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Background: Innate immune responses to influenza A virus (IAV) infection are initiated in
part by toll-like receptor 3 (TLR3). TLR3-dependent signaling induces an antiviral immune
response and an NFkB-dependent inflammatory response. Protease-activated receptor 2
(PAR2) inhibits the antiviral response and enhances the inflammatory response. PAR2
deficiency protected mice during IAV infection. However, the PAR2 expressing cell-types
contributing to IAV pathology in mice and the mechanism by which PAR2 contributes to
IAV infection is unknown.

Methods: IAV infection was analyzed in global (Par2-/-), myeloid (Par2fl/fl;LysMCre+) and
lung epithelial cell (EpC) Par2 deficient (Par2fl/fl;SPCCre+) mice and their respective controls
(Par2+/+ and Par2fl/fl). In addition, the effect of PAR2 activation on polyinosinic-polycytidylic
acid (poly I:C) activation of TLR3 was analyzed in bone marrow-derived macrophages
(BMDM). Lastly, we determined the effect of PAR2 inhibition in wild-type (WT) mice.

Results: After IAV infection, Par2-/- and mice with myeloid Par2 deficiency exhibited
increased survival compared to infected controls. The improved survival was associated
with reduced proinflammatory mediators and reduced cellular infi ltration in
bronchoalveolar lavage fluid (BALF) of Par2-/- and Par2fl/fl;LysMCre+ 3 days post
infection (dpi) compared to infected control mice. Interestingly, Par2fl/fl;SPCCre+ mice
showed no survival benefit compared to Par2fl/fl. In vitro studies showed that Par2-/-

BMDM produced less IL6 and IL12p40 than Par2+/+ BMDM after poly I:C stimulation. In
addition, activation of PAR2 on Par2+/+ BMDM increased poly I:C induction of IL6 and
IL12p40 compared to poly I:C stimulation alone. Importantly, PAR2 inhibition prior to IAV
infection protect WT mice.
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Conclusion:Global Par2 or myeloid cell but not lung EpC Par2 deficiency was associated
with reduced BALF inflammatory markers and reduced IAV-induced mortality. Our study
suggests that PAR2 may be a therapeutic target to reduce IAV pathology.
Keywords: toll-like receptor 3, influenza A virus, innate immune response, macrophage, lung epithelial cell,
protease-activated receptor 2 (PAR2), F2rl1
INTRODUCTION

Influenza is a group of single-stranded RNA (ssRNA) viruses
within the Orthomyxoviridae family which are responsible for
over 5 million hospitalizations per year globally, occurring in
young children (under the age of 2 years) and adults at the
highest rates in those ≥65 years (1, 2). In particular, influenza A
virus (IAV) is known for its ability to cause pandemics in the
context of genetic shift, and as the long-standing major viral
etiology of acute respiratory distress syndrome (ARDS) in adults
(3). The ongoing coronavirus pandemic has highlighted the
importance of studying the pathophysiological mechanisms
underlying the course of illness and complications associated
with severe respiratory viral infections.

The pathophysiology of lung inflammation and damage
during influenza virus infection can be attributed to 1/virus-
mediated and 2/host immune response-mediated mechanisms,
with the latter including features of the innate immune response,
such as neutrophil infiltration and pro-inflammatory mediator
production (3). Toll-like receptors (TLRs) initiate innate
immune responses by recognizing pathogen associated
molecular patterns (PAMPs) (4). Double-stranded RNA
(dsRNA) is a major viral PAMP generated during replication
of ssRNA viruses (5, 6). TLR3 recognition of dsRNA leads to the
activation of two pathways: 1/the anti-viral type-I interferon
(IFN) response and 2/the NFkB pro-inflammatory response (7,
8). Importantly, TLR3 is a critical regulator of the innate immune
response to IAV (7, 9). TLR3 deficiency was associated with
reduced IAV-associated lung inflammation and mortality (9).
Within the lung, IAV replicates primarily in epithelial cells
(EpCs) and leads to damage of the EpC layer which reduces
gas exchange (10, 11). However, there is evidence that replication
may occur at lower levels within all cell types found in the
murine lung, including alveolar macrophages (AMF) (11).
Importantly, EpCs and AMF are among the first cells to
response to pathogens in the lung, including IAV (12). AMF
are one of the major sources of type-I IFN after respiratory RNA
virus infections (13, 14). Moreover, AMF are essential in
protecting against IAV infection (15, 16). However, excessive
AMF activation contributes to IAV pathology by releasing
proapoptotic factors causing direct EpC injury/death (17–19).

Protease activated receptors (PARs) are a group of four G-
protein coupled receptors (PAR1-4) which are expressed broadly
in humans and mice (20). For instance, PAR2 is expressed on
nucleated circulating blood cells and within all organs, including
the lung (20). In the lung, PAR2 is present on the surface of
AMF and EpCs, and expression is upregulated in response to
IAV (21). It was proposed that TLRs and PARs act together to
org 2
detect PAMPs and infection-associated changes in protease
gradients within the extracellular milieu, respectively (22). Nhu
et al. (23) showed that PAR2 stimulation increased TLR3:NFkB
inflammation but suppressed TLR3:type-I IFN anti-viral
responses in human EpC lines in vitro. In addition, the authors
showed that Par2 deficiency was associated with reduced IAV-
induced mortality (23).

Here, we investigate the PAR2-dependent early immune
responses to IAV infection in mice. In addition, using mice
with a cell-specific Par2 deficiency, we investigated the
contribution of EpC and myeloid cell expressed PAR2 to IAV-
induced lung pathology. Lastly, we determined if PAR2
inhibition in wild-type (WT) mice can be a therapeutic
approach to reduce IAV infection.
METHODS

Mice
Female and male mice between 8-12 weeks of age were used in
this study. Par2 (F2lr1) knockout (Par2‐/‐) and their respective
control (Par2+/+) mice, maintained as cousin lines, were used for
this study (24). Mice carrying floxed Par2 alleles (Par2fl/fl,
targeted allele name: F2rl1tm1a(EUCOMM)Wtsi) were generated
using C57Bl/6 ES cells from EUCOMM as described (25).
Additional information about the Par2fl/fl mice is available at
http://www.informatics.jax.org/allele/MGI:4460480. Cell-
specific PAR2 deficient mice were generated by crossing female
Par2fl/fl with male Par2fl/fl mice expressing Cre recombinase in a
cell type‐specific manner. To generate mice with Par2 deleted in
lung EpCs we used the surfactant protein C (SPC) promoter
(Par2fl/fl;SPCCre+ mice) (26, 27). The Par2 gene was deleted in the
myeloid lineage (monocytes/macrophages and neutrophils)
using the lysosomal M (LysM) promoter (Par2fl/fl;LysMCre+)
(26, 28–31). For mice with cell type-specific Par2 deletion,
littermate Par2fl/fl mice were used as controls. All mouse
strains were on the C57Bl/6 background. The study was
approved and performed in accordance with the guidelines of
the animal care and use committee of the University of North
Carolina at Chapel Hill and complies with National Institutes of
Health guidelines.

IAV Infection
Mouse-adapted influenza A/Puerto Rico/8/1934 (PR8) virus strain
was propagated in 10-12 day old embryonated chicken eggs and
titers were quantified by hemagglutination unit (HAU) assay (27,
32). Mice were inoculated with 0.04 HAU in 50 µl PBS administered
intranasally (i.n.) as previously described (27, 32, 33). This dose
December 2021 | Volume 12 | Article 791017
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results in a ~40%mortality inWTmice. Mice were given free access
to feed and water while being monitored over the course of
infection. Changes in body weights were recorded daily and mice
were euthanized if they had ≥ 25% loss of initial body weight, as
specified in our animal protocol.

In Vivo PAR2 Inhibition
Eight-week old male C57BL/6J mice purchased from Jackson
Laboratories (Bar Harbor, ME) were used for PAR2 inhibition
studies. Thirty minutes prior to IAV infection, mice were
administered i.n. 20 ng anti-mouse PAR2 antibody (SAM11,
Santa Cruz Biotechnology, Dallas, TX) or IgG2a control antibody
(clone C1.18.4, Millipore Sigma, Burlington, MA) in 25 µl sterile
normal saline to isoflurane anesthetized mice (34). Subsequently,
0.04 HAU IAV in 25 µl PBS was administered i.n. as described
above. At 24 and 48 hours post-infection, mice were
administered i.n. additional 20 ng and 2 µg, respectively, of
SAM11 or IgG2a control in 50 µl sterile normal saline.

Bronchoalveolar Lavage Fluid Collection
and Analysis
Mice were anesthetized with isoflurane and venous blood was
collected from the inferior vena cava after injection of 0.2 mL
sodium citrate. Mice were subsequently euthanized by cervical
dislocation and bronchoalveolar lavage fluid (BALF) was collected
with 3 x 900 µL ice‐cold PBS as described previously (26, 27, 32,
33). BALF samples were centrifugated and the cell free
supernatant was collected (33). Cell pellets were resuspended in
200 µL PBS, and total white blood cell (WBC), neutrophil, and
lymphocyte numbers were determined with an Element HT5
veterinary hematology analyzer (Heska, Loveland, CO) (26, 27,
32, 33). Lung tissue was resected, snap frozen in liquid nitrogen
and stored at -80°C for further analysis. A limitation of automated
cell counting for BALF cellularity is that the automated systems
tends to underestimate the amount of monocytes/macrophages,
especially AMF, in BALF preparations and potentially
misrecognizes them as eosinophils (35).

Real‐Time Polymerase Chain Reaction
Total RNA was isolated from snap frozen untreated lung or lung
from lavage experiments, using the TRIzol method (Thermo
Fisher Scientific) (26, 27, 32, 33). One microgram of total RNA
was transcribed to complementary DNA (iScript RT Supermix
Kit, Bio‐Rad Laboratories, Hercules, CA). Levels of IAV genomic
RNA and IFNb mRNA were analyzed by real‐time PCR using
SSoFast Advanced Universal Supermix in a Bio‐Rad cycler (Bio‐
Rad Laboratories) as described elsewhere (27, 32). Predesigned
primer‐probe sets for H1N1 IAV genomic RNA and mouse
IFNB1 (IFNb) were obtained from Integrated DNA
Technologies (Coralville, IA) (27, 32, 36).

Lung Histopathology and Disease Scoring
To obtain lung tissue for histology, a subset of mice were
anesthetized with isoflurane and were perfused with 2.5 mL
10U/mL heparin in PBS via injection into the right ventricle of
the heart 7dpi as described (37). Mice were euthanized, and lungs
were insufflated gently with 0.6 mL 10% phosphate-buffered
Frontiers in Immunology | www.frontiersin.org 3
formalin (37, 38). Lungs were removed and were fixed in 10%
phosphate-buffered formalin, paraffin embedded, and sectioned
at 4 mm. Sections (maximal airspace) of the left lung were stained
with hematoxylin and eosin (H&E) (33, 38). Sections taken from
similar anatomic location and were compared by a blinded
pathologist for signs of lung EpC injury with focus on EpC
layer disorganization, EpC layer thinning/stretching and total
loss of EpC layer within the medium sized airways.

Non-Invasive Lung Function Measurement
Global lung function was recorded on conscious mice using a
Buxco whole-body plethysmography system (Data Science
International, New Brighton, MN) 7dpi to quantify Penh, a
measure of calculated airway resistance, EF50, midbreath
expiratory flow, and Rpef, the rate of peak expiratory flow
(39). Briefly, Par2+/+ and Par2‐/‐ mice were placed into
individual chambers and allowed to acclimate for 20 min
before a 30 min measurement window. Continuous 2-second
summaries were recorded and averaged every 1 min for a total of
30 measurements per mouse (39).

Bone Marrow-Derived Macrophages
Eight-week old male Par2+/+ and Par2‐/‐ mice were sacrificed by
isoflurane overdose with additional cervical dislocation and
femurs were excised and cleaned. Medullary cavities were
flushed with ice-cold PBS and the resulting suspension was
filtered through a 40-micron filter. Cells were resuspended and
incubated at 37°C on 10cm cell culture petri dishes for three
hours. Non-adherent cells were collected and plated on 10cm cell
culture treated petri dishes at a concentration of 3 x 105 cells/mL
in Iscove’s Modified Dulbecco’s Media supplemented with 10%
FBS (Omega Scientific, Tarzana, CA), 1% Penicillin-
Streptomycin (Sigma-Aldrich, St. Louis, MO), and 50 ng/mL
M-CSF (R&D Systems) with media exchange every three days.
On day 7, the bone marrow-derived macrophages (BMDM) were
dissociated by Trypsin-EDTA (Sigma-Aldrich) for 3 minutes and
gently scraped from the plate. BMDM were seeded on 24 well or
12 well cell culture treated plates at a concentration of 2x105

cells/mL in DMEM/F12 supplemented with 10% FBS, 100 mM
L-glutamine, and 1% Penicillin-Streptomycin 36 hours prior to
stimulation. Media was exchanged and BMDM were stimulated
with 5 µg/mL polyinosinic-polycytidylic acid (poly I:C, Tocris,
Minneapolis, MN) and/or 200 µM PAR2 agonist peptide (PAR2
AP, SLIGRL‐NH2, R&D Systems).

ELISA
Protein levels of TNFa, MCP1, CXCL1, IL1b, IL6, and IL12p40
in BALF and BMDM conditioned media was analyzed by ELISA
(Duo-Set, R&D Systems, Minneapolis, MN) (26, 27, 32, 33, 40).

Statistics
GraphPad Prism 9.2 (GraphPad Software Inc, San Diego, CA)
was used for statistical analysis. Data are represented as mean ±
standard error of the mean (SEM). The two‐tailed Student t test
was used for two‐group comparison of normally distributed data.
For multiple‐group comparison, normally distributed data were
analyzed by two‐way ANOVA test and were Bonferroni‐
December 2021 | Volume 12 | Article 791017
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corrected for repeated measure over time. Survival rates were
analyzed by Kaplan–Meier analysis and the log‐rank test was
applied to compare the survival distribution between the two
groups. P value ≤ 0.05 was regarded as significant.
RESULTS

Par2 Deficiency Is Associated With
Reduced IAV-Induced Mortality
Mice were monitored daily for 14 days for weight loss following
IAV infection. Weight loss ≥25% or actual death were criteria for
mortality. Body weight curves were constructed showing daily
weights of mice remaining that had not met mortality criteria.
(Figure 1A). After infection, mice of both genotypes exhibited
similar body weight changes up to 7 days post infection (dpi)
(Figure 1A). However, Par2-/- mice exhibited improved body
weight recovery compared to Par2+/+ mice starting 8dpi. The
calculated Kaplan Meier survival curves constructed for mice
over the course of the infection showed that Par2-/- mice had
significantly improved survival compared to infected Par2+/+

mice 14dpi (P<0.05) (Figure 1B).

PAR2 Regulates Cytokine and Neutrophil
Accumulation in the Airspace After
AV Infection
Severe IAV infection provokes monocyte/macrophage and
neutrophil infiltration that can drive IAV-induced pathology
(17–19). Importantly, neutrophils have been implicated in a
feed-forward pathogenic program in IAV infection (41). To
evaluate the role of PAR2 in early inflammatory responses in
the airspace after IAV infection, BALF of Par2+/+ and Par2-/-

mice was collected 3dpi and assayed for proinflammatory
cytokines/chemokines and infiltrating immune cell numbers.
As expected, Par2-/- mice had significantly reduced levels of a
subset of proinflammatory mediators, including TNFa, MCP1,
CXCL1, IL1b, IL6, and IL12p40 compared to Par2+/+ mice
Frontiers in Immunology | www.frontiersin.org 4
(Figures 2A–F). Moreover, decreased total white blood cell,
neutrophil and monocyte numbers were observed in BALF of
Par2-/- mice compared to BALF of Par2+/+ mice at 3dpi
(Figures 3A–C). There were no significant differences detected
in levels of lymphocytes in the BALF of the two genotypes at 3dpi
(Figure 3D). In addition, Par2-/- BALF exhibited reduced
eosinophil numbers compared to Par2+/+ mice BALF at 3dpi
(Supplement Figure 1). Some of these cells may be AMF
because the automated cell counter cannot easily distinguish
these cell types (35). However, at 7dpi there were, with exception
for IL6, similar BALF inflammatory mediator levels in the two
genotypes (Supplement Figure 2). Importantly, while TNFa,
MCP1, CXCL1 and IL12p40 BALF levels were no longer different
between the two genotypes at 7dpi, BALF of Par2+/+ mice still
exhibited increased cellularity with significantly higher total
WBC, neutrophil, and monocyte numbers compared to Par2-/-

mice BALF 7dpi (Supplement Figure 3). Moreover,
lymphocytes and eosinophils numbers in BALF were similar
between the two genotypes at 7dpi (Supplement Figure 3).

Par2 Deficiency Is Associated Increased
IFNb Expression and Reduced IAV
Genome Levels in the Lung
Type-I IFN signaling was shown to restrict IAV replication and
pathologic inflammatory immune responses in the IAV infected
lung (42). We and others showed that Par2 deficiency was
associated with increased IFNb expression in vivo and in vitro
(23, 43). In addition, we linked PAR2 expression and activation
to increased Coxsackievirus B3 replication in vitro (43). To
analyze the effect of PAR2 expression on antiviral IFNb
expression and IAV replication in infected lungs, RNA was
isolated and IFNb mRNA as well as IAV genomes measured in
lungs of Par2+/+ and Par2-/- mice 3dpi. Importantly, infected
Par2-/- mice lungs exhibited increased IFNb mRNA expression
compared to infected Par2+/+ mice lungs 3dpi (Figure 4A). In
line with increased antiviral response, Par2 deficiency was
associated with reduced IAV genome levels in the lung
compared to Par2+/+ mice lungs 3dpi (Figure 4B).
A B

FIGURE 1 | PAR2 deficiency is associated with improved survival after IAV infection. Par2+/+ and Par2-/- mice were infected with 0.04 HAU IAV and changes in
body weights were recorded daily for 14 days (A). Overall survival (B) was observed as well as calculated from body weights for 14 days. A weight loss of ≥25% of
the initial body weight was set as compassionate humane endpoint as specified in the animal protocol. Body weights before infection (day 0) was set to 100%. Data
(mean ± SEM) and calculated survival were analyzed by two-way ANOVA (A) and log-rank test (B). *P < 0.05.
December 2021 | Volume 12 | Article 791017
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PAR2 Contributes to Lung Epithelial Cell
Loss During IAV Infection
IAV primarily infects and replicates in lung epithelium which
results in loss of alveolar and bronchial EpCs up to 7dpi. Repair
of the EpC layer begins after day 7 when surviving mice start
regaining body weight (44). Importantly, loss of more than 10%
of alveolar EpCs is correlated with increased mortality in IAV-
Frontiers in Immunology | www.frontiersin.org 5
infected mice (45). To analyze IAV-induced lung EpC injury
formalin-fixed and paraffin-embedded lung sections of IAV-
infected Par2+/+ and Par2-/- mice (7dpi) were cut to maximal
airspace and stained with H&E. The most striking difference
between Par2+/+ (Figure 5A) and Par2-/- (Figure 5B) mice was
that infected Par2+/+ mice exhibited more signs of lung EpC
injury compared with Par2-/- mice. This included more severe
A C DB

FIGURE 3 | PAR2 deficiency results in reduced cellular inflammation in the airspace after IAV infection. Par2+/+ and Par2-/- mice were infected with 0.04 HAU IAV
and bronchoalveolar lavage fluid (BALF) cellularity was analyzed by automated cell counter for total white blood cell (WBC) (A), neutrophil (B), monocytes (C) and
lymphocyte (D) numbers 3 days after infection. Data (mean ± SEM) was analyzed by Student t test. *P < 0.05, **P < 0.01.
A CB

D FE

FIGURE 2 | PAR2 deficiency results in reduced inflammation in the airspace after IAV infection. Par2+/+ and Par2-/- mice were infected with 0.04 HAU IAV and
bronchoalveolar lavage fluid (BALF) was analyzed for TNFa (A), MCP1 (B), CXCL1 (C), IL1b (D), IL6 (E) and IL12p40 (F) protein levels 3 days after infection by
ELISA. Data (mean ± SEM) was analyzed by Student t test. *P < 0.05, **P < 0.01, ***P < 0.005, ****P < 0.001.
December 2021 | Volume 12 | Article 791017
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disorganized lung EpC layer (Figure 5A1) indicating concurrent
cell damage and regeneration, EpC stretching/thinning
(Figure 5A2) and total EpC loss (denudation, Figure 5A3),
accumulation of neutrophils and cellular debris in the airway
Frontiers in Immunology | www.frontiersin.org 6
lumen compared to infected Par2-/- mice (Figure 5B) which
showed only infection-induced disorganization of the EpC layer
(Figure 5B1). The obvious changes in the lung epithelial
histology suggest that PAR2-dependent inflammation during
FIGURE 5 | PAR2 expression is associated with increased lung epithelial cell injury after IAV infection. Par2+/+ and Par2-/- mice were infected with 0.04 HAU IAV and
lung sections were cut for maximal airspace and stained with H&E staining 7 days after infection. (A) Representative overview of a section of the main left bronchi
(maximal airspace) of an IAV-infected Par2+/+ mouse. Overall, Par2+/+ mice exhibited more signs of lung epithelial cell injury including disorganization of the epithelial
cell layer (A1, arrows), epithelial cell thinning/stretching (A2, asterisks) and total loss of epithelial cells/denudation (A3, arrow heads). Representative overview of a
section of the main left bronchi of an IAV-infected Par2-/- mouse (B) shows a less severe lung epithelial cell injury phenotype with apparent signs of epithelial cell
disorganization (B1, arrows). Size bar=1mm (A, B) and size bar=200µm (A1–A3, B1).
A B

FIGURE 4 | PAR2 deficiency results in IFNb expression and reduced virus load in the lung after IAV infection. Par2+/+ and Par2-/- mice were infected with 0.04 HAU
IAV and IFNb mRNA expression (A) and IAV genomes (B) in the lungs were analyzed by RT-PCR 3 days after infection. Data (mean ± SEM) was analyzed by
Student t test. **P < 0.01.
December 2021 | Volume 12 | Article 791017
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IAV infection leads to more pronounced lung EpC injury which
may explain the delayed body weight recovery and the increased
mortality in Par2+/+ mice as shown in Figure 1.

Par2 Deficiency Is Associated With
Improved Lung Function After
IAV Infection
IAV infection-associated pathology results in impaired lung
function with increased airways resistance, increased
exhalation force and reduced peak exhalation flow (39). To
measure the global lung function, Par2+/+ and Par2-/- mice
(7dpi) subjected to Buxco whole-body plethysmography system
(39). Enhanced pause (Penh) is a calculated measure of airway
resistance that is associated with airway denudation, airway
debris and immune cell accumulation in the airway following
IAV infection (39). The 50% exhalation force (EF50) measures
the exhalation force midbreath, which increases as breathing
becomes more difficult. Finally, the ratio of peak expiratory flow
(Rpef) is the time to peak expiratory flow and has been associated
with wheezing following infection (39). All three metrics have
been shown to change significantly following IAV infection, with
Penh and EF50 increasing following infection and Rpef
decreasing (39). In line with our findings, Par2+/+ mice
exhibited increased Penh (Figure 6A), increased EF50
(Figure 6B) but reduced Rpef (Figure 6C) compared to Par2-/-

mice 7dpi. Combined, these measurements show that Par2
deficiency was associated with improved lung function after
IAV infection.

The Effect of Par2 Deletion in Either
Epithelial or Myeloid Cells on IAV Mortality
A previous study using cultured lung EpCs suggested that PAR2
on lung EpCs contributes to IAV pathology (23). In addition,
other studies implied a major role of PAR2 on myeloid cells for
immune response modulation (28, 46). Here, we investigated the
Frontiers in Immunology | www.frontiersin.org 7
effect of cell-specific Par2 deletion in lung EpCs (Par2fl/fl;SPCCre+)
or myeloid cells (Par2fl/fl;LysMCre+) on IAV infection. Body
weights were monitored daily after IAV infection and a weight
loss ≥25% or actual death were criteria for a mortality event. Body
weight curves were constructed showing daily weights of mice
remaining who had not met mortality criteria (Figures 7A, C).
Par2fl/fl;SPCCre+ mice had slightly reduced body weights 7-14dpi
compared to controls (Figure 7A) but the differences did not
reach statistical significance. Moreover, Kaplan-Meier survival
analysis showed no significant differences in surviving mice
throughout the course of infection for Par2fl/fl;SPCCre+ mice
compared to their controls (Par2fl/fl) (Figure 7B). Par2fl/fl;
LysMCre+ mice showed a slightly improved total body weight
recovery than control mice (Figure 7C) but again this difference
did not reached statistical significance. However, Kaplan-Meier
survival curves showed that Par2fl/fl;LysMCre+ mice had
significantly reduced IAV mortality over the course of the
observational period of 14 days when compared to control
Par2fl/fl mice (Figure 7D).

Myeloid PAR2 Regulates Proinflammatory
Response and Neutrophil Accumulation in
IAV-Infected Mouse Lungs
Since only Par2fl/fl;LysMCre+ mice exhibited a survival benefit after
IAV infection compared to Par2fl/fl;SPCCre+ mice and Par2fl/fl

mice, we focused the subsequently analysis on Par2fl/fl;LysMCre+

mice and compared them to Par2fl/fl control mice. BALF of
Par2fl/fl;LysMCre+ mice and their Par2fl/fl controls were analyzed
3dpi and assayed for proinflammatory mediators and immune cell
numbers. In line with the improved survival, Par2fl/fl;LysMCre+

mice had significantly reduced levels of CXCL1, IL6, and IL12p40
in BALF compared to littermate Par2fl/fl controls 3dpi
(Figures 8A–C). Likewise, decreased total white blood cells and
neutrophils numbers were measured in BALF of Par2fl/fl;LysMCre+

compared to control Par2fl/fl mice 3dpi (Figures 8D, E).
A CB

FIGURE 6 | PAR2 deficiency was associated with less severe lung dysfunction after IAV infection. Par2+/+ and Par2-/- mice were infected with 0.04 HAU IAV and
lung function was recorded using a Buxco whole-body plethysmography system 7 days after infection for Penh, a measure of calculated airway resistance (A), EF50,
midbreath expiratory flow (B), and Rpef, the rate of peak expiratory flow (C). Data (mean ± SEM) was analyzed by Student t test. *P < 0.05. **P < 0.01.
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There were no significant differences detected in levels of BALF
lymphocytes (Figure 8F).

Par2 Deficiency in Myeloid Cells Results in
Increased IFNb Expression and Reduced
IAV Genome Levels in the Lung
Macrophages are able to restrict/abort IAV replication after
infection (47). However, reduced type-I IFN signaling on
macrophages renders the cells more susceptible for productive
IAV replication (47). To analyze the effect of Par2 deficiency in
myeloid cells on lung IFNb expression and overall IAV
replication, Par2fl/fl and Par2fl/fl;LysMCre+ were infected with
IAV and total RNA from lungs isolated 3dpi. Importantly,
myeloid cell Par2 deficient mice had higher IFNb expression in
the lung compared to the infected Par2fl/fl littermates
(Figure 9A). In line with the increased antiviral response in
Par2fl/fl;LysMCre+, the mice with myeloid Par2 deficiency had
also reduced IAV genome levels in the lung compared to the
infected Par2fl/f littermates 3dpi (Figure 9B).

PAR2 Activation Augments Poly I:C
Induction of IL6 and IL12p40 Expression in
Bone Marrow-Derived Macrophages
BMDM form Par2+/+ and Par2-/- mice were cultured in vitro to
further evaluate the role of myeloid (macrophage) cell PAR2 in
coordinating the inflammatory response to RNA viruses including
IAV. The TLR3 agonist poly I:C was used to mimic virus-like
Frontiers in Immunology | www.frontiersin.org 8
stimulation in vitro. Poly I:C induced IL6 or IL12p40 expression in
both genotypes. However, Par2+/+ BMDM produced more IL6 and
IL12p40 in response to poly I:C when compared to Par2-/- BMDM
(Figures 10A, B). PAR2 stimulation alone did not significantly
increased the IL6 or IL12p40 levels over the baseline. Importantly,
Par2+/+ BMDM costimulated with PAR2 AP and poly I:C express
significantly higher levels of IL6 or IL12p40 compared to poly I:C
alone. As expected, the PAR2 AP did not elicit an increased
response in Par2-/- BMDM treated with poly I:C (Figure 10).

PAR2 Inhibition Results in Decreased
Cytokine Production in the Mouse
Lung After IAV Infection
To evaluate the potential of intranasal PAR2 antagonist
treatment to reduce pathologic inflammation in the lung after
IAV infection, WT mice were treated with an inhibitory PAR2
antibody (SAM11) or control IgG2a prior and during infection
with IAV. BALF of mice treated with SAM11 or IgG2a control
was collected at 3dpi and assayed for proinflammatory mediators
and cellular infiltrate. SAM11 treatment resulted in significantly
reduced levels of CXCL1, IL-6, and IL-12p40 in BALF compared
control IgG2a-treated mice 3dpi (Figures 11A–C). In line with
this, SAM11-treated mice had decreased total white blood cells in
BALF compared to IgG2a-treated controls (Figure 11D). While
SAM11 treatment did not change the expression of IFNb it
resulted in reduced overall IAV genome levels in the lung
compared to IgG2a treated mice 3dpi (Figures 11E, F).
A B

C D

FIGURE 7 | PAR2 deficiency on myeloid cells was associated with improved survival after IAV infection. Mice with Par2 deficiency in lung epithelial cells (Par2fl/fl,
SPCCre+) or myeloid cells (Par2fl/fl,LysMCre+) and their littermates controls (Par2fl/fl) were infected with 0.04 HAU IAV. Changes in body weights were recorded daily for
14 days after infection (A, C). Overall survival (B, D) was observed as well as calculated from body weights for 14 days. A weight loss of ≥25% of the initial body
weight was set as compassionate humane endpoint as specified in the animal protocol. Body weights before infection (day 0) were set to 100%. Data (mean ± SEM)
and calculated survival were analyzed by two-way ANOVA (A, C) and log-rank test (B, D).
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DISCUSSION

In this study, we showed that PAR2 contributes to IAV infection-
induced mortality in mice. In addition, we found that PAR2
contributes to increased cytokine expression and immune cell
infiltration into the air space (BALF) leading to more
pronounced global lung dysfunction in mice after IAV
infection. Using mice with cell-specific deletion of Par2, we
observed that myeloid-expressed PAR2, but not lung EpC
PAR2 contributed to IAV pathology. Importantly, prophylactic
PAR2 inhibition using an anti-mouse PAR2 antibody reduced
IAV progression in mice.

Based on our studies of PARs in ssRNA virus infections, as
well by others, we proposed a model in which PAR2 enhances
TLR3-NFkB inflammation but reduces TLR3-type-I IFN
responses . In contrast , PAR1 reduces TLR3-NFkB
inflammation but enhances TLR3-IFNb responses (Figure 12)
(8, 23, 36, 43, 48). In line with this proposed receptor interaction,
Frontiers in Immunology | www.frontiersin.org 9
we have recently shown that the absence of PAR1 leads to
increased proinflammatory CXCL1 expression and increased
BALF neutrophil numbers which were associated with higher
mortality compared to WT mice (26).

There are conflicting data about the role of PAR2 in IAV
infection in mice and cells in vitro. Our data presented here are
consistent with the observation by Vogel’s group that Par2
deficiency was associated with improved survival after IAV
infection (23). Importantly, we used a different line of Par2-
deficient mice (24, 49) compared with Nhu et al. (23) but made
similar observations after IAV infection supporting a role of
PAR2 in IAV pathology. In contrast to our and Vogel’s findings,
Riteau’s group showed that Par2-/- mice exhibited increased
mortality after IAV infection with either 30 plaque-forming
units (pfu) or 60 pfu (50). Interestingly, using this dose the
authors did not induce any body weight changes or death in WT
mice (50). Moreover, studies using the specific PAR2 AP
(SLIGRL-NH2) suggested that PAR2 activation mediates a
A CB

D FE

FIGURE 8 | Myeloid cell Par2 deficiency results in reduced inflammation in the airspace after IAV infection. Par2fl/fl,LysMCre+ and their littermate controls Par2fl/fl mice
were infected with 0.04 HAU IAV and bronchoalveolar lavage fluid (BALF) was analyzed for CXCL1 (A), IL6 (B) and IL12p40 (C) levels 3 days after infection by
ELISA. BALF cellularity was analyzed by automated cell counter for total white blood cell (WBC) (D), neutrophil (E) and lymphocyte (F) numbers 3 days after
infection. Data (mean ± SEM) was analyzed by Student t test. *P < 0.05, **P < 0.01.
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protective mechanism in IAV infection in mice and in in vitro
cell culture system (50–55). However, SLIGRL-NH2 has been
reported to inhibit IAV infection in mice and in vitro
independently of PAR2 (52, 55).

In general, IAV infection-mediated pathology is caused by a
lack of adequate innate antiviral immune responses causing virus
induced injury which can be exacerbated by an excessive
proinflammatory response (3, 41). Importantly, the
overreacting host’s immune response appears to contribute to
the morbidity and mortality after IAV infection (41). For
instance, TLR3-deficient mice exhibited improved survival
Frontiers in Immunology | www.frontiersin.org 10
associated with reduced lung inflammation while having an
increased virus load after IAV infection compared to WT mice
(56). Nhu et al. showed that PAR2 activation increased NFkB
responses but reduced type-I IFN responses during TLR3
stimulation of lung EpCs (23). By extrapolation of their in
vitro observations, the authors suggested that PAR2 activation
on lung EpCs would contribute to IAV pathology in vivo (23).
We did not observe a lung EpC PAR2-dependent mortality
phenotype in our IAV infection model. However, body weight
recovery seemed different between Par2fl/fl and Par2fl/fl;SPCCre+

mice suggesting a protective role for EpC PAR2 in maintaining
A B

FIGURE 9 | Myeloid Par2 deficiency was associated with increased IFNb expression but reduced H1N1 IAV virus genomes levels in the IAV infected lung. Par2fl/fl,
LysMCre+ and their littermate controls Par2fl/fl mice were infected with 0.04 HAU IAV and IFNb mRNA expression (A) and IAV genome levels (B) in the lungs were
analyzed by RT-PCR 3 days after infection. Data (mean ± SEM) was analyzed by Student t test. *P < 0.05.
A B

FIGURE 10 | PAR2 activation of macrophages increases IL6 and IL12p40 expression during TLR3 stimulation. Bone-marrow derived macrophages were stimulated
with poly I:C (5µg/mL) and/or PAR2 agonist (AP, 200µM) under serum-free conditions. IL6 (A) and IL12p40 (B) levels were measured in the culture media 24 hrs
after stimulation by ELISAs. Data (mean ± SEM) was analyzed by 2-Way ANOVA. *P < 0.05, # vs. unstimulated control within the same genotype, $P < 0.05 vs. poly
I:C alone within the same genotype.
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barrier function (57). The mouse-adapted PR8 IAV strain is
highly pathogenic and might overwhelm any PAR2-dependent
effects in EpCs in vivo. However, we found that myeloid PAR2
expressing cells increased NFkB-associated lung inflammation in
PR8 IAV infected mice. Moreover, we found that PAR2
expression further reduced IFNb expression in the lung 3dpi.
Using BMDM, we confirmed that PAR2 expression and
activation increased the release of the two NFkB-dependent
cytokines IL6 and IL12p40 during TLR3 stimulation in vitro.
Moreover, neutrophils can play a protective as well as
detrimental role in IAV infection, and PAR2 stimulation can
increase neutrophil activity (53). While neutrophil depletion led
to increased IAV infection, an overactivation and increased
neutrophil recruitment to the lung after IAV infection was
shown to be associated with increased IAV-induced pathology
and death (26, 41, 58). Although neutrophils are of myeloid
lineage and targets of LysMCre-activity (30), we did not
specifically address whether PAR2 on neutrophils plays a role
on IAV progression in this study.

Together with past studies using other viruses, including IAV
and Coxsackievirus B3, or sterile virus-like stimulation with poly I:
C, this study indicates that PAR2 expression and activation
contributes to viral infection-associated pathology by enhancing
Frontiers in Immunology | www.frontiersin.org 11
proinflammatory TLR3-NFkB responses and reducing antiviral
TLR3-IFNb responses as first suggested first by Nhu et al. (23, 43,
59–61). How does PAR2 mediate its effect on TLR3 signaling? As
previous demonstrated by Vogel’s group (62), we showed that
PAR2 can be immunoprecipitated with TLR4 and TLR3 (43). It
is not clear if the physical interaction alone can explain the observed
phenotype. While PAR2 has no immediate effect on IFNb signaling
(within the first 15 min) (23) but it reduces IFNb signaling at later
stages (past 180 min) (61). Whether PAR2 activation directly
dampens IFNb-dependent STAT1 activation, increases STAT1
dephosphorylation or reduces interferon-a/b receptor surface
expression is unclear. Of note, PAR2-dependent reduction of the
TLR3-IFNb pathway activation was linked to PAR2-dependent
activity of the tyrosine phosphatase SH2 domain-containing
protein tyrosine phosphatase-2 (SHP-2, protein tyrosine
phosphatases [PTP] 11) (61). In line with our findings, SHP-2
activity was shown to be important for efficient NFkB activation
(63). Moreover, in vivo PAR2 AP stimulation of murine urinary
bladders increased the expression of the dual specificity phosphatase
1 (DUSP1, mitogen-activated protein kinase [MAPK] phosphatase
1) (64) which is known to inactivate the MAPKs JNK and p38.
Interestingly, DUSP1 expression/activity reduces TLR3-mediated
IFNb expression inmacrophages by reducing JNK-dependent IFNb
A B C

D E F

FIGURE 11 | PAR2 inhibition prior to infection resulted in reduced inflammation in the lung after IAV infection. WT mice were treated intranasally with anti-mouse
PAR2 antibody (SAM11) prior to infection with 0.04 HAU IAV and then daily for 3 days (see Methods for additional information). Bronchoalveolar lavage fluid (BALF)
was collected at day 3 post IAV infection and analyzed for CXCL1 (A), IL6 (B) and IL12p40 (C) levels by ELISA. White blood cells (WBC) numbers (D) were analyzed
by automated cell counter. Lung IFNb mRNA expression (E) and IAV genome levels (F) were analyzed by RT-PCR 3 days after infection. Data (mean ± SEM) was
analyzed by Student t test. *P < 0.05.
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gene transcription and reducing p38-dependent IFNb mRNA
stability (65).

PAR2 can be activated by a variety of proteases including
trypsin, tryptase, neutrophil elastase, different membrane-bound
proteases, the tissue factor (TF)/FVIIa complex, or FXa alone.
We showed that IAV infection increases lung EpC TF expression
which leads to IAV-associated local activation of coagulation (27).
This suggests that the TF/FVIIa complex is formed and FXa is
generated locally during IAV infection in the lung which could in
turn lead to PAR2 activation. Immune cell expressed proteases are
also present in the lung during IAV infection and pulmonary
expressed membrane-bound proteases including transmembrane
protease serine type 2 (TMPRSS2), matriptase or human airway
trypsin-like protease are known to activate PAR2 (66–68).
Interestingly, TMPRSS2 deficiency was shown to reduce
inflammatory responses to intranasal poly I:C (69). In an IAV-
induced myocarditis model, local trypsin expression was
associated with increased cardiac pathology (70, 71). However,
the authors did not link the increased trypsin expression to
increased PAR2 signaling. Importantly, PAR2-activating
proteases are involved in the proteolytic activation of IAV (72,
73). In line with this, serine protease inhibitors, including
aprotinin (74) and camostat mesylate (75), were shown to
directly reduce IAV infectivity and might also reduce protease-
dependent PAR2 activation during IAV infection.

Antiviral treatments for influenza virus infections are limited
(76, 77). We show that PAR2 inhibition prior to infection not
only reduced IAV virus genome levels in the lung 3dpi but also
reduced cytokine/chemokine and cellular inflammation in the
Frontiers in Immunology | www.frontiersin.org 12
BALF compared to control IgG treated mice. In support to our
findings, PAR2 inhibition reduced immune cell infiltration into
the lung/airspace of respiratory syncytial virus infected mice
(78). These findings suggest that PAR2 might be a therapeutic
target in reducing respiratory viral infection, including pandemic
coronavirus infections (79–81).

In conclusion, we linked myeloid cell PAR2 to the IAV
pathology in mice. PAR2 not only reduces antiviral type-I IFN
responses but also enhances NFkB-dependent inflammation in the
lung of IAV infected mice resulting in increased BALF cellularity,
which was associated with increased lung EpC injury, overall more
pronounced global lung dysfunction and higher mortality.
Moreover, we show that PAR2-directed therapeutics have the
potential not only to enhance antiviral immune responses to IAV
but also to reduce host-driven pathologic lung inflammation.
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Supplement Figure 1 | PAR2 deficiency was associated with reduced eosinophil
numbers in the airspace 3 days after IAV infection. Par2+/+ and Par2-/- mice were
infected with 0.04 HAU IAV and eosinophil numbers in bronchoalveolar lavage fluid
(BALF) was analyzed by automated cell counter 3 days after infection. Data (mean ±
SEM) was analyzed by Student t test. *P < 0.05.

Supplement Figure 2 | Cytokine levels in airspace of Par2+/+ and Par2-/- mice 7
days after influenza A virus infection. Par2+/+ and Par2-/- mice were infected with
0.04 HAU IAV and bronchoalveolar lavage fluid (BALF) was analyzed for TNFa (A),
MCP-1 (B), CXCL1 (C), IL6 (D) and IL12p40 (E) protein levels 7 days after infection
by ELISA. Data (mean ± SEM) was analyzed by Student t test. ***P < 0.005.

Supplement Figure 3 | PAR2 deficiency was associated with reduced immune
cell numbers in the airspace 7 days after influenza A virus infection. Par2+/+ and
Par2-/- mice were infected with 0.04 HAU IAV and bronchoalveolar lavage fluid
(BALF) cellularity was analyzed by automated cell counter for total white blood cell
(WBC) (A), neutrophil (B), monocyte (C), lymphocyte (D) and eosinophil (E)
numbers 7 days after infection. Data (mean ± SEM) was analyzed by Student t test.
*P < 0.05, **P < 0.01.
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