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Abstract

Bacterial infections are still a major global healthcare problem. The quick and sensitive detection of pathogens responsible
for these infections would facilitate correct diagnosis of the disease and expedite treatment. Of major importance are
intracellular slow-growing pathogens that reside within peripheral leukocytes, evading recognition by the immune system
and detection by traditional culture methods. Herein, we report the use of hybridizing magnetic nanosensors (hMRS) for the
detection of an intracellular pathogen, Mycobacterium avium spp. paratuberculosis (MAP). The hMRS are designed to bind to
a unique genomic sequence found in the MAP genome, causing significant changes in the sample’s magnetic resonance
signal. Clinically relevant samples, including tissue and blood, were screened with hMRS and results were compared with
traditional PCR analysis. Within less than an hour, the hMRS identified MAP-positive samples in a library of laboratory
cultures, clinical isolates, blood and homogenized tissues. Comparison of the hMRS with culture methods in terms of
prediction of disease state revealed that the hMRS outperformed established culture methods, while being significantly
faster (1 hour vs 12 weeks). Additionally, using a single instrument and one nanoparticle preparation we were able to detect
the intracellular bacterial target in clinical samples at the genomic and epitope levels. Overall, since the nanoparticles are
robust in diverse environmental settings and substantially more affordable than PCR enzymes, the potential clinical and
field-based use of hMRS in the multiplexed identification of microbial pathogens and other disease-related biomarkers via
a single, deployable instrument in clinical and complex environmental samples is foreseen.
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Introduction

Pathogenesis caused by intracellular pathogens, such as

Mycobacterium tuberculosis among others, relies on the survival of

the microorganism within host cells, such as macrophages and

dendritic cells. This mode of infection with or without clinical

symptomology hampers bacterial detection, preventing correct

diagnosis. Consequently, the physician cannot proceed to the

assignment of an appropriate treatment course, delaying the

clearance of the pathogen from the body. Serological immunoas-

says cannot effectively detect intracellular pathogens in biological

fluids (e.g. blood, lymphatic fluid) as the microorganism is hidden

away within the immune cells. For this reason, isolation of the

infected cells and extraction of their DNA, followed by detection of

specific bacterial genomic markers via Polymerase Chain Reaction

(PCR), is needed to facilitate identification of the pathogen.

Although highly specific and sensitive, PCR methods are generally

laborious, time-consuming and typically require homogeneous and

pure DNA samples [1]. Evidently, complex biological samples,

such as biopsies and blood, have to be thoroughly processed in

multistep elaborate protocols to obtain pure DNA samples,

significantly increasing the final readout time, and affecting the

overall DNA yield. An alternative way to detect intracellular

pathogens, particularly when they are in low numbers, is by

isolating the infected leukocytes from the blood and expanding the

number of viable bacteria via culturing methods before PCR

analysis. Although very effective, bacterial culturing methods

require a significant amount of time, such as in the case of slow-

growing intracellular pathogens that have to be cultivated for even

weeks, assuming that there is an adequate amount of viable

pathogens in the clinical sample. Another drawback of culturing

methods is that some pathogens do not grow effectively in culture,

either because of the nature of the pathogen itself or the presence

of biological interferences present in the clinical sample that

prevent growth in culture. Because of these hurdles, new

technologies that can detect the presence of a pathogen in human

clinical samples are urgently needed.

It has been predicted that nanotechnology will have a major

impact in medicine, agriculture and biotechnology among other

fields [2,3,4,5,6,7,8,9,10]. Innovative technologies that take

advantage of the unique size-dependent electronic, magnetic and

luminescence properties that some nanomaterials exhibit when

they specifically interact with a biological marker have been
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developed for faster and more accurate sensing of various

pathogens [2,3,4,5]. However, the translation of these technologies

to the clinical diagnosis of an infectious disease and how it relates

to the presence of the pathogen in clinical samples has been

limited. The slow clinical translation of some of these nano-

technologies has been partly due to their poor performance in

crude or minimally processed clinical samples. Among the most

promising nanomaterials are magnetic relaxation nanosensors

(MRS). These magnetic nanosensors are composed of a polymer-

coated iron oxide nanoparticle onto which affinity ligands are

conjugated to facilitate binding and magnetic detection of

a particular target [11,12]. Upon specific binding of a target to

ligands on the magnetic nanoparticle, changes in the sample’s

magnetic resonance signal (specifically the water proton relaxation

time; T2) occur that correlate with the target concentration in

solution. By measuring the changes in T2 relaxation times upon

target interaction and correlating the intensity of the change with

the target concentration, one can develop a sensitive detection

method, therefore the acronym of magnetic relaxation nanosen-

sors (MRS).

In contrast to other methods that utilize magnetic nanopar-

ticles as labels and directly measure an intrinsic physical

property, such as a magnetic field [13,14], or a chemical

property [6], the MRS method relies on the effect that the

nanoparticle’s induced magnetic field exerts on the hundreds of

thousands of water molecules surrounding the nanoparticle.

This effect results in an amplification of the signal, allowing for

sensitive detection even in turbid and minimally processed

samples, without the need of further amplification, which is

critical for assays such as PCR and ELISA. Hence, MRS-based

assays can be more affordable than traditional assays, since they

use a single reagent that can be easily produced in large

quantities, and a single-step that avoids time- and labor-

consuming procedures. Additionally, MRS can detect their

targets at various point-of-care settings, since the nanosensors

are stable at ambient conditions and utilize deployable

instrumentation. We recently reported a unique MRS nano-

particle-target interaction that resulted in rapid T2 increases

upon target binding [12]. This unique nanoparticle-target

interaction is different from other MRS-based methods, because

clustering of the nanoparticles is not required to achieve

detection. In contrast, binding of MRS to the target caused

fast, target-concentration-dependent increases in T2. Kinetic

studies also revealed that the binding of MRS was faster and

more sensitive than the MRS clustering, while achieving lower

detection thresholds. In addition, nanoparticle valency – the

amount of a targeting ligand on the surface of the nanoparticle

– plays a role in the magnetic relaxation response. Nanoparticle

valency controls the trend of the change in the spin-spin

relaxation time (DT2). Specifically, it has been found that low

valency results in decreases in the DT2 as the target

concentration increases, while at high valency conditions the

DT2 increases as the target concentration increases.

Hence considering the faster detection kinetics of MRS binding-

based detection assays and the higher sensitivity of the MRS low-

valency nanoparticle system, we developed hybridizing MRS

(hMRS) that switched (increased) the sample’s water proton

relaxation times (T2) upon binding to a unique bacterial genomic

marker and tested their performance in clinical samples. The

hMRS were designed to bind to a specific genomic marker in

Mycobacterium avium spp. paratuberculosis (MAP); an intracellular

pathogen known to cause Johne’s disease in cattle [15] and has

been also implicated in the cause of Crohn’s disease in humans

[16]. Furthermore, acknowledging the limitations of PCR in

detecting nucleic acid biomarkers of intracellular pathogens in

clinical samples, we investigated the hMRS performance in

detecting MAP in human peripheral blood samples of Crohn’s

disease patients as well as animal tissues with Johne’s disease.

MAP is found within the white blood cells of infected animals

with Johne’s disease, a form of animal paratuberculosis, which is

associated with chronic enteritis, reminiscent of Crohn’s disease

in humans [16]. As early as 1913, Dalziel noted the clinical

similarities of animal paratuberculosis, intestinal tuberculosis and

human chronic granulomatous enteritis (Crohn’s disease) [17].

In humans, Crohn’s disease is a debilitating chronic inflamma-

tory syndrome of the gastrointestinal track and adjacent lymph

nodes [17,18,19]. The detection of MAP in tissues from patients

with Crohn’s disease has been extensively reported. Of

particular importance to our study is the report of the presence

of MAP in human peripheral blood [20,21,22]. In these studies,

MAP was identified by a culture method followed by PCR

identification of a MAP genomic marker. The whole process

took several months to complete, due to the slow growing

nature of this pathogen. Such a slow detection method not only

delays the diagnosis, but also slows any potential therapeutic

intervention [20,21]. Likewise, difficulties in detecting an

intracellular pathogen, such as MAP, hamper studies aimed at

the investigation of the potential role of MAP in Crohn’s disease

pathology, as well as the pathogen’s impact on the dairy and

beef industries.

Attracted by MAP’s slow growing characteristics, intracellular

residence and clinical and agricultural relevance, we used hMRS

for the identification of a highly conserved MAP genomic element

(IS900). This unique DNA insertion sequence has been previously

used to identify MAP in clinical samples and cultures by PCR, as it

has not been found in other microorganisms or mycobacteria

[23,24,25]. Detection is primarily achieved through either direct

or culture-based nested PCR (nPCR), which use pure DNA

extracts from infected leukocytes. Both PCR methods sequentially

amplify a 398 bp fragment (amplification round 1) and a 298 bp

internal sequence (amplification round 2). We reasoned that the

binding of hMRS to IS900 would achieve faster and more

sensitive detection of MAP DNA via magnetic relaxation in

minimally processed clinical samples. Initial studies revealed that

hMRS can specifically detect MAP’s genomic marker without

showing cross-reactivity with other mycobacteria. Furthermore,

the presence of MAP in homogenized tissues from Johne’s disease

cattle was achieved at the genomic and epitope levels using hMRS

and anti-MAP antibody-carrying MRS, demonstrating that the

MRS technology can achieve detection at the genome and

organism levels using diverse molecular probes. Finally, a library

of 60 blood samples from Crohn’s disease patients and healthy

individuals was screened with hMRS and nPCR assays. Using

minimally processed blood samples, within 60 minutes the hMRS

were able to detect the intracellular pathogen and better predict

the clinical condition of an individual (healthy vs Crohn’s disease)

than the nPCR methodologies. Specifically, hMRS outperformed

the 12-week-long culture-based nPCR in clinical prognosis, as well

as the least reliable direct nPCR, which are currently used in

clinical and research studies. Overall, we show for the first time the

use and validation of a novel translational nanotechnology, where

the unique water relaxation properties of iron oxide nanoparticles

and the dynamics of the nanoparticle/target interaction were

harnessed to achieve a sensitive genomic biomarker detection

system for an intracellular pathogen in samples directly obtained

from human patients.

Intracellular Pathogen Detection Using Nanosensors
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Results

Design and Synthesis of hMRS
The detection of MAP’s IS900 genomic marker relies on

DNA isolation and subsequent amplification and detection via

PCR. Typically, DNA from peripheral leukocytes found in the

buffy coat (Direct nPCR) or leukocyte-derived cultured bacteria

(Culture-based nPCR) is first isolated in a multistep protocol

[21], yielding bacterial DNA of high quality (Figure 1a).
However, this approach often times compromises DNA yield,

which may impede MAP identification. In subsequent steps, the

bacterial DNA is subjected to two 3-hour-long polymerase-

mediated amplification rounds of the IS900 locus, followed by

gel electrophoresis. To facilitate faster detection via magnetic

relaxation, we designed a single hMRS probe that hybridizes

with the unique IS900 sequence within the MAP plasmid.

These hMRS are composed of a polyacrylic acid-coated iron

oxide nanoparticle onto which an oligonucleotide sequence

(ATGTGGTTGCTGTGT) complementary to the IS900 se-

quence in MAP is conjugated to facilitate binding and

detection. The resulting MAP specific hMRS had a diameter

of 78 6 3 nm, zeta potential value of –35 mV, an average of

55 oligonucleotides per nanoparticle, with R1 and R2

relaxivities (at 0.47T) of 45 mM-1s-1 and 60 mM-1s-1 respective-

ly. We anticipated that hMRS could utilize crude DNA,

obtained from isolated buffy coats that have been subjected to

heating (Figure 1a). It is well reported that heating of

peripheral leukocytes accomplishes first the release of a pathogen

from intracellular compartments [21], such as phagosomes, due

to extensive pore formation on the host cell’s plasma membrane

and organelles’ phospholipid-containing membrane. Once ex-

posed to high temperatures, the pathogen’s structural integrity is

affected, leading to release of its genomic DNA to the aqueous

milieu. A series of heating and cooling procedures on the

isolated MAP DNA plasmid in the presence of hMRS reduces

the DNA torsional strain, facilitating annealing and hydridiza-

tion of the hMRS onto the IS900 region of the MAP genome

(Figure 1b). Decreasing the sample’s temperature can return

the DNA to a higher structural order, with the hMRS still

binding to the MAP genome and inducing increases in the

sample’s magnetic resonance signal. Specifically, the hMRS

were able to bind to MAP DNA after two short heating rounds

(3 min each at 95uC), followed by unassisted cooling to room

temperature. The fast changes in the magnetic resonance signal

were monitored with a compact nuclear magnetic resonance

instrument (0.47T, Bruker, Minispec), recording increases in the

sample’s transverse relaxation times (DT2
+, where T2(sample) .

T2(control)). Within 30 minutes after removing the samples from

heat, significant and reproducible changes were observed

prompting us to set this time-point as the hMRS readout point

(Figure S1). Based on the observation that the sample’s T2

times were higher than those of the sterile control throughout

the experimental time course, we deduced that the hMRS first

bound to the relaxed circular MAP DNA that was heated, while

the hMRS still remained bound to the cooled DNA as it was

returning to its supercoil form. These results were corroborated

by dynamic light scattering studies that showed no clustering of

the nanoparticle suspension upon addition of the isolated MAP

genome, since the nanoparticle diameter was found to be 81 6

5 nm. Likely, this may be attributed to the fact that during

sample cooling the DNA returned to its supercoiled conforma-

tion, which can be in the order of a few nanometers, and as

a result nominally altering the overall size of the hybridizing

nanoparticle – DNA complex.

hMRS are Specific and Sensitive Probes
To determine the specificity of the hMRS, we incubated the

hMRS (6 mg Fe/mL) with pure DNA extracts from various

mycobacteria and monitored changes in T2 signal.

Within 30 minutes, results indicated that only samples contain-

ing MAP DNA exhibited a high DT2
+ signal, being attributed to

the hMRS – MAP DNA binding (Figure 2a). Additionally, the
hMRS were still able to identify their target in a solution with

a mixture of MAP and other mycobacterial DNA (Figure 2a).
This indicates that the hMRS are sensitive and specific, without

being affected by the presence of other mycobacterial DNA.

Furthermore, addition of a synthetic oligonucleotide complemen-

tary to the IS900 sequence abrogated the signal of the hMRS upon

MAP DNA addition, confirming the specificity of the hMRS

probe (data not shown). Since other microorganisms’ DNA might

be found in a clinical sample, we examined if the hMRS could

differentiate between MAP and common Gram positive and Gram

negative bacteria, as well as different types of mycobacteria.

Results showed that only the MAP sample yielded a high DT2
+,

whereas the other bacterial DNA samples exhibited signal

proximal to that of the sterile control (Figure 2a). These data

hint the potential use of the hMRS and magnetic relaxation

detection for the fast and specific detection of MAP DNA.

In subsequent studies, we determined if the hMRS could

quantify MAP DNA. MAP DNA was isolated using either an

elaborate multistep extraction protocol to obtain pure DNA, or

a fast 30-minute boiling-based methodology to obtain crude DNA.

After a 30-minute incubation period, the hMRS were able to

detect MAP DNA in both pure and crude DNA preparations,

exhibiting concentration-dependent DT2
+ changes (Figures 2b

and 2c, Table S1). The observed MAP concentration response

pattern exhibited a high magnetic resonance signal (DT2
+) at low

target concentration levels and low signals at higher DNA

concentrations. This suggests that the binding between the hMRS

and MAP DNA was facilitated via low valency interaction, as

previously described in other models [11]. This unique interaction

mechanism provides enhanced sensitivity during the screening of

scarce biomarkers, since high signal is desired at low target

concentrations. Quantification of the number of oligonucleotides

on the hMRS probe revealed that on average there were 55

oligonucleotides (oligos) per hMRS. This level of oligos per

nanoparticle is in line with previous reports, where valency

grafting of 46 oligos per nanoparticle exhibited a low valency

binding behavior, whereas a nanoparticle with 368 oligos obeyed

a high valency mechanism [12]. A low-valency-based detection

approach is ideal for the identification of MAP in clinical samples,

since it will induce a prominent DT2
+ signal at low numbers of

MAP. Based on the findings that both pure and crude MAP DNA

exhibited similar hMRS quantification patterns, it was deduced

that the hMRS assay can detect IS900 independent of the sample’s

DNA extraction methodology. Although higher changes were

recorded in pure MAP DNA samples, both extraction method-

ologies had equivalent detection thresholds, reaching low femto-

gram (10–15) levels. Potentially the differences in the magnitude of

the DT2
+ from pure and crude MAP DNA might be attributed to

the sample’s unique characteristics. It is plausible that the high

purity of the pure DNA extracts is associated with marginal

protein and lipid levels, resulting in lower viscosity. Alternatively,

a crude MAP DNA sample may have substantially higher content

of proteins and lipids, thus higher viscosity, which may be reflected

in lower DT2
+ values upon IS9000 – hMRS hybridization We then

examined whether nested PCR (nPCR) can achieve comparable

sensitivity using crude MAP DNA. We decided to compare our

hMRS method with nPCR as opposed to reverse transcriptase

Intracellular Pathogen Detection Using Nanosensors
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Figure 1. Design of a nanoparticle-based assay for the identification of genomic markers of the intracellular pathogen
Mycobacterium avium spp. paratuberculosis (MAP). (a) Isolation of MAP requires collection of infected white bloods cells from blood samples via
centrifugation. For direct nPCR analysis, DNA directly isolated from white blood cells is purified in multiple steps prior to amplification and detection
by gel electrophoresis. Meanwhile, culture-based nPCR requires the growth of MAP in specialized liquid media for 12 weeks, followed by DNA
isolation before nPCR. Hybridizing magnetic relaxation sensors (hMRS) can detect MAP DNA in minimally processed blood samples via changes in
magnetic signal (DT2) in 1 hour, as opposed to 24 hours for direct nPCR and 12 weeks for culture nPCR. (b) Preparation of MAP DNA for hMRS.
Heating of infected leucocytes facilities rupture of the cell membrane releasing MAP DNA. Further heating and cooling steps facilitates the annealing
and binding of a MAP specific hMRS, resulting in an increase in the T2 water relaxation time.
doi:10.1371/journal.pone.0035326.g001
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PCR (RT-PCR), due to the fact that MAP is an intracellular

pathogen that grows very slowly. Similar to other intracellular

microorganisms, it can be dormant and reduce its metabolism,

suppressing transcriptional and translational activity [21]. As

a result, the transcripts (mRNA) of even housekeeping genes are

nominal and cannot be used in RT-PCR diagnostics. Therefore,

nPCR is the technique most typically used for MAP detection

[21]. Using nPCR, after two 3-hour-long cycles and electropho-

resis, nPCR was not able to detect MAP IS900 in samples

containing crude MAP DNA (Figure S2). This demonstrates the

sensitivity and robustness of hMRS to rapidly detect their target

even under conditions of interference, which prevent the use of

traditional enzyme-based methods. In line with this, recent studies

have demonstrated that nucleic-acid-decorated nanostructures can

be highly stable even in serum-containing media and avoid non-

specific protein and nuclease interactions, due to the steric

inaccessibility and high local salt concentration introduced by

the nanoparticles’ DNA strands [26]. Subsequently, we then

compared hMRS and nPCR using purified DNA extracts instead.

Also considering the size of MAP’s genome (4,829,781 bp) and the

average molecular weight of a base pair (MW: 650), we calculated

the mass of a single MAP genome copy to be equal to 5.2 fg. This

value is comparable to that determined experimentally in previous

reports [27]. Hence, we accordingly prepared serial dilutions of

MAP DNA with known genome copy numbers. hMRS and

magnetic relaxation detection were able to detect a single copy of

MAP DNA within 30 minutes, whereas nPCR was able to achieve

similar, although not as sensitive, detection (5 bacteria) only after

the second amplification round (Figure 2d and 2e, Table S2).
This translates to a total readout time for nPCR of more than 6

hours, with the need of more reagents, such as primers and

enzymes, as well as labor and equipment time. Intriguingly

though, the hMRS had a single genome-copy detection threshold

when crude MAP DNA was used, without compromising their

sensitivity in this minimally processed sample (Figure S3).
Overall, these data demonstrate that hMRS can achieve fast

Figure 2. Specificity and sensitivity of the IS900-detecting hMRS. (a) hMRS specifically bind to MAP DNA and not DNA from other
mycobacteria or common pathogens ([hMRS] = 3 mg Fe/mL). hMRS facilitates the fast and quantitative detection of MAP DNA in pure (b) and crude
(c) samples within 30 minutes. Comparison of the sensitivity of the hMRS and nested PCR (nPCR). (d) Within 30 minutes, the hMRS detected a single
MAP genome copy, translating to one bacterium. (e) After its second amplification round (6 hours), nPCR achieved comparable sensitivity. (Upper gel
image: first nPCR round (3 hours), lower gel image: second nPCR round (total two-round time 6 hours), - Ctrl: dH2O and 0: sterile TE buffer).
doi:10.1371/journal.pone.0035326.g002
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single MAP genome detection even in crude DNA samples,

outperforming nPCR in readout time, sensitivity and robustness.

hMRS Achieve Genome-based Detection of the
Intracellular Pathogen Mycobacterium avium spp.
Paratuberculosis in Cultured Clinical Isolates and Tissue
Samples
Since the hMRS detected MAP DNA in samples from pure

bacterial cultures, we investigated if the nanosensors could identify

their targets in more complex samples, such as cultured clinical

isolates and homogenized tissue preparations. We first screened

cultures of clinical isolates from Crohn’s disease patients with the

hMRS and compared these results with nPCR. Specifically, we

used crude DNA for the hMRS and pure DNA for the nPCR,

since nPCR cannot utilize crude DNA. Following a single-step

procedure, crude DNA obtained from cultured isolates of healthy

individuals yielded a magnetic signal change that was comparable

to that of the sterile culture medium (DT2
+ = 1.3 6 0.2 ms),

establishing this magnetic signal change as the hMRS negative

control baseline. Further studies indicated that the hMRS were

able to rapidly detect MAP in several clinical isolates with good

correlation to the culture-based nPCR, indicating that the hMRS

can quickly detect the IS900 biomarker in minimally processed

cultured clinical isolates (Figure 3, Table S3). Out of the ten

cultures screened, one sample from a culture of an ileal biopsy

(GN2’) was identified as positive by the hMRS, yet negative by

nPCR. A false negative result with culturing methods can occur

when either low amounts of the pathogen are present in the

collected sample or when the pathogen is not viable to properly

grow in culture. This prompted us to analyze the culture sample

from the corresponding patient’s blood (GN2). We reasoned that

viable MAP could be present in the patient’s leucocytes, granting

correct diagnosis. Indeed, culture from the blood sample GN2 was

identified as positive in agreement with the hMRS diagnosis and

clinical sympthology. Therefore, nPCR may have failed to detect

IS900 in ileal biopsy GN2’ perhaps due to either low levels of the

pathogen or the presence of interferences in the biopsy sample that

inhibited growth of the pathogen in culture. Overall, these results

suggest that the high sensitivity of hMRS facilitates the positive

identification of MAP in blood and biopsy samples, whereas PCR

techniques were not always successful in identifying MAP.

Next, we screened various ileal biopsies from Crohn’s disease

patients for the presence of MAP at the genomic and epitope levels

using magnetic relaxation. We performed these studies since

clinical diagnostics frequently require the identification of a bio-

marker at multiple levels. For instance, the aberrant activity of an

oncogene has to be evaluated at the transcriptional, translational

and post-translational levels, in order to understand causality,

delineate disease dynamics and identify optimal therapy

[28,29,30]. For these studies, in addition to the MAP IS900

hybridizing sensor (hMRS), we prepared a MAP-epitope-sensing

MRS (diameter = 9264 nm, zeta potential = –31 mV, an

average of 2 antibodies per nanoparticle, R1 = 48 mM-1s-1 and

R2 = 57 mM-1s-1) that identifies a conserved MAP bacterial

surface antigen [31]. Despite their different detecting mechanisms

(oligonucleotide probe vs antibody), binding site topology and

target characteristics (DNA vs surface epitope), both MRS

provided a DT2
+ signal for all samples with clinical symptomology

(P1-P4, Figure 4a and 4b), whereas the sample from a healthy

individual (H1, Figure 4a and 4b), exhibited nominal magnetic

signal changes. Independent confirmation of the MAP MRS

findings was achieved by performing DNA extraction and nPCR

analysis. In addition, we used both the hMRS and epitope MRS to

screen for the presence of MAP in tissue samples from cattle

infected with Johne’s disease. Since MAP causes Johne’s disease in

cattle, we investigated if these probes can identify this intracellular

pathogen at the genomic and epitope levels in homogenized tissue

samples. Results showed significant magnetic signal changes in all

tissues from infected animals (Figures 4c and 4d), demonstrating

that hMRS and epitope MRS can quickly detect MAP in clinically

relevant samples at both the genomic and epitope levels. It is

interesting to note that in both human biopsies from Crohn’s

patients and tissues from animals with Johne’s disease, the

magnetic relaxation signal obtained with the hMRS probe

correlates with that obtained with the epitope-sensing MRS for

the same sample. The differences in the DT2
+ among the animal

tissue samples might be attributed to the fact that the spatial

concentration of MAP differs among the various tissues within the

same animal due to Johne’s disease pathophysiology. Overall,

these results indicate that these probes can be used for the

screening of complex tissue samples with minimal or no sample

preparation, supporting clinical decision making.

hMRS Quickly Detect MAP DNA in Peripheral Blood
Acknowledging previous reports that identified MAP in the

blood of Crohn’s disease patients, we sought to screen blood

samples from healthy individuals and Crohn’s disease patients for

the presence of IS900 (n= 34). For this, we chose to screen MAP’s

IS900 genomic marker, rather than a protein (epitope) marker,

since the later involves the use of anti-MAP antibodies that are

difficult to reproducibly generate while avoiding antibody batch

variabilities. In addition, a DNA-based hybridizing MRS would be

more robust and selective than an antibody-based MRS.

Peripheral blood was collected and DNA was directly isolated

from white blood cells, via either a 30-minutes crude DNA

extraction protocol for hMRS or a multistep high purity and

quality DNA isolation procedure for direct nPCR screening.

Direct nPCR for the MAP IS900 biomarker provided conclusive

results about the pathogen’s presence in these samples, hence these

samples established the first peripheral blood cohort (Cohort 1). In

this cohort, positive samples were defined as those samples where

a prominent band corresponding to IS900 was observed and

negative samples were those where no visible band was observed at

all. Control and Cohort 1 samples were screened with hMRS,

after a 30-minutes crude DNA extraction protocol from white

blood cells. Crude DNA extracted from control samples induced

small changes in the magnetic signal (DT2
+ = 1.3 6 0.1 ms),

which served as the hMRS reference point. Interestingly, results

obtained with hMRS and magnetic relaxation detection using

crude DNA samples from patients within Cohort 1 were in

complete agreement with results obtained with direct nPCR that

used pure DNA samples (Figure 5, Table S4). Addition of

a synthetic target complementary to hMRS led to signal

abrogation in the samples that had been identified as MAP

positive, confirming the specificity of the assay. This indicates that

the hMRS can detect their target in minimally processed blood

samples, while eliminating lengthy sample preparation procedures.

Next, a second cohort of blood samples (Cohort 2, Table 1)
was represented by samples where direct nPCR analysis provided

dubious results. In samples within this cohort, classification as

either positive or negative was not possible due to the presence of

smeared or faint bands. The presence of these dubious samples,

either false-positives or false-negatives, is a major problem with

current nPCR techniques. Therefore, we examined if the hMRS

performs better than direct nPCR and culture-based nPCR in

determining if an individual is positive or negative based on his/

her clinical state (in this case being Crohn’s positive or healthy).

Intracellular Pathogen Detection Using Nanosensors
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For the culture-based nPCR, inoculants from white blood cells

were incubated for 12 weeks in specialized mycobacterial media

(n = 26), allowing the potential growth of any viable MAP bacteria.

After this long incubation period, pure DNA extraction was

performed, followed by nPCR analysis. Interestingly, the culture-

based nPCR was better in predicting disease than direct nPCR,

which was performed on pure DNA extracted from white blood

cells readily after venipuncture (blood draw) (Figures 6a and

Figure 3. Screening of clinical isolates with hMRS and nPCR. Comparison between the magnetic relaxation-mediated detection of MAP in
clinical isolates using hMRS after crude DNA extraction and culture-based nPCR. All isolates were from blood samples from Crohn’s disease patients,
apart from GN2’ and GN8’ that correspond to ileal biopsies.
doi:10.1371/journal.pone.0035326.g003

Figure 4. Comparison between the hMRS genomic detection of MAP in clinical isolates and homogenized tissues with the presence
of MAP protein markers using anti-MAP antibodies conjugated MRS. (a) hMRS detected MAP genomic tags in clinical isolates via changes in
the magnetic resonance signal. (b) A second preparation of magnetic nanosensors carrying polyclonal anti-MAP antibodies (anti-MAP-pAb) was able
to corroborate the presence of MAP in these clinical isolates by the identification of MAP surface epitopes. (c) hMRS detected MAP’s IS900 in
homogenized tissue from Johne’s disease cattle. (d) Corroboration of the presence of MAP in the cattle samples using anti-MAP-pAb MRS
nanosensors.
doi:10.1371/journal.pone.0035326.g004
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6b). This may be attributed to the ability of bacterial culturing to

provide more high-quality MAP DNA, as opposed to DNA

directly obtained from white blood cells. Additionally, it is

plausible that culturing can facilitate growth of even low

populations of bacteria in optimal conditions, whereas direct pure

DNA isolation from white blood cells may result in low genome

recoveries of rare bacteria throughout its multiple steps and

presence of interferences, like nucleases, cytosolic proteins and

membrane lipids. Comparing both PCR setups with the crude

DNA hMRS methodology, we found that the nanoparticle-based

method outperformed both PCR-based methods in correlating

MAP’s presence and disease state (Figures 6a and 6b). This
hints the hMRS’ sensitivity, and the ability of the crude DNA

extraction method to provide adequate DNA levels that are

sufficient to facilitate improved bacterial detection. Furthermore,

a receiver operating characteristic (ROC) analysis based on

hMRS-mediated MAP quantification indicated that hMRS can

provide improved clinical diagnosis than the qualitative (positive vs

negative) nested PCR assays (Figure 6a, Table 1). Specifically,
hMRS were able to better correlate bacterial biomarker presence

and Crohn’s disease symptomology than both direct and culture-

based nPCR. This suggests the potential use of hMRS for the

future investigation of complex disease and the role of various

disease effectors and contributors, to better understand pathogen-

esis’ mechanisms and its dynamic interactions. Taken together,

this data prove that hMRS can rapidly detect a unique nucleic

acid signature of an intracellular pathogen in clinical samples with

improved fidelity and higher sensitivity than PCR. This enhanced

detection translates into a more sensitive pathogen detection and

more accurate diagnosis of the disease, providing important

clinical information for successful treatment and therapeutic

interventions due to early diagnosis.

Discussion

The primary aim of this study was to develop and test

a nanoparticle-based assay for the sensitive detection of genomic

bacterial biomarkers of an intracellular pathogen in clinical

samples. Preliminary studies demonstrated that the hMRS can

specifically detect a conserved genomic element (IS900) in MAP’s

genome, and not in other microorganisms. Through additional

studies, we identified that the sensitivity of the nanosensors was

equal to one genome copy even in minimally processed samples,

allowing detection of MAP in clinical isolates, tissue homogenates

and blood. Compared to nPCR, hMRS had improved perfor-

mance and yielded faster results. Consequently, this translates to

lower costs, since the magnetic nanosensors are fairly easy and

cheap to manufacture in larger quantities, and the assay does not

require multiple oligonucleotide primer pairs, expensive enzymes

and nucleotides. Detection was performed using a simple table-top

relaxometer that measured the increase in the water proton

relaxation time (NMR signal) that occurred after the hMRS

probes bound to their genomic target. The unprecedented

detection limit of this technique is due to the build-in water

relaxation amplification that results upon a single binding event.

Figure 5. Detection ofMycobacterium avium spp paratuberculosis’ genomic marker in clinical samples with hMRS and direct nPCR. The
hMRS detected MAP’s IS900 region in minimally processed blood samples (Cohort 1, n = 34). Correlation of the hMRS findings was achieved through
pure DNA extraction from white blood cells and direct nPCR. Results are means 6 SE.
doi:10.1371/journal.pone.0035326.g005
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Table 1. Clinical data and hMRS results of minimally processed blood samples (Cohort 2).

Sample Age (years)/sex Diagnosis Direct PCR Culture-based PCR hMRS

MAP DT2 (ms) MAP (bacteria)

B1 F/51 CD 2 + + (3/3) 8.4 5348

B2 F/27 CD 2 + + (3/3) 8.6 4609

B3 F/73 Healthy 2 + + (3/3) 9.1 2542

B4 F/50 CD 2 + + (3/3) 3.4 1088531

B5 M/56 CD 2 + + (3/3) 7.6 12826

B6 F/57 Healthy 2 + + (3/3) 4.2 465264

B7 M/28 CD 2 + + (3/3) 7.5 13963

B8 F/31 Healthy 2 + + (3/3) 7.0 24006

B9 M/18 CD 2 + + (3/3) 10.3 760

B10 M/28 CD 2 + + (3/3) 5.2 162513

B11 F/16 CD 2 + + (3/3) 4.4 400959

B12 F/24 Healthy + 2 2 (0/3) 0.2 0

B13 F/61 Healthy + 2 2 (0/3) 0.4 0

B14 M/65 Healthy + 2 2 (0/3) 0.1 0

B15 F/62 Healthy + 2 2 (0/3) 0.1 0

B16 F/23 CD + 2 2 (0/3) 0.7 0

B17 F/48 Healthy + 2 2 (0/3) 0.6 0

B18 M/19 CD + 2 2 (0/3) 0.0 0

B19 F/26 Healthy + 2 2 (0/3) 0.4 0

B20 M/43 CD + 2 2 (0/3) 0.0 0

B21 F/50 CD + 2 2 (0/3) 0.1 0

B22 F/12 Healthy + + 2 (0/3) 0.5 0

B23 M/57 Healthy + + 2 (0/3) 0.0 0

B24 F/23 Healthy + + 2 (0/3) 0.6 0

B25 M/61 Healthy + + 2 (0/3) 0.2 0

B26 F/49 Healthy + + 2 (0/3) 0.3 0

doi:10.1371/journal.pone.0035326.t001

Figure 6. Detection of Mycobacterium avium spp paratuberculosis’ genomic marker in clinical samples with hMRS and culture-based
PCR. (a) Blood samples from a second population (Cohort 2, n = 26) were screened for the presence of the MAP IS900 genomic element with hMRS,
direct nPCR and culture-based nPCR after 12-week cultivation. The receiver operating characteristic (ROC) curve indicated that the hMRS, can better
differentiate between symptomatic (Chrohn’s) and asymptomatic (healthy) states than the two gold standard methods. (b) Two-proportion z-test
confirmed hMRS as a better clinical diagnostic utility than the PCR-based methods.
doi:10.1371/journal.pone.0035326.g006
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The T2 relaxation times of hundreds of thousands of water

molecules surrounding the hMRS probes increase upon binding of

a single probe to the target. This is also facilitated by the low

valency of the hMRS probe that induces drastic changes at low

concentration of the target, or in this case low copy numbers of the

genomic target. This approach contrasts with previous magnetic

relaxation approaches that rely on the use of two magnetic

nanoparticle probes that hybridize to adjacent sequences on

a DNA target, facilitating clustering of the nanoparticles with

a corresponding decrease in the T2 relaxation times [32,33]. Since

our approach does not rely on nanoparticle clustering and only the

binding of the nanoparticle is sufficient for detection, a faster,

more sensitive magnetic relaxation assay that rivals PCR has been

developed for the screening of an intracellular pathogen genomic

marker. Apart from a table-top relaxometer, portable magnetic

relaxometers have been developed, suitable for point-of-care

screening with hMRS [34].

hMRS can be used for the detection of diverse targets in

complex media, including turbid and opaque clinical samples

[11,12]. Herein, our results demonstrate that the hMRS binding

can achieve the unprecedented and fast detection of a single

genome copy of an intracellular pathogen. This is critical for the

identification of extremely virulent pathogens. As MAP is an

intracellular pathogen similar to M. tuberculosis, its detection is

difficult, due to the pathogen’s residence within an infected

leukocyte’s organelles. Thus contemporary diagnostic methodol-

ogies rely on cell isolation, cell lysis and nucleic acid isolation, in

order to yield high purity DNA. This renders MAP’s detection

problematic since the microorganism has to be isolated from

highly complex samples, such as blood or severely inflamed tissue

biopsies, before amplification and detection via PCR analysis.

Apart from DNA quality, the quantity of MAP DNA can affect the

outcome of PCR. For instance, low MAP DNA levels from

a clinical sample may not be successfully amplified through direct

nPCR or biological matrix components can affect the polymerase

activity, yielding false-negative or dubious results. In our studies,

a significant number of samples that were identified as MAP

dubious by direct nPCR were found to be positive by culture-

based nPCR and hMRS (Cohort 2), indicating that the pathogen

was originally present in the patient’s blood (albeit in low amounts)

and successfully grew in culture at adequate levels.

The culture-based nPCR, relies on the availability of viable

bacteria in the clinical sample that can be grown in culture in

sufficient amounts before nPCR. Most clinical microbial diag-

nostics rely on the growth of the pathogen in culture, before

performing the appropriate immunological or PCR tests [35,36].

Growth can be observed within 12 to 24 hours for fast-growing

microorganisms, but for slow-growing intracellular microorgan-

isms like MAP it can take from a week up to several months.

Another problem with this technique is that some microorganisms

are difficult to culture in the laboratory, which limits their

detection. Although highly reliable, culture-based PCR can result

in the identification of samples as false-negative, due to the

absence of a viable pathogen or the inability of the pathogen to

grow in culture. Therefore, it is plausible that samples that might

be found to be positive by direct nPCR and hMRS to be identified

as negative 12 weeks after by culture-based nPCR. This is

common for low bacterial loads of slow-growing microorganisms

that require highly specialized media and cultural conditions,

whose inadequacy might drastically affect bacterial viability

leading to cell death and DNA degradation [37]. These problems

in detection with PCR methods are encountered in the detection

of any intracellular pathogen, as the pathogen has optimized its

adaptation and growth within a host cell. Due to their sensitivity

and minimal sample processing, hMRS are capable of circum-

venting PCR’s obstacles and achieving improved clinical di-

agnosis. Our findings indicate that hMRS can detect an

intracellular pathogen’s genomic marker in biological fluids (i.e.

blood) and tissue homogenates within one hour, where the first 30

minutes are spent on crude DNA extraction and the remaining

time on readout.

Herein, we have also demonstrated that MAP DNA can be

detected in various tissues from Johne’s disease animals, as well as

in biopsies and blood from Crohn’s disease patients, at the epitope

and genomic biomarker levels. Furthermore, our results indicate

that hMRS can detect the presence of MAP in Crohn’s disease

patients more reliably than direct or cultured-based nPCR. As

a matter of fact, hMRS is a better predictor of the state of the

disease, correlating the clinical state of a patient with the presence

of MAP in blood samples (Figure 6). The use of hMRS could be

a powerful new tool in the study of the mechanism of infection of

intracellular pathogens and its relation to disease state, as well as in

elucidating intracellular pathogens’ adaptation strategies [38].

Difficulties in detecting MAP hamper studies aimed at the

investigation of the potential role of MAP in Crohn’s disease

pathology, as well as the pathogen’s impact on the dairy and beef

industries [39]. Overall, these studies provide evidence for the use

of hybridizing magnetic nanosensors and magnetic relaxation

detection to reliably identify the presence of an intracellular

pathogen in clinical samples in a fast, cost-effective and highly

sensitive way.

Materials and Methods

Preparation of IS900-specific hMRS
The IS900-specific hMRS were prepared from propargylated

polyacrylic-acid-coated iron oxide nanoparticles, utilizing litera-

ture available protocols [11]. Specifically, incorporation of

propargyl groups on polyacrylic-acid-coated iron oxide nanopar-

ticles was achieved via the carbodiimide chemistry, followed by

magnetic separation of the nanoparticles, using an LS25 MACS

column (Miltenyi) [11]. Subsequently, the propargyl-functiona-

lized iron oxide nanoparticles were reacted with an azide-modified

oligonucleotide, which is complementary to a segment of MAP’s

IS900 genomic element. Conjugation of the azide-terminated 15-

bp oligonucleotide 59-ATGTGGTTGCTGTGT-39 was achieved

via ‘‘click’’ chemistry, as previously described [40]. Briefly, 400 mL
propargylated iron oxide nanoparticles were resuspended in

1,100 mL NaHCO3 buffer (0.1 M, pH 8.4). To this, 200 mL of

10 mM TCEP (tris(2-carboxyethyl)phosphane hydrochloride,

Sigma) were added as a reducing agent. Twenty mL of 6.3 M

oligo were diluted in 80 mL NaHCO3 buffer (0.1 M, pH 8.4) and

added to the nanoparticle solution. The reaction was initiated with

the dropwise addition of 150 mL Cu(I)-TBTA complex (tris(ben-

zyltriazolylmethyl) amine, 10 mM, Sigma), which was previously

prepared in DI water and tbutanol (9:1). The reaction was

incubated at room temperature under continuous mixing for 3

hours, followed by overnight incubation at 4uC under constant

mixing. The resulting IS900 hMRS were dialyzed against DI

water using a 6,000 – 8,000 MWCO membrane (Spectrum),

followed by magnetic separation with an LS25 MACS column

(Miltenyi). The epitope-sensing MRS were formulated as pre-

viously reported, and the MAP antibody was obtained from Dr.

Naser’s lab [12]. Briefly, polyacrylic-acid-coated iron oxide

nanoparticles were conjugated to Protein G via the EDC/NHS

chemistry, in order to have Protein G as a high-affinity

immunoglobulin linker that provides optimal antibody orientation

[12]. The reaction was performed according to the literature,
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followed by magnetic separation through a 1X-PBS-equilibrated

LS25 column and antibody conjugation [12]. The nanoparticle

valency of the antibody-carrying nanoparticles was assessed

through quantification of the nanoparticles’ protein content, using

published methodologies [11]. Size determination of all hMRS

was achieved through dynamic light scattering, using the PDDLS

CoolBatch 40T instrument and Precision Deconvolve 32 software.

Zeta potential measurements were performed on a Malvern

zetasizer, while the R1 and R2 relaxivities were determined after

determination of the nanoparticle’s iron content and relaxation

studies on a compact relaxometer (Minispec, Bruker). Determina-

tion of the hMRS oligonucleotide concentration was achieved by

monitoring the absorbance at 260 and 305 nm (background),

using a Nanodrop 1000 spectrophotometer (Thermo Scientific), as

previously described [12]. The hMRS were stored at 4uC until

further use.

Bacterial Cultures, Isolates and Homogenized Tissue
Lab strains of MAP and clinical isolates were grown in 12B*

BACTEC bottles (Becton Dickinson) as previously described [21].

Quantification of MAP grown in the BACTEC bottles was

assessed with the BACTEC 460 TB Analyzer (Becton Dickinson).

Heat-inactivation of MAP was performed by autoclaving the

BACTEC bottle for 10 mins. Proteus vulgaris # 8427, Staphylococcus

aureus #33862, Pseudomonas aeruginosa # 27853, Enterococcus faecalis,

Escherichia coli # 8739, and Serratia marcensis were grown in culture

tubes with nutrient broth, and bacterial growth was monitored

spectrophotometrically. Heat inactivation of these bacteria was

performed by autoclaving the culture tubes for 10 minutes. Upon

inactivation, all bacterial stocks were placed in a Fisher Isotemp

freezer (Fisher Scientific), until further use. Clinical isolates and

tissue specimens from animals with Johne’s disease were obtained

from tissue collections stored in Dr. Naser’s laboratory.

Extraction of Pure and Crude Bacterial DNA from
Bacterial Cultures
DNA was extracted from cultured bacteria in a class II biosafety

cabinet, according to literature-available procedures [21]. One mL

of bacterial cultures was aseptically transferred to microcentrifuge

tubes, followed by centrifugation at 13,200 rpm. The resulting

pellets were resuspended in 120 mL sterile TE buffer (10 mM Tris,

1 mM EDTA, pH 8.0) and incubated in a dry heat bath at 100uC.
Samples without further processing were used as crude DNA

extracts in MRnS and nPCR studies. In order to obtain pure

bacterial DNA, after heating the samples, we placed them on ice

for 15 minutes and then centrifuged them at 12,000 rpm for 10

minutes at 4uC. The supernatants were transferred to Phase-lock

gel tubes (Eppendorf), which were supplemented with 200 mL of

phenol/chloroform/isoamyl alcohol (1:1:24 v:v, Acros). The tubes

were centrifuged for 5 minutes (12,000 rpm, 4uC), and the

supernatants were precipitated using 400 mL 100% ethanol cooled

to 220uC. The precipitated DNA was washed, dried, and finally

reconstituted in 50 mL TE buffer. Pure and crude bacterial DNA

was stored at 4uC until further analysis, whereas spectrophoto-

metric quantification of DNA content was achieved using

a compact spectrophotometer (Nanodrop 1000, Thermo Scientif-

ic). Crude and pure DNA extractions from clinical isolates were

similarly performed.

hMRS and Nested PCR Experiments
Serial dilutions of bacterial DNA were prepared in TE buffer.

For the relaxation-mediated experiments, 200 mL of the nano-

particle suspension (6 mg Fe/mL in 0.1 M phosphate buffer,

0.1 M NaCl, pH 7.4) were incubated with 1 mL of bacterial DNA

or control (TE buffer). The samples were heated twice for 3

minutes at 95uC. After this, the samples were transferred to

relaxometer tubes and cooled down at room temperature, while

taking relaxation measurements on a magnetic relaxometer

(Minispec, Bruker). For the specificity assays using a complemen-

tary synthetic target (59-TCCTTCGGCCATCCAACACAG-

CAACCACAT-39), 1 mL of the target (1.1 M) was added to the

hMRS mycobacterial samples containing the same DNA concen-

tration (3.5 ng/mL). Similar DNA concentration was used for the

specificity experiment utilizing other Gram-positive and Gram-

negative bacteria and hMRS (3 mg Fe/mL). For the sensitivity

experiments, serial dilutions of pure and crude MAP DNA were

prepared from pure cultures of MAP grown in 12B* BACTEC

bottles, which had been processed and quantified as described in

the preceding section (DNA extraction methodology). Nested PCR

(nPCR) was performed as previously described [21].

Blood Samples, Extraction of Bacterial DNA from White
Blood Cells and MAP Culturing
Blood samples were collected from healthy individuals and

patients with Crohn’s disease at the University of Florida, College

of Medicine, in accordance to Institutional Review Board

guidelines. The samples were coded and sent to the University

of Central Florida for blind screening via PCR and hMRS

analyses, without knowing in advance the individual’s condition,

demographics and MAP’s presence (Cohorts 1 and 2). Isolation of

white blood cells was achieved via centrifugation at 3,000 rpm for

10 minutes at room temperature, as previously described [21].

Pure DNA was extracted via phenol/chloroform/isoamyl alcohol

precipitation, similar to previously published methodologies. The

pure DNA was subjected to direct nested PCR, as described

above. Crude DNA extraction from the isolated white blood cells

was achieved via centrifugation at 13,200 rpm for 2 minutes. The

resulting pellets were resuspended in 120 mL sterile TE buffer

(10 mM Tris, 1 mM EDTA, pH 8.0) and incubated in a dry heat

bath at 100uC for 30 minutes, followed by cooling and

centrifugation at 12,000 rpm that provided us with supernatants

rich in crude DNA. For bacterial culturing, buffy coat samples

were prepared in sterile phosphate buffered saline as described

before and inoculated on MGIT bottles. The inoculants were first

incubated at 37uC in a 5% CO2 atmosphere for 12 weeks, and

then pure DNA extraction was performed as stated above.

Measurement of Proton Relaxation Times
Spin-spin relaxation times (T2) were measured using

a 0.47 T mq20 NMR analyzer (Minispec, Bruker). T2 values

were obtained before and after addition of the sample, and

through the time course of the study. All T2 measurements were

performed using a CPMG pulse-echo train with a 1.5 ms

interpulse spacing (Bruker Corp., Billerica, MA). The change in

magnetic resonance signal (DT2
+) was defined as the sample’s T2

minus the magnetic signal of the corresponding negative control.

All experiments and measurements were carried out in triplicate

and data were expressed as mean 6 standard error, unless

otherwise denoted.

Statistical Analysis
Clinical diagnosis and sample collection was performed at the

College of Medicine, University of Florida, based on clinical and

endoscopic criteria [21]. Samples identified as IS900-positive by

the hMRS method had an average DT2
+ higher than 1.5 ms, while

positive samples by the nested PCR method had a unique 298-bp
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nucleotide sequence. The averages of three independent experi-

ments are reported, unless otherwise stated. Two-proportion z-test

statistics were determined through the SPSS package, with the

confidence level set at 95% (IBM Co.). ROC analysis was

performed based on hMRS determination of the sample’s MAP

load. This was achieved through the correlation of the DT2
+ signal

to bacterial genome copies, using a crude extracted DNA standard

curve (Figure S3). For nPCR, the presence of a band

corresponding to IS900 was marked as positive (value = 1),

whereas its absence was assigned as negative (value = 0). The

overall ROC methodology was performed as previously reported

in literature [34]. Specifically, the classification variable was the

individual’s clinical condition (Crohn’s disease vs healthy), whereas

the output curve was fitted using logistic regression.
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study.

Supporting Information

Figure S1 Kinetics for MAP’s IS900 genomic marker
detection with hMRS. After heating the samples to facilitate

DNA stand separation and hMRS hybridization, the changes in

the T2 magnetic resonance signal were recorded over time, with

marked changes occurring within less than an hour (Means6SE).

(TIF)

Figure S2 Nested PCR (nPCR) cannot quantify crude
MAP DNA. – Ctrl: negative control (dH2O) of the first nPCR

round, – Ctrl: negative control (dH2O) of the second nPCR

round, TE: TE buffer, + Ctrl: two controls of pure extracted MAP

DNA.

(TIF)

Figure S3 Genome-copy-based quantification of MAP
with hMRS and crude extracted DNA. Samples with known

amounts of crude DNA from cultured MAP were utilized to

correlate the changes in the T2 signal (DT2+) and the number of

bacteria originally present in the sample, using the MAP’s genome

size as a reference. (Means6SE. SE too small to depict in high

bacterial levels.)

(TIF)

Table S1 Spin-spin relaxation times (T2) of crude MAP
DNA samples. Serial dilutions of crude MAP DNA samples

have been utilized to assess the sensitivity of the hMRS method in

minimally processed bacterial cultures. The averages of each

independent experiment are listed and the studies’ mean.

(PDF)

Table S2 Spin-spin relaxation times (T2) of pure MAP
DNA samples with known genome copies. Three in-

dependent experiments were performed on pure DNA samples

obtained from cultured MAP. Correlation between DNA levels

and bacterial populations was achieved by quantifying DNA

spectrophotometrically and using the MAP genome size as

a reference.

(PDF)

Table S3 Demographics of cultured clinical isolates
that were screened with hMRS and nPCR. (CD: Crohn’s

disease, IBD: inflammatory bowel disease)

(PDF)

Table S4 Clinical data and hMRS results of Cohort 1
blood samples. Samples from Crohn’s disease (CD) patients,

healthy individuals or asymptomatic carriers were analyzed by

direct nPCR and hMRS. Quantification of the MAP genome

copies was achieved in positive (+) samples using a training

standard curve for crude extracted MAP DNA.

(PDF)
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