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Abstract: The main goal of this study was to test the ability of an artificial neural network (ANN)
for rice quality prediction based on grain physical parameters and to conduct a comparison with
multiple linear regression (MLR) using 66 samples in duplicate. The parameters used for rice
quality prediction are related to biochemical composition (starch, amylose, ash, fat, and protein
concentration) and pasting parameters (peak viscosity, trough, breakdown, final viscosity, and
setback). These parameters were estimated based on grain appearance (length, width, length/width
ratio, total whiteness, vitreous whiteness, and chalkiness), and milling yield (husked, milled, head)
data. The MLR models were characterized by very low coefficient determination (R2 = 0.27–0.96)
and a root-mean-square error (RMSE) (0.08–0.56). Meanwhile, the ANN models presented a range
for R2 = 0.97–0.99, being characterized for R2 = 0.98 (training), R2 = 0.88 (validation), and R2 = 0.90
(testing). According to these results, the ANN algorithms could be used to obtain robust models to
predict both biochemical and pasting profiles parameters in a fast and accurate form, which makes
them suitable for application to simultaneous qualitative and quantitative analysis of rice quality.
Moreover, the ANN prediction method represents a promising approach to estimate several targeted
biochemical and viscosity parameters with a fast and clean approach that is interesting to industry
and consumers, leading to better assessment of rice classification for authenticity purposes.

Keywords: artificial neural network; multi-layer perceptron; multiple linear regression; pasting; rice

1. Introduction

With the varying market valorization of rice (Oryza sativa L.) production, continuous
control of its quality, authentication, and contamination issues is required. Rice quality
can be evaluated from grain physical parameters, as well as the milling performance,
biochemical composition, and cooking properties [1]. The grain physical parameters
include the external and integral properties, such as its appearance (size, shape, smoothness,
color), weight, hardness, volume, and flow properties, and are of paramount importance
in all activities from harvesting, drying, handling, and storage to milling, packaging,
marketing, cooking, product-making, and utilization of rice [1]. In addition to the grain
physical parameters, rice quality is characterized by basic chemical composition such as
protein, moisture, fat, ash, and amylose content, as well as gelatinization temperature, gel
consistency, and pasting viscosity. Amylose content is highlighted due to its correlation
with the pasting and retrogradation behavior, influencing the textural properties of cooked
rice and the dynamic viscoelasticity of rice starch gel [2]. Proteins and lipids are also
parameters currently accepted to define rice quality during processing and storage [3,4].
The acceptability and the commercial value of the paddy according to industrial standards
are mostly based on grain milling performance such as the husked, milled, and milled
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head rice yields. Milling quality aspects are affected by temperature during rice ripening
and include chalkiness, immature kernels, kernel dimensions, and fissuring, factors that
are related to protein, amylose, and amylopectin chain length [5]. Grain appearance
depends on the rice variety and is characterized by grain shape, total whiteness, vitreous
whiteness, and chalkiness. These parameters are considered critical factors that affect
market acceptability [6]. Rice grain shape is defined by biometric parameters (length,
width, length/width ratio), which are used for the designation and classification of the
commercial rice types [7,8]. Chalkiness, an opaque white discoloration of the endosperm,
reduces the value of head rice kernels and decreases the ratio of head to broken rice
obtained during the milling process [9]. Rice varieties with similar grain appearance can
reveal different cooking behavior due to their chemical composition, mainly the amylose
contents with an impact on the viscosity profiles.

The development of reliable and fast methods for rice quality control has great po-
tential for application in the screening of varieties in breeding programs and the mill
industry. The breeding programs and mill industry take advantage of near-infrared and
machine learning methods for the classification of the rice varieties and amylose determi-
nation [10,11].

Machine learning based on experimental data can optimize grouping and classification,
leading to the development of models that can predict the behavior or properties of a
specific system [12–14], including multiple linear regression (MLR) and artificial neural
networks (ANNs).

Multiple linear regression (MLR) and artificial neural network (ANN) models were em-
ployed for rice protein prediction using the NIR imaging system and NIR spectroscopy, be-
ing considered a non-destructive detection method of rice protein content [15]. Zhang et al.
(2012) developed prediction models for rapid monitoring for crude protein content using
both ANN and MLR algorithms, presenting significant correlation values (0.92 and 0.90),
respectively, for the validation data [16]. The ANN was also considered as an accurate
technique to predict the grain yield under different water and nitrogen applications [17].
According to the previous work, this study represents a significant strategy to predict sev-
eral important pasting and biochemical parameters using the ANN tool based on several
biometric data of rice.

MLR is a commonly used algorithm, a prediction tool that determines a mathematical
relationship among several random variables to one dependent variable, although no
casual mechanism is indicated. An ANN is appropriate in the quality control of several
types of food products [18], being considered as a well-known prognostic method used to
find a solution when other statistical methods are not applicable. The advantages of the
ANN are related to the ability to learn based on examples, fault tolerance, operation in a
real-time environment, forecasting nonlinear data, and superior prediction characteristics,
making it a widely used statistical tool [19]. Moreover, the ANN accurately fits in the
nonlinear variables, which is an advantage compared to multivariate linear analysis [20].

The main objective of this study was to evaluate the ability of a backpropagation ANN
and MLR to predict rice biochemical components such as starch, amylose, ash, fat, protein,
and pasting parameters (peak viscosity, trough, breakdown, final viscosity, and setback)
based on grain appearance (length, width, length/width ratio, total whiteness, vitreous
whiteness, and chalkiness) and milling yields (husked, milled, head). This strategy can be
considered useful to estimate the biochemical and pasting parameters of rice based on grain
appearance and milling yield parameters, providing an important contribution to the rice
value chain for industry and consumers and also in the screening of varieties in breeding
programs, saving time and decreasing costs associated with the detailed analysis processes.

2. Materials and Methods
2.1. Rice Sample Preparation

This study, performed in 2021, was based on 66 samples of rice (including Indica
and Japonica varieties) from the Portuguese Rice Breeding Program, whose genotypes
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(Ariete, OP1001, OP1109, OP1203, OP1212, and Sprint) were grown along the basins of 3
different rivers with very different microclimates (Alcácer do Sal, Salvaterra-de-Magos and
Montemor-o-Velho, Portugal) across two seasons (2014–2015). Rice samples were dehusked
in a Satake mill (THU, Satake, Taito, Japan) and polished (Suzuki MT98, Santa Cruz do Rio
Pardo, São Paulo, Brazil) to assess milling yields and obtain milled (polished) rice.

2.2. Milling Yields and Grain Appearance

The potential yields of husked, milled, and head rice were determined according
to ISO 6646, 2011 [21]. Biometric parameters of polished rice grains such as length (L),
width (W), length/width ratio (L/W), chalkiness (CH), total whiteness (TW), and vitreous
whiteness (VW), were evaluated in 50 g samples by image processing (S21 model and
software, Suzuki, Brazil).

2.3. Biochemical Composition

The polished rice samples were ground using a Cyclone Sample Mill (falling number
3100, Perten, Stockholm, Sweden), with a 0.8 mm screen. Starch (ST), protein (P), fat (FA),
and ash (AS) content were assessed using NIR transflection MPA equipment (Bruker Optics,
Ettlingen, Germany). The calibrations used were provided by Bruker Company (Billerica,
MA, USA). For each sample, approximately 25 cm3 of rice flour was loaded in a circular
cup and pressed slightly to obtain a similar packing density. Sixteen consecutive scans
were performed for a wavenumber range (12,000–4000 cm−1), at 16 cm−1 resolution. For
each rice sample, two spectra were obtained. Amylose (AMY) content was quantified using
a standard curve developed from absorbance values of 4 calibrated samples from standard
rice varieties (IR8, IR24, IR64, and IR65) obtained from the International Rice Research
Institute. The amylose content was determined using a colorimetric technique with a
spectrophotometer (Hitachi, Tokyo, Japan) at 720 nm, according to the ISO 6647-2:2015
method [22]. The determination and evaluation of biochemical parameters were performed
in duplicate. The value considered is the average of both samples obtained.

2.4. Pasting Parameters

The paste gelatinization and viscosity properties of rice were assessed using a viscosity
analyzer (RVA-4, Newport Scientific, Warriewood, Australia). Peak viscosity (PV), setback
(ST), breakdown (BD), trough (TR), and final viscosity (FV) were determined according to
the AACC International Approved Method 61-02.01. The determination and evaluation of
physical parameters were performed in duplicate.

2.5. Statistical Analysis and Model Development
2.5.1. Multilinear Regression

Multiple linear regression (MLR) was used to develop a model for predicting the
biochemical parameters that characterize the rice grain. MLR is one of the oldest regression
methods, being used to establish linear relationships between several independent variables
(Xi) and the dependent variable (sample property) (Y) that depends on them. The model
can be represented in the following Equation (1):

yi = b0 +
n

∑
i=1

bixi + ei,j (1)

where y represents the sample property, b0 the intercept, bi represents the computed
coefficient for each variable xi, while ei,j is the standard estimation error. Each independent
variable was analyzed and correlated with the specific property yj. After the MLR model
was developed, the accuracy in the prediction of the dependent variable was evaluated
by computation of the correlation coefficient, which is calculated when true values are
compared to predicted ones. The determination coefficient (R2) is one of the most used
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statistical parameters for the assessment of the developed model regardless of the model
type (Equation (2)).

R2 =
∑n

i=1(ŷ − y)2

∑n
i=1(y −

...
y )2 (2)

The statistical analysis of several parameters was performed using the data analysis
toolbox in Excel software for ANOVA processing.

2.5.2. Artificial Neural Network (ANN)

The ANN consisted of input and one hidden and one output layer. The number of
nodes of the input layer corresponds to the number of variables tested, while the number
of neurons in the output layer corresponds to the number of classes. The number of hidden
layers and neurons depends on the complexity of the task and the quantity of training
data. In the hidden and output layer, each neuron was connected to all the nodes in the
proceeding layer by an associated numerical weight. A neural network is an adaptable
system that learns relationships from the input and output datasets and predicts a previ-
ously unseen dataset of similar characteristics to the input set [23]. A multilayer perceptron
(MLP) is a widely used neural network architecture for regression problems, using the
backpropagation learning algorithm [24–26]. MLPs are usually used for prediction and
classification using suitable training algorithms for the network weights (Figure 1). In the
ANN models developed, a three-layer network architecture was established, consisting of
one input layer, one hidden layer, and one output layer. The input layer accepts the data
and the hidden layer processes them, and, finally, the output layer displays the resultant
outputs of the model [27,28].
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Figure 1. Schematic representation of artificial neural network MLP used for rice biochemical and
rheological parameter prediction that consists of three layers of nodes: (1) input layer, (2) hidden
layer, and (3) output layer.

A hyperbolic tangent sigmoid transfer function was used at the input layer and the
hidden layer, and a pure line transfer function was used at the output layer. The number
of neurons for the input layer is equal to the number of input variables introduced to the
networks. According to the biochemical and pasting parameters, the output layer contains
one neuron for each parameter in the study. A total of 40 samples out of 66 samples were
used for training, and the rest were equally divided for validation and testing (26 samples).
Each node, except for the input, is a neuron that is based on a nonlinear activation function.
The MLP can be regarded as a hierarchical mathematical function planning some set of in-
put values to output values via many simpler functions. Three different numbers of hidden
nodes (4, 8, and 12) were used for the selection of the best models. The multilayer feed-
forward fully connected ANN was trained with the Broyden-Fletcher-Goldfarb-Shanno
(BFGS) learning algorithm (200 epochs). The number of neurons in the hidden layer was
optimized through an early-stop learning procedure. In this procedure, the best topology
of the ANNs was searched using the training, validation, and testing datasets. According
to the R2 and RMSE values, the best ANN models were developed to predict the different
biochemical and rheological parameters. Normally, the nodes are fully linked between
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layers, and therefore the number of parameters quickly increases with a considerable risk of
overfitting [29]. Activation functions of the artificial neurons in hidden layers are necessary
for the network to be able to learn nonlinear functions. For the implementation of the
backpropagation algorithm, the hyperbolic tangent function was used (tansig). The testing
models were verified based on the determination coefficient R2 and root-mean-square error
(RMSE). In terms of the model performance analysis, the RMSE and R2 of calibration and
validation data were used. The smaller RMSE indicates the better performance of models
(Equation (3)), where n represents the number of the observations in the test data, ŷ is the
values of the output in the test data, and y represents the value of the predicted output [30].
A significance level of α = 0.05 was used.

RMSE =

√
∑n

i=1(ŷ − y)2

n
(3)

During the ANN development the Levenberg-Marquardt algorithm, derived from
Newton’s method, was designed for minimizing functions that are sums of squares of
nonlinear functions [31,32]. The Levenberg-Marquardt algorithm is a combination of the
gradient descendent rule and the Gauss-Newton method. The algorithm uses a parameter
to decide the step size, which takes large values in the first iterations (equivalent to the
gradient descent algorithm), and small values in the later stages [33]. The Broyden-Fletcher-
Goldfarb-Shanno (BFGS) optimization algorithm, usually used for nonlinear least squares,
is presented with the modified backpropagation algorithm, yielding a new fast training
multilayer perceptron (MLP) algorithm (BFGS/AG).

The ANN models were developed using MATLAB® software (R2017a) (MathWorks,
Inc; Natick, MA, USA). The MLR models were developed using the Excel application. Ten
models were developed separately for predicting biochemical (FA, P, AS, AMY, and ST)
and pasting parameters (SB, TR, PV, and FV) based on grain appearance (L, W, L/W, C,
TW, and VW) and milling yields (MYH, MYM, and MIY).

3. Results and Discussion
3.1. Multilinear Regression

The aim of the present study was to evaluate whether the multilinear regression (MLR)
technique and artificial neural network (ANN) algorithms could effectively predict rice
biochemical and pasting parameters based on the grain appearance and milling yields.
MLR models established a relationship between the biological and processing factors and,
consequently, the quality feature. The coefficients related to the MLR model, p-value,
determination coefficient (R2), and standard error (SE) of each parameter were determined
(Table 1). The F-test showed that several independent variables in a multiple linear regres-
sion model for all parameters are significant. A low p-value (<0.05) represents the high
significance of the corresponding coefficient [34]. The SB (R2 = 0.92) and AMY (R2 = 0.86)
are characterized by a significative determination coefficient, which both can be evaluated
using a significative predictive MLR model. However, the BD (R2 = 0.74), PV (R2 = 0.71),
TR (R2 = 0.62), and ST (R2 = 0.62) were characterized by a low determination value and are
considered unsuitable for an accurate evaluation of the parameters. The actual experimen-
tal data versus predicted values were plotted, showing a relative correlation for BD, PV,
and AMY (Figure 2).

However, it was very apparent from the plot that the rest of the models had weaker
predictive ability and lower performance (data not shown). Based on these results, the MLR
models showed a relative disadvantage because they describe the only linear relationship
between variables without considering other types of relations, which can be considered as
a limitation.
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Table 1. Comparative analysis of several ANOVA parameters for the models obtained after MLR developed for different biochemical and pasting models developed based on the
biometrics and industrial parameters. Peak viscosity (PV); setback (ST); breakdown (BD); trough (TR); peak viscosity (PV); final viscosity (FV); starch (ST); protein (P); fat (FA); ash (AS);
amylose (AMY); total whiteness (TW); vitreous whiteness (VW); chalkiness (CH); milling yield husked (MYH); milling yield milled (MYM); milling industrial yield (MIY); length (L);
width (W).

BD PV FV SB TR ST FA AMY AS P

Parameters Coefficient p-Value Coefficient p-Value Coefficient p-Value Coefficient p-Value Coefficient p-Value Coefficient p-Value Coefficient p-Value Coefficient p-Value Coefficient p-Value Coefficient p-Value

Intercept −6111.10 0.050 −8298.4 0.127 −1847.75 0.694 6450.621 0.005 −2187.267 0.410 35.279 0.002 3.543 0.205 89.023 0.003 1.068 0.333 10.2379 0.1625
MYH (%) 133.87 0.000 253.4 0.000 156.14 0.000 −97.304 0.000 119.568 0.000 0.140 0.155 −0.028 0.258 −1.255 0.000 −0.015 0.134 −0.0153 0.8150
MYM (%) −10.15 0.113 −20.5 0.069 −17.09 0.081 3.413 0.462 −10.359 0.062 −0.045 0.049 0.002 0.753 0.107 0.072 0.001 0.651 −0.0032 0.8307
MIY (%) −31.06 0.391 −98.6 0.123 −90.54 0.105 8.074 0.760 −67.557 0.034 0.259 0.046 0.007 0.842 −0.096 0.775 0.018 0.168 0.0491 0.5661

L-white (mm) 95.75 0.028 161.3 0.034 76.08 0.245 −85.228 0.008 65.553 0.078 0.069 0.647 −0.025 0.514 −1.327 0.001 −0.025 0.110 −0.1162 0.2517
W-white

(mm) 398.83 0.001 648.5 0.003 350.82 0.057 −297.726 0.001 249.711 0.018 0.721 0.090 −0.049 0.649 −3.948 0.001 −0.092 0.035 −0.2333 0.4086

L/W ratio −533.19 0.000 −701.5 0.001 483.18 0.007 1184.727 0.000 −168.351 0.089 −0.615 0.128 0.094 0.359 9.234 0.000 0.028 0.488 −0.2931 0.2767
TW 34.24 0.412 127.4 0.085 153.66 0.018 26.223 0.390 93.205 0.012 0.357 0.018 0.098 0.011 −0.617 0.112 −0.030 0.046 −0.2783 0.0063
VW −36.97 0.394 −138.5 0.072 −174.43 0.010 −35.925 0.258 −101.536 0.008 −0.276 0.075 −0.106 0.009 0.815 0.045 0.027 0.083 0.2557 0.0150
CH −31.84 0.141 −78.0 0.042 −87.72 0.009 −9.682 0.537 −46.197 0.015 −0.285 0.000 −0.057 0.005 0.368 0.067 0.019 0.016 0.1740 0.0011

R2 0.74 0.71 0.35 0.92 0.62 0.62 0.33 0.86 0.31 0.27
R2 adjusted 0.70 0.66 0.24 0.90 0.56 0.56 0.22 0.84 0.20 0.16

Standard
Error (SE) 235.62 413.06 359.95 172.21 203.41 0.83 0.21 2.18 0.08 0.56

F-test 1.83 × 10−13 3.38 × 10−12 0.003 4.4 × 10−27 4.30 × 10−9 4.11 × 10−9 0.01 7.86 × 10−21 0.008 0.025
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The detailed analysis of the predictive models for BD, PV, and TR are characterized
by a high determination coefficient, in which the MYH and W-white parameters present
a positive and significant effect (p-value). The acceptability of the paddy according to
industrial standards is related to the milling yield, and these parameters can also influence
the pasting behavior and their commercial value. Meanwhile, the L-white parameter
presents a positive effect in the predictive model of BD and PV but a negative effect in
the AMY model. On the other hand, the MYH, L-white, and W-white parameters are
characterized by a negative effect in the SB and AMY models. The L/W ratio presents a
negative effect compared to the BD and PV and positive for SB, FV, and AMY. The relations
between milling parameters and AMY are relevant due to their impact on the cooking
behavior of rice, directly affecting the water absorption, firmness of grain, and, conversely,
the stickiness of cooked rice [35].

The combined knowledge of the physical properties and anatomical composition of
the rice grain is a prerequisite to gaining a deep understanding of what happens to the
grain in the different postharvest operations. The understanding of the anatomy of the rice
grain explains why rice kernels break so easily on mechanical impact during the physical
operations of threshing and milling and under thermal stress during the drying process.
The variability between rice grain varieties concerning the surface tissue of the kernel and
their layers leads the milling industry to select the correct adjustment of hulling machines
to prevent breakage and ensure higher milling recovery. However, it is important to note
that there are several correlations among agronomic and quality traits [36–38]. Milling
quality aspects affected by temperature during rice ripening include chalkiness, immature
kernels, kernel dimensions, fissuring, protein content, amylose content, and amylopectin
chain length [5].

The TW presents a positive effect in the FV, TR, ST, and FA models but a negative
effect in the AS and P models. Studies conducted by Chikubu et al. (1985) found that rice
protein content had a negative correlation with appearance, aroma, taste, and stickiness but
a positive correlation with hardness [39]. The VW presents a positive effect in terms of the
AMY and P predictive models but a negative effect in terms of the FV, TR, and FA models.
The FV is an important technological property for the assessment of the cooking quality
of rice and paste properties of pre-gelatinized flours. According to Hu et al. (2004), the
viscosity profile is a useful parameter in the selection of germplasm with certified quality
in rice breeding programs, being subject to varietal differences [40].

The degree of milling or polishing is an important factor that influences the quality of
milled rice. Rice milling quality refers to the ability of the kernels to withstand the rigors of
hulling and bran removal without breaking, being significantly influenced by genotype,
cultural practices, environment, drying, and milling processes [41]. Rice grain quality
involves some complex interrelated traits that cover biochemical composition, cooking,
eating, nutritional, and sensory properties. Rice endosperm is composed mainly of starch,
and its quality is traditionally defined by characterizing starch structure and composition,
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which is then subsequently correlated with functional properties of the grain [42]. The
increase in milling yield may be due to greater agglomeration of starch granules [43],
enhancing the endurance of the rice kernels during milling [44]. Milling processes could
be influenced by amylose content and starch physicochemical properties. The amylose
content in deep milled rice was greater than regular milled rice [45]. Protein composition is
also a factor that influences milling performance [46].

The whiteness and gloss of cooked rice are also affected by amylose content [47].
Whiteness, measured with a colorimeter, is used to indicate the degree of milling. However,
a common method for the degree of milling quantification is measuring the fat amount on
the milled grains. As milling progresses and the degree of milling increases, the whiteness
of milled rice increases, the surface lipid content decreases, and milled rice yield decreases.
The currently accepted standard for measuring the degree of milling is the Kett Whiteness
Meter, and most commercially milled rice must meet some form of degree of milling
specification [48].

The whiteness is an important parameter because it is related to the appearance of the
grains. The changes of whiteness during milling can be related to their physicochemical
properties [49]. Among the factors that influence the percentage of whiteness of the grains,
nitrogen fertilization can change the amylose content of the grains [50]. The degree of
milling or polishing (e.g., polishing time and polishing pressure) is an important factor that
influences the quality of milled rice. The milling operation influences morphological char-
acteristics such as vitreous whiteness, total whiteness, and chalky area vitreous percentage.

Grain appearance is characterized by biometric parameters (length, width, length/width
ratio), total whiteness, vitreous whiteness, and chalkiness, being considered as a crucial
factor that affects its market acceptability. The L/W ratio is used internationally to describe
the shape and class of the rice variety [6]. The CH is characterized by a negative effect
on the PV, FV, TR, FA, and ST models, presenting an opposite effect compared to the
previous parameters analyzed, which can be related to the specific grain characteristics
and, consequently, its effect in biochemical and pasting parameters. Studies performed by
Li et al. (2019) showed a correlation between agronomic traits and yield depending on the
ecotypes of rice variety [51]. Many studies have shown that the physical characteristics of
the rice grain are associated with the yield of head rice [52].

Chalkiness is an undesirable trait that negatively affects milling, cooking, eating, and
grain appearance and represents a major problem in many rice-producing areas of the
world, being associated with genetic and enzymatic factors. Chalky grains were found to
contain a lower density of starch granules as compared to vitreous ones [53].

3.2. Artificial Neural Network

The artificial neural network (ANN) was accomplished using the training, validation,
and test datasets. Several ANN models were developed using variables related to the
grain appearance such as biometrics and milling yield parameters were taken as the input
parameters, while protein (P), amylose (AMY), peak viscosity (PV), trough (TR), breakdown
(BD), final viscosity (FV), setback (SB), ash (AS), starch (ST), and fat (FA) were considered
as output parameters. A multilinear perceptron (MLP) training algorithm was used for
ANN model development. The training algorithm and kernel function are very important
factors in the ANN. The network structures developed for data included an input layer,
one hidden layer, and an output layer. The correlation coefficient between the output and
the target simulated value was used to select the optimal number of neurons in the hidden
layer. The numbers of neurons in the hidden layers were established when the maximum
values of correlation coefficients were found. Three different neuronal structures were
tested, characterized by 4, 8, and 12 hidden layers. The input layer (9) and the output layer
(1) were similar for all models (9:4:1, 9:8:1, and 9:12:1). According to the results, the best
ANN models were characterized by a network model with 12 hidden nodes, presenting
high R2 for testing step: ST (0.90); AMY (0.94); AS (0.70); P (0.91); BD (0.90); TR (0.93); SB
(0.96); PV (0.95); and FV (0.91), while the model for FA is characterized by eight hidden
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nodes and R2 = 0.81. The determination coefficient R2 = 0.98 showed a suitable match
between the observed and predicted data (Table 2). According to these results, the number
of nodes in the hidden layer should be correlated with the quantity of input data. The
correlation coefficient, R, between the outputs and targets was a measure of how well the
variation in the output was explained by the targets and outputs. The results obtained
revealed that the MLP algorithm associated with the Broyden-Fletcher-Goldfarb-Shanno
learning algorithm was more efficient in modeling the different biochemical parameters.
The neural network can learn complex relationships and generalize results from a specific
pattern of data, being considered an appropriate technique for modeling complex systems.
Solving problem using ANNs depends on the magnitude, type, quality, and preprocessing
step of the training data [54].

Model Validation

The model validation was performed based on the R2 and RMSE determined with
calibration, validation, and test datasets for all parameters (Table 2). The number of hidden
neurons was tested to find the best result in term of the correlation coefficient. According to
the parameters, the best ANN model was obtained for 12 hidden layers, being characterized
by high R2 for training, validation, and test models, while the error for each parameter was
also very low.

The ANN model improved the estimation results by lowering the value of RMSE
compared to the MLR models for the calibration/training set as well as for the validation
set, respectively. However, it should be noted that for the calibration dataset, the ANN
method always performed better than the MLR method.

To test the performance of the developed ANN models, the predicted and experimental
datasets of training samples were compared, and the results showed the high ability of the
ANN to generate outputs close to the experimental data (Table 3). The average accuracy of
training data (R2 = 0.98) represents that the developed network could be used for testing
data in the subsequent analysis. The correlation between the predicted and targets values
is highly significant. The average testing accuracy (R2 = 0.90) indicates that the developed
network is efficient and feasible. The error statistics evaluated for developed ANN models
are highly constant for both training and test data of each output, suggesting a lack of
overfitting throughput in the training process (Table 3). The important key of the ANN
model is not necessary to specify a previous proper fitting function, so it has a complete
calculation capability to estimate practically all types of nonlinear functions which helps us
to develop the most accurate prediction model. Based on the high accuracy of the predicted
data both in the training and testing processes, the neural networks could predict the
biochemical and pasting parameters, being fundamental for classification and analysis of
rice quality. These achievements are supported by modeling studies previously performed
in different research areas that have also indicated higher accuracy of ANN modeling
technique than regression modeling [55,56].

However, the promising results, which are following many correlation studies that
have been conducted on the relationships among starch quality parameters, can be affected
by the wide diversity of rice germplasm and the complexity of the inheritance of quality
parameters [57].

As an effective comparison of the prediction models for the parameters, the observed
values against the predicted values obtained were plotted, as well as the regression parame-
ters between observed and predicted values, as represented in Table 3 and Figures 3 and 4.
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Table 2. Parameters of the ANN models for training, validation, and testing procedures for the
biochemical and pasting parameters based on the Broyden-Fletcher-Goldfarb-Shanno (BFGS) opti-
mization algorithm. The transfer function tansig was used along with the model development. Peak
viscosity (PV); setback (ST); breakdown (BD); trough (TR); peak viscosity (PV); final viscosity (FV);
starch (ST); protein (P); fat (FA); ash (AS); amylose (AMY).

R2 RMSE

Training Validation Testing Training Validation Testing

ST

9:4:1 0.91 0.87 0.88 0.250 0.565 0.474
9:8:1 0.91 0.86 0.81 0.119 0.556 2.166
9:12:1 0.99 0.84 0.90 0.015 0.880 0.337
AMY

9:4:1 0.96 0.94 0.97 2.250 4.35 1.240
9:8:1 0.99 0.95 0.96 0.873 5.78 7.500
9:12:1 0.99 0.94 0.94 0.017 4.09 7.220
AS

9:4:1 0.90 0.56 0.85 0.002 0.009 0.006
9:8:1 0.92 0.76 0.75 0.001 0.006 0.014
9:12:1 0.94 0.81 0.70 0.001 0.003 0.016
FA

9:4:1 0.94 0.65 0.62 0.006 0.068 0.184
9:8:1 0.99 0.85 0.81 3.8 × 10−4 0.026 0.088

9:12:1 0.99 0.75 0.84 2.03 ×
10−5 0.088 0.059

P

9:4:1 0.97 0.84 0.66 0.023 0.190 0.228
9:8:1 0.93 0.75 0.76 0.051 0.177 0.318
9:12:1 0.98 0.82 0.91 0.019 0.470 0.691

BD

9:4:1 0.97 0.95 0.96 1.1 × 104 2.8 × 104 2.7 × 104

9:8:1 0.99 0.90 0.96 498 4.6 × 104 5.6 × 104

9:12:1 0.99 0.96 0.90 0.001 0.0003 0.0003
TR

9:4:1 0.96 0.97 0.94 6150 9189 1.7 × 104

9:8:1 0.99 0.95 0.92 1400 9200 2.7 × 103

9:12:1 0.99 0.94 0.93 2736 2.2 × 104 1.1 × 104

SB

9:4:1 0.97 0.96 0.98 1.6 × 104 3.0 × 105 2.4 × 104

9:8:1 0.99 0.96 0.97 7.1 × 103 3.2 × 104 2.8 × 104

9:12:1 0.99 0.86 0.96 14 × 104 2.2 × 104 5.2 × 105

PV

9:4:1 0.98 0.92 0.94 1.6 × 104 6.9 × 104 3.4 × 104

9:8:1 0.99 0.98 0.96 3867 3.7 × 104 4.2 × 105

9:12:1 0.99 0.91 0.95 2.6 × 104 1.5 × 105 2.5 × 105

FV

9:4:1 0.95 0.65 0.91 2.2 × 104 6.7 × 104 3.9 × 104

9:8:1 0.99 0.79 0.78 458 9.5 × 104 4.4 × 104

9:12:1 0.98 0.82 0.91 7.3 × 103 9.2 × 104 3.2 × 104
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Table 3. Regression statistics parameters describing the relationship between predicted and observed parameters using
ANN models.

Parameter Network
Training Validation Test

Slope Intercept R2/RMSE Slope Intercept R2/RMSE Slope Intercept R2/RMSE

Starch 9:12:1 0.96 2.9 0.99/0.015 1.1 6.0 0.84/0.880 0.85 10 0.90/0.337
Amylose 9:12:1 0.99 0.18 0.99/0.017 0.99 0.36 0.94/4.09 1.2 5.5 0.94/7.220
Ash 9:12:1 0.94 0.035 0.94/0.001 0.84 0.097 0.81/0.003 0.82 0.11 0.70/0.016
Fat 9:8:1 1.00 5.5 × 105 0.99/3.8 × 10-4 0.54 0.49 0.85/0.026 0.73 0.28 0.81/0.088
Protein 9:12:1 0.94 170 0.98/0.019 0.76 620 0.82/0.470 0.89 380 0.91/0.691
Breakdown 9:12:1 0.98 7.8 0.99/0.001 1.1 210 0.96/0.0003 0.86 130 0.90/0.0003
Setback 9:12:1 0.96 20 0.99/14 × 104 0.96 −29 0.86/2.2 × 104 1.2 59 0.96/5.2 × 105

Trough 9:12:1 0.89 180 0.99/2736 1.0 −70 0.94/2.3 × 104 0.81 230 0.93/10758
Viscosity 9:12:1 1.00 −51 0.98/7.3 × 103 1.3 910 0.82/9.2 × 104 1.5 1500 0.91/3.2 × 104

Peak
Viscosity 9:12:1 0.94 170 0.99/2.6 × 104 0.76 620 0.91/1.5 × 105 0.89 380 0.95/2.5 × 105

In this study, the MLR and ANN modeling methods were applied for monitoring rice
quality using the experimental data registered along with the study. The Figures 3 and 4
show the experimental and predicted values related to the biochemical and pasting ANN
models. The ANN models were most efficient, and the regression line between the observed
and the predicted values nearly overlapped the 1:1 line, which was the case for both the
calibration and the validation sets. High R2 and low RMSE values showed that the ANN
models present promising potential to improve the estimation of different biochemical
and pasting parameters, being especially able to cope with nonlinearity in the dataset.
Furthermore, although ANN models are unable to identify sensible bands due to the
nature of the method, they resulted in generally higher R2 values and lower RMSE values
than linear regression models. This implies that the relationship between biochemical and
pasting parameters and biometrics properties may indeed be nonlinear. Based on these
models, this study showed that the ANN algorithm was an efficient method for biochemical
and pasting prediction based on milling yields and grain appearance parameters.
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4. Conclusions

The ANN algorithms tested in the development of prediction models for rice biochem-
ical and pasting parameters based on grain physical data are characterized by significant
regression coefficients. These achievements can be considered as an added value for
rice quality improvement in breeding purposes and processing, being suitable for qual-
itative and quantitative measurement of different physicochemical features of rice. In
the future, based on these promissory results, we intend to develop a robust prediction
model for several parameters based on a large number of rice varieties from different coun-
tries and, consequently, to implement an automatic evaluation system for different past-
ing and biochemical parameters, reducing costs associated with several time-consuming
experimental procedures.
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