intensity
after calcein-AM staining indicated that CoCl2-induced hypoxia significantly reduced the Müller cell
viability (Figure 3M). However, treatment with ranibizumab and aflibercept did not affect Müller cell
survival when compared with each corresponding group cultured in starvation media containing
various concentrations of glucose, with or without CoCl2-induced hypoxia (Figure 3M).
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Figure 3. Aflibercept (Eylea, 0.5 mg/mL) and ranibizumab (Lucentis, 0.125 mg/mL) did not affect 
Müller cell survival under stress conditions. (A–L) Fluorescence images of calcein-AM-stained Müller 
cells exposed to stress media for 24 h. Scale bars: 50 µm; (M) Quantitative analysis of Müller cell 
viability by measuring fluorescence intensity after staining Müller cells with calcein-AM. * p < 0.05, n 
= 6/group. 

2.4. Effects of Aflibercept and Ranibizumab on Photoreceptor Cell Viability 

Fluorescence microscopy of Y79 photoreceptors stained with calcein-AM indicated that addition 
of aflibercept and ranibizumab into starvation media containing LG or HG did not affect Y79 cell 
survival but CoCl2-induced hypoxia reduced the cell viability (Figure 4A–L). This observation was 
further confirmed by quantitative measurement of fluorescence intensity after staining Y79 
photoreceptors with calcein-AM (Figure 4M). 

 

Figure 4. Aflibercept and ranibizumab did not affect Y79 photoreceptor cell survival under stress 
conditions. (A–L) Fluorescence images of calcein-AM-stained Y79 cells exposed to stress media 
containing LG (11 mM) or HG (25 mM) for 24 h. Scale bars: 50 µm; (M) Quantitative analysis of Y79 
cell viability by measuring the fluorescence intensity after staining Y79 cells with calcein-AM. * p < 
0.05, n = 6/group. 

Figure 3. Aflibercept (Eylea, 0.5 mg/mL) and ranibizumab (Lucentis, 0.125 mg/mL) did not affect
Müller cell survival under stress conditions. (A–L) Fluorescence images of calcein-AM-stained Müller
cells exposed to stress media for 24 h. Scale bars: 50 µm; (M) Quantitative analysis of Müller cell
viability by measuring fluorescence intensity after staining Müller cells with calcein-AM. * p < 0.05,
n = 6/group.

2.4. Effects of Aflibercept and Ranibizumab on Photoreceptor Cell Viability

Fluorescence microscopy of Y79 photoreceptors stained with calcein-AM indicated that addition of
aflibercept and ranibizumab into starvation media containing LG or HG did not affect Y79 cell survival
but CoCl2-induced hypoxia reduced the cell viability (Figure 4A–L). This observation was further
confirmed by quantitative measurement of fluorescence intensity after staining Y79 photoreceptors
with calcein-AM (Figure 4M).
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Figure 4. Aflibercept and ranibizumab did not affect Y79 photoreceptor cell survival under stress
conditions. (A–L) Fluorescence images of calcein-AM-stained Y79 cells exposed to stress media
containing LG (11 mM) or HG (25 mM) for 24 h. Scale bars: 50 µm; (M) Quantitative analysis of
Y79 cell viability by measuring the fluorescence intensity after staining Y79 cells with calcein-AM.
* p < 0.05, n = 6/group.
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2.5. Effects of Aflibercept and Ranibizumab on Hsp60 and Hsp90 Expression in Müller Cells

In order to study the effects of anti-VEGF therapy on mitochondrial and cytoplasmic stress in
Müller cells, we assessed whether ranibizumab and aflibercept affected the expression of Hsp60
and Hsp90 under stress (Figure 5). Hsp70 and Hsp90 are molecular chaperones that are expressed
constitutively under normal conditions to maintain protein homeostasis and both are upregulated
by environmental stress [24,25]. Hsp60 has primarily been known as a mitochondrial protein that is
important for folding key proteins in the mitochondria [25]. Hsp90 interacts with unfolded proteins to
prevent irreversible protein aggregation and assists refolding, intracellular transport, maintenance
and degradation of proteins in the cytoplasm [24]. We found that hypoxia and HG, either alone or in
combination, tended to increase the expression of Hsp60 and Hsp90 when compared with the groups
cultured in starvation media containing LG (Figure 5A,B). However, ranibizumab and aflibercept did
not have a significant impact on the expression of Hsp60 and Hsp90 in Müller cells under the stress
conditions we tested (Figure 5A,B).
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Figure 5. Effects of aflibercept and ranibizumab on Hsp60 and Hsp90 expression in Müller cells under
stress conditions. Müller cells were incubated in stress media for 24 h. The effects of aflibercept and
ranibizumab on Hsp60 (A); and Hsp90 (B) expression were studied by Western blots, n = 4/group.

2.6. Effects of Aflibercept and Ranibizumab on Hsp60 and Hsp90 Expression in Photoreceptors

We also conducted Western blots to study the effects of aflibercept and ranibizumab on expression
of Hsp60, Hsp90 in Y79 cells exposed to stress conditions. We found that the addition of aflibercept
into culture media significantly inhibited the expression of Hsp60 compared with cells cultured in
starvation media containing LG, LG + CoCl2 or HG (p < 0.05, Figure 6A), and tended to decrease
Hsp60 expression in cells cultured in HG + CoCl2 (Figure 6A). Aflibercept significantly increased the
expression of Hsp90 in cells cultured in LG + CoCl2 (Figure 6B). However, ranibizumab did not have a
significant effect on the expression of Hsp60 and Hsp90 in Y79 cells under the stress conditions we
tested (Figure 6A,B).
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Figure 6. Effects of aflibercept and ranibizumab on Hsp60 and Hsp90 expression in Y79 photoreceptors.
Y79 cells were incubated in stress media for 24 h. The effects of aflibercept and ranibizumab on
Hsp60 (A); and Hsp90 (B) were studied by Western blots. * p < 0.05, n = 6/group.
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2.7. Effects of Aflibercept and Ranibizumab on Thioredoxin 1 and 2 (TRX1, TRX2) Expression in
Photoreceptors

As our data from Western blots indicated that aflibercept affected the expression of Hsp60 and
Hsp90 in Y79 photoreceptors, we next studied the effects of aflibercept and ranibizumab on expression
of redox proteins including thioredoxin 1 and 2 (TRX1, TRX2) in Y79 cells. TRX1 is present in the
cytosol, while TRX2 is localized to mitochondria [26]. We found that addition of aflibercept into
starvation media containing LG + CoCl2 or HG + CoCl2 significantly increased the expression of TRX1
and TRX2, while ranibizumab did not affect TRX1 and TRX2 expression in Y79 photoreceptors cultured
in LG or HG, either with or without CoCl2-induced hypoxia (Figure 7).
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2.8. Effects of Aflibercept and Ranibizumab on Neurotrophic Factors in Müller Cells

As Müller cells play an important role in the maintenance of photoreceptor health through
production of neurotrophic factors, we next studied the effects of aflibercept and ranibizumab on
the production of NT3, BDGF and PEDF under stress conditions. Compared with cells cultured in
the starvation medium containing LG, HG had little effect on NT3 production but CoCl2-induced
hypoxia significantly increased NT3 production regardless of the concentrations of glucose (Figure 8A).
Addition of clinical doses of aflibercept and ranibizumab into the culture media did not have a
significant impact on NT3 production in Müller cells cultured in the stress conditions we tested
(Figure 8A).
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Figure 7. Effects of aflibercept and ranibizumab on expression of TRX1 (A) and TRX2 (B) in 
photoreceptor cells. Aflibercept significantly increased the expression of TRX1 and TRX2 under stress 
conditions caused by CoCl2-induced hypoxia. However, ranibizumab had little effects on the 
expression of TRX1 and TRX2 under the conditions tested. * p < 0.05 and ** p < 0.01, n = 4/group. TRX, 
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2.8. Effects of Aflibercept and Ranibizumab on Neurotrophic Factors in Müller Cells 

As Müller cells play an important role in the maintenance of photoreceptor health through 
production of neurotrophic factors, we next studied the effects of aflibercept and ranibizumab on the 
production of NT3, BDGF and PEDF under stress conditions. Compared with cells cultured in the 
starvation medium containing LG, HG had little effect on NT3 production but CoCl2-induced 
hypoxia significantly increased NT3 production regardless of the concentrations of glucose (Figure 
8A). Addition of clinical doses of aflibercept and ranibizumab into the culture media did not have a 
significant impact on NT3 production in Müller cells cultured in the stress conditions we tested 
(Figure 8A). 
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Figure 8. Aflibercept and ranibizumab did not affect the production of NT3, BDNF and PEDF in
Müller cells. (A) Hypoxia significantly increased NT3 production compared with cells incubated in
the medium containing LG or HG; (B,C) Hypoxia significantly reduced BDNF and PEDF and HG also
significantly reduced PEDF production in (C). However, the addition of aflibercept and ranibizumab
into media did not significantly affect the production of NT3, BDNF and PEDF in (A–C). * p < 0.05 and
** p < 0.01, n = 9/group in (A) and n = 6/group in (B,C). NT3, neurotrophin 3; BDNF, brain-derived
neurotrophic factor; PEDF, pigment epithelium derived factor.

2.9. Effects of Aflibercept and Ranibizumab on Interphotoreceptor Retinoid-Binding Protein (IRBP) Production
in Y79 Photoreceptors

Measurements of BDNF and PEDF production indicated that hypoxia significantly inhibited the
production of BDNF and PEDF in Müller cells cultured in starvation media containing LG or HG
(Figure 8B,C). However, neither aflibercept nor ranibizumab affected the levels of BDNF and PEDF
production under stress conditions (Figure 8B,C).

As IRBP is expressed by Y79 photoreceptor cells and plays an important role in the visual
cycle through transport of 11-cis retinal and all-trans retinol between the photoreceptors and RPE
cells [27–31], we next determined the effects of aflibercept and ranibizumab on the production of
IRBP in Y79 photoreceptors (Figure 9). Compared with cells cultured in the starvation medium
containing LG, HG slightly reduced the production of IRBP but the differences were not statistically
significant (p > 0.05, Figure 9). Hypoxia significantly reduced the production of IRBP regardless the
concentrations of glucose (p < 0.05, LG vs. LG + CoCl2 and HG vs. HG + CoCl2; Figure 9). Addition of
clinical doses of aflibercept and ranibizumab into culture media significantly inhibited the production
of IRBP and this inhibitory effect was more profound in cells treated with aflibercept than in those
treated with ranibizumab under each stress condition (Figure 9). Interestingly, aflibercept but not
ranibizumab, appeared to have less effect on inhibiting IRBP in cells exposed to hypoxia regardless of
the concentrations of glucose (Figure 9).
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Figure 9. Aflibercept and ranibizumab inhibited IRBP production in Y79 photoreceptor cells. IRBP was
measured by ELISA using conditioned media collected from Y79 cells 24 h after incubation in stress
media containing 1% FCS. * p < 0.05 and ** p < 0.01, n = 5/group.

3. Discussion

We have studied the potential adverse effects of aflibercept and ranibizumab on human MIO-M1
Müller cells and Y79 photoreceptors under various conditions of stress in vitro. We did not find
direct evidence that aflibercept and ranibizumab affected the viability of either type of cells. Neither
aflibercept nor ranibizumab affected the production of neurotrophic factors, including NT3, BDNF and
PEDF, by Müller cells, nor did they affect the expression of cell stress markers, including Hsp60 and
Hsp90. In photoreceptors, however, aflibercept but not ranibizumab, affected the expression of heat
shock proteins including Hsp60 and Hsp90 and redox proteins including TRX1 and TRX2. Our most
interesting finding was that both aflibercept and ranibizumab inhibited the production of IRBP in
Y79 photoreceptors, with the most profound effect observed with aflibercept treatment. Collectively,
we found that aflibercept and ranibizumab did not have adverse effects on human Müller cells but
their potential influence on photoreceptors should be specifically monitored in clinical research.

Of the various forms of stress we induced, we found that hypoxia was the main factor that drove
cell injury and overexpression of VEGF and HIF1α in Müller cells. This observation is consistent
with the well-established role of VEGF and HIF1α in mediating neovascularization in ischemic retinal
diseases [1,2,32]. VEGF is produced by several types of retinal cells, including Müller cells and
RPE cells. Under pathological conditions, exogenous stress leads to morphological, biochemical and
physiological changes in Müller cells, including uncontrolled production of VEGF, thus contributing to
breakdown of the blood retinal barrier and the development of retinal neovascularization. Müller cells
are a major contributor to retinal vascular leakage and pre-retinal and intra-retinal neovascularization
in diabetic retinopathy [33].

Y79 photoreceptors have been reported to overexpress VEGF under hypoxic conditions [34].
We confirmed that hypoxia was the main factor that drove cell injury and overexpression of VEGF and
HIF1α in Y79 photoreceptors. Photoreceptor cells are the most prevalent cells in the retina. They have
a very high metabolic rate and consume more oxygen than other cells throughout the body. There is
increasing evidence that photoreceptor cells play a previously unappreciated role in retinal diseases.
It has been reported that stressed photoreceptors likely contribute to retinal hypoxia and subsequent
retinal abnormalities in early and advanced stages of diabetic retinopathy [35–37]. Du et al. [38]
reported that photoreceptors were the major source of reactive oxygen species in the retina. Genetic
and chemical depletion of photoreceptors inhibited increase in superoxide and inflammatory proteins
in diabetic mice [38]. A recent study by Joyal et al. demonstrated that stressed photoreceptors
secreted VEGF through stabilizing HIF1α and contributed to deep retinal neovascularization in
VLDLR mutant mice [39]. Collectively, these observations indicate that the high energy demand
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by photoreceptors makes them vulnerable to cell injury under stress conditions such as hypoxia,
hyperglycemia and energy starvation, thus acting as both a victim and a contributor to vascular
abnormalities in diseased conditions.

We did not find direct evidence that the clinical doses of aflibercept and ranibizumab affected
the survival of human MIO-M1 Müller cells and Y79 photoreceptors. This result is consistent with
findings reported by others that clinical doses of aflibercept, ranibizumab and bevacizumab did not
affect the cell survival of human RPE, rat ganglion cells or mouse 661w photoreceptors [20–23,40],
However, a recent study found that at 10× clinical doses, aflibercept, but not ranibizumab, significantly
decreased the cell viability of human RPE [20]. Aflibercept at 2× and 10× clinical doses also caused
damage to mitochondria in the RPE [20]. We have studied the effects of clinical doses of aflibercept and
ranibizumab on the expression of mitochondrial stress marker Hsp60 and cytoplasmic stress marker
Hsp90 along with redox proteins including TRX1 and TRX2 in Müller cells and Y79 photoreceptors.
We found that aflibercept and ranibizumab had little direct effect on Müller cells. In photoreceptors,
however, aflibercept, but not ranibizumab, caused differential expression of Hsp60, Hsp90; TRX1 and
TRX2, indicating that photoreceptors may be more susceptible to aflibercept-induced cellular toxicity.

A number of recent studies have reported the adverse effects of anti-VEGF therapy in vitro
and in vivo. Brar et al. reported that VEGF protected retinal ganglion cells against H2O2-mediated
oxidative stress but this protective effect was eliminated by co-treatment with bevacizumab [10].
Pretreatment of the RPE with neutralizing antibodies against VEGF-A promoted H2O2-induced cell
death [8]. In a rat model of ischemia-reperfusion injury, ischemic preconditioning increased the
levels of VEGF-A expression and substantially decreased cell apoptosis in ganglion cells and the
inner retinal neurons and the neuroprotective effect of ischemic preconditioning was reversed by
VEGF-A inhibition [41]. Chronic inhibition of VEGF-A using soluble VEGF-R1 was reported to
lead to loss of retinal ganglion cells in normal rats [41]. Klettner et al. reported that aflibercept but
not ranibizumab was taken up and stored in the RPE, leading to reduced phagocytic ability and
impaired wound healing capacity [42,43]. Considering that photoreceptors do not have the capacity
of phagocytosis, the cellular mechanisms underlying aflibercept-induced stress in photoreceptors
would be different from that observed in the RPE. Intravitreal injection of bevacizumab disrupted
mitochondria in the photoreceptor inner segments and caused a significant increase in photoreceptor
apoptosis [44,45]. Sustained neutralization of intraocular VEGF has been reported to induce retinal
neurodegeneration in diabetic mice [11]. Januschowski et al. observed significant reduction in a-wave
and b-wave amplitudes after short-term exposure of isolated bovine retinas to an oxygen-saturated
nutrient solution containing aflibercept [46]. Genetic disruption of VEGF expression in the RPE led to
choriocapillary atrophy, RPE and Bruch’s membrane abnormalities, increased photoreceptor apoptosis
and reduced cone photoreceptor function [6,7,14]. Collectively, these data suggest the potential adverse
effects of anti-VEGF therapy should be carefully evaluated in all types of retinal cells.

One important function of Müller cells is to release neurotrophic factors such as NT3, BDNF and
PEDF to maintain the health of photoreceptors and other neurons [18,47–50]. We next studied the
effects of aflibercept and ranibizumab on the production of NT3, BDNF and PEDF in human Müller
cells. We found that hypoxia increased NT3 and reduced the production of BDNF and PEDF. However,
aflibercept and ranibizumab did not significantly affect the production of these neurotrophic factors by
Müller cells under the stress conditions we tested. Since aflibercept and ranibizumab did not affect
the cell viability and expression of Hsp60 and Hsp90 in Müller cells, we believe that clinical doses of
aflibercept and ranibizumab are not toxic to Müller cells.

Perhaps our most interesting finding was that aflibercept and ranibizumab inhibited the
production of IRBP in photoreceptors. IRBP is a major soluble glycoprotein secreted by
photoreceptors [51]. It is distributed within the interphotoreceptor matrix (IPM) in a light-dependent
manner and participates in the intimate interactions between the IPM and photoreceptors [52]. IRBP is
important for the maintenance of the function of photoreceptors through transport of 11-cis retinal
and all-trans retinol between the photoreceptors and RPE cells in the visual cycle, buffering excess
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vitamin A in the IPM and protecting retinoids from degradation [52]. IRBP deficiency has been linked
to photoreceptor damage in a number of retinal diseases including inherited retinal diseases [53] and
diabetic retinopathy [31]. We found that clinical doses of aflibercept and ranibizumab significantly
inhibited the production of IRBP in Y79 photoreceptors, with the most profound effect observed with
aflibercept treatment. Data from Western blots indicated that aflibercept, but not ranibizumab, affected
the expression of mitochondrial markers Hsp60 and TRX2 as well as cytoplasmic marker Hsp90 and
TRX1 in Y79 cells, suggesting that aflibercept may stress photoreceptors more than ranibizumab does.

Interestingly, we found that aflibercept, but not ranibizumab, had less effect on inhibiting IRBP in
hypoxia when compared with cells treated with aflibercept in normoxia. One possible explanation
for this observation could be that hypoxia induces overexpression of VEGF-B and PLGF [54] and
both angiogenic factors may inhibit the production of IRBP. Given the facts that aflibercept inhibits
VEGF-A, -B and PLGF while ranibizumab mainly acts on VEGF-A, aflibercept may partially reverse
the inhibitory effects of hypoxia-induced overexpression of VEGF-B and PLGF on IRBP production.
Future experiments are warranted to study the effects of different isoforms of VEGF family members
on IRBP production in photoreceptors.

We acknowledge that there are limitations in extrapolating findings from in vitro studies to the
clinic. Isolation and culture of photoreceptor cells from normal eyes has been a major challenge for
retinal research. This is because that normal photoreceptor cells would not survive for very long once
deprived of their normal extracellular matrix and cellular contacts with other retinal cells such as the
RPE and Müller cells. Since Y79 photoreceptors were originally derived from a human retinoblastoma,
they may not act as normal human photoreceptors in vitro in every respect although they express
several markers of differentiated photoreceptors including opsin, arrestin, phosducin and IRBP [27–31].
Therefore, our results cannot be readily extrapolated to the clinical setting but may nevertheless be
useful to generate hypotheses for testing in clinical trials.

4. Materials and Methods

4.1. Culture of Human Müller Cells and Photoreceptors under Normal and Stressed Conditions

Human MIO-M1 Müller cells were cultured in DMEM (GIBCO#11885, Grand Island, NY, USA),
and retinoblastoma Y79 photoreceptor cells (ATCC® HTB18™, Manassas, VA, USA) were cultured
in RPMI1640 (Invitrogen#11875, Sydney, Australia) media containing 10% fetal calf serum (FCS),
1 mg/mL glutamine, 100 U/mL penicillin and 100 U/mL streptomycin. The media were supplemented
with various concentrations of glucose to mimic physiologic and hyperglycemic conditions. In order
to induce a hypoxic environment, cobalt chloride (CoCl2, 200 µM, Sigma, St. Louis, MO, USA)
added to media to induce hypoxia-related cell stress [55]. CoCl2 establishes the cellular hypoxic
response via stabilizing hypoxia-inducible factors through inhibition of the prolyl hydroxylase
domain [56,57]. For experiments in which cells were exposed to hypoxic stress, cells were initially
cultured in media containing 10% FCS and 5 mM glucose for MIO-M1 cells or 11 mM glucose for Y79
cells and then stressed in “starvation” media containing 1% FCS, various concentrations of glucose,
1% insulin-transferrin-selenium-ethanolamine supplements (ITS-X, GIBCO#51500056), 1 mg/mL
glutamine, 100 U/mL penicillin and 100 U/mL streptomycin along with or without CoCl2 (200 µM).
In order to study the effects of aflibercept (Eyelea) and ranibizumab (Lucentis) on Müller cells and
photoreceptors, both types of retinal cells were treated with these two anti-VEGF agents for 24 h under
hypoxic stress as described below.

4.2. Anti-VEGF Treatments in Human Müller Cells and Photoreceptors

Clinical doses of aflibercept (0.5 mg/mL) and ranibizumab (0.125 mg/mL) were dissolved in
starvation media containing 1% FCS, various concentrations of glucose along with and without
CoCl2 (200 µM) (Table 1). The clinical doses were calculated by assuming that the amount of each
drug used clinically in intravitreal injections distributes equally throughout the 4 mL of human
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vitreous. Müller cells and Y79 photoreceptors were incubated in 12 starvation media containing 1%
FCS and other elements including: (1) low glucose (LG); (2) LG + aflibercep; (3) LG + ranibizumab;
(4) LG + CoCl2 (200 µM; (5) LG + CoCl2 + aflibercep; (6) LG + CoCl2 + ranibizumab; (7) high glucose
(HG), (8) HG + aflibercep; (9) HG + ranibizumab; (10) HG + CoCl2; (11) HG + CoCl2 + aflibercep; and
(12) HG + CoCl2 + ranibizumab (Table 1). The effects of aflibercept and ranibizumab on cell survival,
differential expression of cell stress markers and the production of NT3, BDNF and PEDF as well as
IRBP were assessed 24 h after incubation as described below.

Table 1. Stress conditions in which 1% FCS starvation media were used to test the effects of anti-VEGF
therapy on MIO-M1 Müller cells and Y79 photoreceptors.

Group Glucose (LG/HG) CoCl2 (200 µM) Aflibercept (0.5 mg/mL) Ranibizumab (0.125 mg/mL)

1 LG − − −
2 LG − + −
3 LG − − +
4 LG + − −
5 LG + + −
6 LG + − +
7 HG − − −
8 HG − + −
9 HG − − +

10 HG + − −
11 HG + + −
12 HG + − +

LG = low glucose, 5 mM for MIO-M1 Müller cells and 11 mM for Y79 photoreceptors respectively;
HG = high glucose, 25 mM for both types of retinal cells. All media were supplemented with 1%
insulin-transferrin-selenium-ethanolamine supplements (ITS-X, GIOCO#51500056).

4.3. Calcein-AM Cell Viability Assay

Cell viability was measured using the retention of acetoxymethyl ester of calcein (calcein-AM)
in live cells as we described previously [58,59]. Calcein-AM is membrane-permeant and can be
introduced into cells via incubation with culture media. Once inside the cells, the non-fluorescent
calcein-AM is hydrolyzed by intracellular esterases into the highly negatively charged green fluorescent
calcein in the cytoplasm of live cells. Calcein-AM cell viability assay was conducted in 48-well plates.
For calcein-AM cell viability assays in MIO-M1 Müller cells, 1 × 104 cells were seeded in each well until
80% confluence and then the media were replaced by 200 µL of various stress media and incubated for
24 h. Cell viability assay was conducted by addition of 100 µL of 12 µM calcein-AM (Molecular Probes,
Invitrogen) into each well to form a final working concentration of 4 µM calcein-AM. Cells were
incubated for 60 min to allow the dye to be taken up. For calcein-AM cell viability assays in Y79 cells,
2 × 104 cells were directly incubated in 200 µL of test media for 24 h and then a volume of 100 µL of
12 µM calcein-AM was added to each well. Fluorescence measurements were performed 60 min after
incubation using a Tecan Safire2 fluorescence multi-well plate reader (Tecan, Männedorf, Switzerland)
with excitation/emission wavelengths at 485/535 nm. Fluorescent images were also taken using an
inverted fluorescent microscope to document the cell morphology after calcein-AM staining.

4.4. Measurements of VEGF-A, NT3, BDNF, PEDF and IRBP in Conditioned Media Using Enzyme-Linked
Immunosorbent Assays

As FCS contains a complex mixture of growth factors, the production of VEGF-A, NT3, BDNF and
PEDF in Müller cells and IRBP in photoreceptors were measured using enzyme-linked immunosorbent
assays (ELISA) 24 h after incubating cells in test media containing 1% FCS and various concentrations of
glucose along with and without CoCl2 (200 µM). In brief, conditioned media were collected from 6-well
plates and ELISA was conducted to detect human VEGF-A (R&D Systems, #DY293B, Minneapolis,
MN, USA), NT3 (Biosensis, #BEK-2221, Thebarton, Australia), BDNF (R&D Systems, #DY248), PEDF
(R&D Systems, #DY1177) and IRBP (LifeSpan Biosciences, #LS-F7906, Seattle, WA, USA) according to
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the manufacturer’s instructions. Results were normalized to levels of proteins extracted from cells
where the conditioned media were collected.

4.5. Western Blot Analysis

Western blots were conducted to study changes in hypoxia-inducible factor-α (HIF1α), heat shock
proteins (Hsp) 60 and 90 and redox proteins including thioredoxin 1 and 2 (TRX1, TRX2). Briefly,
proteins were extracted from MIO-M1 Müller cells and Y79 photoreceptors and their concentrations
were determined by bicinchoninic acid (BCA) assays (QuantiPro BCA assay kit, Sigma). Equal amounts
of protein were subjected to sodium dodecyl sulfate polyacrylamide gel electrophoresis then transferred
to a polyvinylidene difluoride membrane. Membranes were probed with primary antibodies against
HIF1α (1:500, Novus Biologicals #NB-100-449, Littleton, CO, USA), Hsp60 (1:1000, Cell Signaling#4870,
Beverly, MA, USA), Hsp90 (1:1000, Cell Signaling#4877), TRX1 (1:1000; Cell Signaling #2429) and
TRX2 (1:500, Proteintech#13089-1-AP) and then incubated with secondary antibodies conjugated with
horseradish peroxidise. Protein bands were visualized using the G:Box BioImaging system (Syngene,
Cambridge, UK) and quantified using the GeneTools image scanning and analysis package (Syngene,
software version 3.07(g)). Protein expression was normalized to α/β tubulin (1:2000; Cell Signaling
#2148), which serves as a loading control.

4.6. Statistical Analysis

Differences between study groups were analyzed using one-way analysis of variance
(one-way ANOVA) followed by a post hoc Bonferroni’s correction or Kruskal–Wallis tests for multiple
comparisons using GraphPad Prism V.5.0 version statistics program (GraphPad Software, San Diego,
CA, USA). A p-value < 0.05 was considered to be statistically significant. Data are reported as
mean ± standard error of the mean (SEM) where applicable.

5. Conclusion

We have studied the potential adverse effects of aflibercept and ranibizumab on human
Müller cells and retinoblastoma Y79 photoreceptors. Aflibercept and ranibizumab did not appear to
affect Müller cells adversely. On the other hand, aflibercept appeared to stress Y79 photoreceptors
more compared with ranibizumab. Aflibercept and ranibizumab both inhibited the production of IRBP
in Y79 photoreceptors, with the most profound effect observed with aflibercept treatment. Our results
indicate that the potential influence of aflibercept and ranibizumab on photoreceptors should be
specifically monitored in clinical research.
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