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With the rapid spread of the SARS-CoV-2 virus since the end of 2019, public

health confinement measures to contain the propagation of the pandemic have been

implemented. Our method to estimate the reproduction number using Bayesian inference

with time-dependent priors enhances previous approaches by considering a dynamic

prior continuously updated as restrictive measures and comportments within the

society evolve. In addition, to allow direct comparison between reproduction number

and introduction of public health measures in a specific country, the infection dates

are inferred from daily confirmed cases and confirmed death. The evolution of this

reproduction number in combination with the stringency index is analyzed on 31

European countries. We show that most countries required tough state interventions with

a stringency index equal to 79.6 out of 100 to reduce their reproduction number below

one and control the progression of the pandemic. In addition, we show a direct correlation

between the time taken to introduce restrictive measures and the time required to contain

the spread of the pandemic with a median time of 8 days. This analysis is validated by

comparing the excess deaths and the time taken to implement restrictive measures.

Our analysis reinforces the importance of having a fast response with a coherent and

comprehensive set of confinement measures to control the pandemic. Only restrictions

or combinations of those have shown to effectively control the pandemic.

Keywords: infectious diseases, reproductive number estimation, non-pharmaceutical interventions, Bayesian

inference (BI), health sciences, epidemiology, SARS -CoV-2, public health

INTRODUCTION

Since being first observed in Wuhan in late 2019, the outbreak of the 2019 SARS-CoV-2 virus
is strongly affecting societies and economies. The transmission rate, pressure on the healthcare
system and lack of effective treatment lead countries to take public health measures to limit
the spread of the virus. The confinement measures range from banning gatherings to complete
lockdowns and closing borders (1, 2). Additional measures include individual protection with
various levels of mask wearing injunctions, and contact tracing with quarantine. This work has
focused on developing reliable modeling approaches to evaluate the impact of public health
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measures. Our method is based on analyzing the reporting
of European countries to evaluate the temporal influence
of non-pharmaceutical interventions (NPIs) on the effective
reproduction number Rt . The aim of Rt is to quantify the number
of secondary infections caused by an individual over the period
during which this person is infectious. It is important to make the
distinction between the effective and basic reproduction number.
The basic reproduction number R0 refers to the evolution of the
disease when the population is fully susceptible to the disease
while Rt factors numerous parameters, such as the susceptible
population, the transmission, the public awareness, the immunity
acquired within the population, amongst others (3). Rt is a key
parameter to evaluate the evolution of an epidemic. Any value
below one indicates that the spread is decreasing, any value above
one indicates that the spread is increasing in a given population.
Rt allows a direct comparison of the epidemiologic profiles
observed in different cohorts of population, such as specific risk
factors driven cohorts or countries with distinct characteristics
(such as population or testingmethods). It allows thus to consider
temporality and populational or cohorts characteristics. The
spatial and populational (age, social activity) heterogeneity have
been shown to play a role in the evolution of the pandemic as the
Rt evolve differently across these different groups (4–6).

Numerous methods have been developed to compute Rt
and its evolution over time (7) with the aim of identifying
the most influential parameters and predicting the development
of an epidemic in a given environment. Initial methods
derived Rt from transmission model similar to the SIR model
(8–12). In general, fitting deterministic model to incidence
data has been shown to often results in large error which
can however be solved by using stochastic model (13).
The choice of the mechanistic transmission model requires
assumptions about the epidemiology of the disease. For
example, the presence/absence of a latency period will guide
the choice between a SIR (Susceptible—Infected—Recovered)
or SEIR (Susceptible—Exposed—Infected—Recovered) model.
Recent studies tend to acknowledge the risk of asymptomatic
transmission of COVID-19 although with a lower relative risk
than transmission by symptomatic individuals (14) favoring the
use of a SIR model. The latter model is parametrized through
the transmission rate β and the rate of removal γ . One pitfall
is that this model assumes a constant transmission rate, that is
the infection probability distribution is constant over the period
during which an individual is infectious. In addition, the SIR
model requires to be fitted to the number of infections as well as
the number of people either susceptible or who have recovered.
However, the latter two variables, susceptible and recovered,
are difficult to evaluate and will strongly be influenced by
underreporting. Latermodels, including theWallinga and Teunis
approach (15), use a likelihood-based estimation procedure
to reconstruct infection patterns. These methods have shown
large variations when using daily data (16). Most approaches
aiming at correcting these fluctuations appeared to be sensitive
to smoothing parameters (16, 17). An additional method to
mitigate these drawbacks that is very robust to underreporting
was later developed (18). This method used Bayesian inference
based on a transmission model which includes the infectivity

profile to update the posterior distribution of Rt as more data
become available.

Since the start of the COVID-19 pandemic, various studies
have looked at the impact of public health interventions on the
evolution of the pandemic at regional or national level. The first
studies, on data from China, proving the impact of NPI strategies
to reduce Rt used mechanistic transmission models to obtain
Rt (19, 20), with the drawbacks described above associated with
these models. Further studies focused on how state interventions
prevented ICU capacity to be overwhelmed as well as their impact
on fatalities in the UK (21), Germany (22, 23), and France (24).
While these researches focused on individual country, a recent
study aimed to demonstrate the impact of non-pharmaceutical
interventions in 11 European countries (25). This study assumed
that the impact of the measures was independent of their relative
introduction. In addition, this study assumed Rt to be fixed
between the different measures. However, a recent research
shows that community changes also play a role in slowing the
evolution of the virus (26).

When evaluating the impact of public health interventions,
it is crucial to consider that there is a delay between the time
of infection and the time at which a confirmed case or the
death of an individual is reported. Even if we consider that NPIs
have a direct impact on the rate of infections, there will be a
delay between this change of infections and the time at which
this change is observed through positives tests or the death of
the individuals. The simplest method would consist in shifting
the data backward in time by the mean of the distribution of
interest that is the period from infections to the case being
reported or the death of the individual. However, this method
does not account for the uncertainty in the period of interest. A
possible method to circumvent this issue consists in subtracting
samples from the delay distribution to each observation. This
method has been recently used to adjust reporting delays in
the aim of evaluating the reproduction number of SARS-CoV-
2 (25, 27) and was applied in our research. One drawback
of the method is that as the mean and variance of the delay
distribution increase, the resulting infections are smoothed over
time potentially blurring discontinuities in the variation of Rt
(28). Alternatively, the confirmed cases can be considered as the
convolution of the infections with a delay period distribution.
The process to obtain the time of infection can therefore be
performed using a maximum-likelihood deconvolution method
(29, 30). These methods build on techniques which were initially
develop to correct AIDS data based on an iterative EM algorithm
(31). A different approach aimed to jointly infer the infections
and Rt (32). The drawback of this method is that it requires an
hypothesis on the shape and change points of Rt .

The aim of this work is to extend previous research estimating
Rt and focusses on the effects of state interventions in 31
European countries. As the evolution of Rt is a function of at least
three important parameters: the type of the restrictive measures;
the effect of these measures and changes in behaviors with
specific societal properties, and the size of various compartmental
cohorts involved, we do not aim to quantify the effect of each
measure. The restrictive measures and their effects are first
considered to be independent across the different countries. We
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then compare their effects across the countries and aim to show
how the combined interventions within a country and their
temporality have influenced the spread of the virus, characterized
by the evolution of confirmed cases, confirmed deaths, and
excess deaths.

MATERIALS AND METHODS

The following section aims to describe the different steps of
the analysis. The various data sources used in the analysis as
well as required period distributions for SARS-CoV-2 are first
introduced. Secondly, statistical methods to estimate Rt are
formulated and lastly the method to evaluate the impact of NPIs
is described.

Data Sources and Availability
Rt is estimated using incidence data for confirmed cases and
deaths published in the COVID-19 Data Repository (33).

The excess mortality was retrieved from Our World in Data,
(34). The data are aggregated on a weekly basis along the average
deaths observed for the same period between 2015 and 2019.

Data related to the period between a positive test and the
death of an individual were retrieved from: Swiss Federal Office of
Public Health (FOPH) (35). Data from FOPH on confirmed cases
is used to evaluate the impact of different information sources.

Data regarding the various state interventions were retrieved
from the Coronavirus government response tracker (OxCGRT)
developed by the Blavatnik School of Government (36). The
stringency index provided in this dataset tracks government’s
policies and interventions across different categories and
provides a score between 0 and 100 evaluating the overall
stringency of the measures taken in a given country (37). A
stringency index of zero means no measure has been noted in
this country, and a maximum score of 100, indicates a complete
lock down. The stringency index is calculated as averages of the
individual component indicators categorized in the following six
groups: school closing, non-essential economic activities, public
events, gatherings, stay at home policies, and restrictions on
movements. For the “Stringency index” the sub-index score Ij,t
is calculated for the 9 indicators as follows:

Ij,t = 100
vj,t−0.5(Fj−fj,t)

Nj
(1)

With Nj being the maximum value of the indicator, Fj the
indicator flag (whether the measure has or not a sectoral scope),
vj,t the recorded policy on the ordinal scale, and finally fj,t , being
the recorded binary flag for that indicator. The full methodology,
the variable values for computing the different scores are available
on their github repository, along with the interpretation of each
indicator (see Data Availability Statement for the exact reference).
The evolution of the stringency index for the countries of interest
can be found in Supplementary Figure 1.

A dataset which included the intersection of the data regarding
the evolution of the confirmed cases and deaths as well as the data
measuring the stringency index was available for 33 European
countries. For our analysis, Russia and Ukraine were removed

from our dataset as the reported daily deaths were still increasing
for these two countries when we are interested in countries which
have successfully contained the evolution of the pandemic before
the 23rd of May 2020. We were therefore left with a set of 31
European countries. The full list of the countries included in the
analysis is presented in the results sections. For the second part of
the analysis which focused on the excess deaths observed in each
country, the data were available for 19 countries.

Determining Incubation Time, Onset to
Confirmed, and Onset to Death
Distributions
The proposedmethod allows to compute Rt without developing a
transmission model and hence only requires a hypothesis on the
infectivity profile or serial interval distribution. The infectivity
profile is a probability distribution measuring the probability to
infect an individual at a given time s after the infection of the
primary case. This distribution is crucial to model the dynamic of
the infections and the delay between the primary and secondary
cases. The incidence on a given day can be estimated as follows:

E [It] = Rt
∑t

s=1
wsIt−s (2)

where E [•] is the expected value of a random variable, It is
the incidence at time t, and ws is the infectivity profile. The
distribution of ws for the SARS-CoV-2 virus was found to have
a mean of 4.8 days and a standard deviation of 2.3 days (38).

Given the time at which the infection occurred is not available,
the number of confirmed cases and deaths on a given day are
used as proxies. A gamma distribution with a median incubation
period at 4.4 days from confirmed infection and diagnosis outside
of the epicenter of Hubei Province, China, based on official
reports from governmental institutes was derived (39). The mean
and deviation were then obtained by fitting a gamma distribution
to the quantile derived in this study. The period between the
onset of the symptoms and a case being confirmed in Switzerland,
was estimated to 5.6 days (40).

The period between a case being reported as positive and the
death of the individual was extracted from 1,430 cases provided
by the Swiss Federal Office of Public Health (FOPH). Our result
provides a distribution on a much larger dataset than the one
built which used between 24 and 33 cases (39, 41). Three different
distributions were tested: lognormal, Weibull and gamma with
the Akaike Information Criterion (AIC) being used to identify
the best distribution. This distribution was then combined with
the incubation period (39) to obtain the period between onset
and death shown in Table 1 along the other distribution periods
where the onset refers to the symptom onset.

From the latter period functions it is possible to calculate a
posterior distribution of Rt based on the inferred infection dates
extracted from the confirmed cases and deaths reported. For
the daily cases declared (incidence), a shift following a gamma
distribution between the defined cases (confirmed or dead) and
the time of infection is randomly generated. For each case, the
new date of infection is generated by subtracting the shift to
the reported date. This procedure is performed iteratively with
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TABLE 1 | Incubation, onset to confirmed and onset to death distributions where

onset refers to symptoms onset.

Period Mean [days] Standard deviation [days]

Incubation (39) 4.6 1.9

Onset to confirmed (40) 5.6 4.2

Onset to death (our study) 15.3 8.0

the mean of daily simulated number of infections stored. Using
the latter period functions to estimate the infection occurrences
allows to take into account the large variance in the cases reported
by the health or political systems in the analyzed countries.

Correcting the Number of Infections
In addition, the incidence for the most recent days are corrected
(40) to factor delayed reporting:

It =
It

F̂l
(3)

where It and It are, respectively, the corrected and initial
incidence which took place on a given day. F̂ is the cumulative
distributive function of the period between an infection and a
case being reported as positive or dead, l is the time between
t and the last reported case so that F̂l = P(X ≤ l) where
X is a random variable that is gamma distributed with mean
and standard deviation described in Table 1 depending on the
variable of interest and P(X ≤ l) is the probability that X is
smaller or equal to l.

Estimation of the Reproduction Number
Using Bayesian Inference With
Time-Dependent Priors
The method presented in this report is a variation of the one
proposed by Cori et al. (18). Assuming the incidence at time t,
It , is Poisson distributed so that the likelihood of the incidence It
given Rt and conditional on previous incidences I0, · · · , It− 1:

P (It|I0, · · · , It−1, w, Rt) =
(Rt3t)

It e−Rt3t

It!
(4)

with 3t =
∑t

s=1 wsIt−s where ws is the estimated
infectivity profile.

The posterior of Rt conditional on previous incidences is:

P
(

Rt|I0, · · · , It−1, It , w
)

∝ P (It|I0, · · · , It−1, w, Rt)P (Rt) (5)

While the method developed by Cori et al. (18) assumes a
constant gamma distribution for the prior distribution, the
presented model takes advantage of the information gained in
time by updating the prior distribution for each window with the
previous posterior:

P (Rt)= P (Rt−1|I0, · · · , It−2, It−1, w) (6)

The 95% CI is then derived by computing the 2.5% and
97.5% quantiles.

Rt based on the confirmed cases is reported up to 9 days before
the last date at which results are available. This corresponds to the
median time for confirmed cases to be reported. Using the same
method, Rt based on the cases reported as dead is reported up to
19 days before the last day on which deaths were reported for a
given country.

Comparison of the Methods to Estimate Rt

on Synthetic Data
In order to compare the proposed methods with the one
developed by Cori et al. (18), a study on synthetic data was
performed. Two scenarios which were initially used in the
aforementioned research were used:

1. Constant reproduction number, Rt = 2.5
2. Sharp change in the reproduction number:

◦ Rt =

{

2.5 , t ≤ 15 days
0.8, t > 15 days

For each scenario, 100 simulations were performed. Ten cases
were introduced at t = 0 days, with the incident cases It for the
following 49 days being drawn from a Poisson distribution with
mean equal to Rt

∑t
s=1 It−s ws. An infectivity profile ws with a

mean of 4.8 and standard deviation of 2.3 days as introduced
by Nishiura et al. (38) for the SARS-CoV-2 virus was used. Rt
was then evaluated from the synthetic data using the method
developed by Cori et al. (18) as well as the proposed method.

The impact of underreporting was simulated using a binomial
distribution as performed in (18). For each day, the new incident
cases I∗t were assumed to follow a binomial distribution:

I∗t ∼ Binomial(It , π) (7)

where π is the reporting rate and was varied between 20 and
80% in steps of 20%. Rt was then evaluated on the simulated
underreported data and compared to the simulated Rt .

Assessing NPIs’ Impact on the Evolution of
the Pandemic
The stringency index developed as part of the OxCGRT project
(37) was used to assess the role of state interventions in
controlling the pandemic. This index was compared with the
evolution of Rt , rather than the incidence of confirmed or
dead cases. Using Rt helps comparing countries that have
heterogeneous testing or reporting policies. While Rt is also
subject to variations in these policies, it depends on the change
within the country in confirmed and death cases, therefore
allowing comparison between countries with different policies.
For each country, the public health measures and the stringency
index are analyzed when Rt estimates, based on the confirmed
cases, dropped below one. The hypothesis is that it can help
identifying the most efficient set of public health measures.

In order to assess the impact of taking restrictive measures
early in the crisis, the time taken to introduce initial restrictive
measures was compared to the period taken to control the
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epidemic. The time until the introduction of restrictive measure
was defined as the period between the 5th death in a given
country and the stringency index reaching a score of 35. The
stringency index threshold at 35 corresponds to the lowest score
observed when a country reached a Rt smaller than one which
was observed for Andorra. The time required to control the
epidemic was then defined as the period between the 5th death
and Rt , based on the confirmed cases, dropping below one.

Given that the confirmed cases and reported deaths are
influenced by reporting policies, the analysis described above was
supported by using the number of excess deaths. Following the
same logic as for the previous analysis, the period between the
5th death and the stringency index reaching 35 was compared to
the excess deaths experienced in each country. The excess deaths
were calculated as:

Excess deaths =
∑

w

Deaths
∣

∣

Week#w 2020
− Average Deaths

∣

∣

Week#w 2015−2019

Average Deaths
∣

∣

Week#w 2015−2019

(8)

where w represents for each country the weeks between the 5th
death and the 23rd of May 2020. This alternative method to
measure the impact of the different NPIs independently of the
proposed method to compute Rt serves as a mean to support
our conclusions.

RESULTS

Evaluation of the Proposed Methods
The simulated incident cases described in section Comparison
of the methods to estimate Rt on synthetic data are presented
in Figure 1 for the two scenarios used to validate the proposed
methods. The Rt computed using the proposed method as
well as the one from (18) for the first scenario are shown
in Supplementary Figure 2, while the results for the second
scenario which includes a discontinuity in the simulated
Rt are shown in Figure 2. In order to compare the two
methods, the average relative error was computed using the
following equation:

Error =
1

l

∑l

t=0

∣

∣Rt−Rt
∣

∣

Rt
(9)

where l is the number of days for which the computed Rt can be
derived from the simulated incident cases and Rt is the simulated
reproduction number over the same period l.

The computed average relative errors for the two scenarios
and methods are presented in Table 2.

The Rt evaluated on the simulated underreported data
following the method described in section Comparison of the
methods to estimate Rt on synthetic data are presented for a
reporting rate of 20, 40, 60, and 80% for the two scenarios in
Supplementary Figures 3–8. The average relative errors for these
simulations are shown in Table 3.

The proposed method takes as input confirmed cases which
can be provided by different sources (health or political

systems). In Supplementary Figure 9, the reproduction number
is estimated for Switzerland, with two different sources.

Evaluating the Reproduction Number From
Incidence Data of 31 Countries
The list of countries analyzed along dates characterizing the
evolution of the epidemic and stringency index values are listed in
Table 4 which is composed of four panels. This table summarizes
our analysis performed by computing Rt , based on the confirmed
cases. The first panel includes the dates which were used to
characterize the evolution of the pandemic in each country. The
first column of this panel is the date at which the 5th death was
observed, the 2nd one when the stringency index reached a value
of 35 and the third one includes the date at which the country
managed to control the epidemic by reducing Rt , below one. The
second panel shows the value of the stringency index when Rt ,
was reduced below one. The third shows the period between the
5th death and the stringency index reaching 35 or Rt becoming
smaller than one. The last panel includes the computed excess
deaths. The same table with the data when Rt is evaluated on the
reported deaths can be found in Supplementary Table 1.

As a case study, the evolution of Rt in Austria is shown in
Figure 3. Figure 3 aims to illustrate the different steps of the
analysis and will be used for the discussion. In the top part,
the daily confirmed cases are shown as a histogram. From these
daily confirmed cases and the derived period distributions, the
inferred daily infection are displayed as a dashed line. In the
middle part, the mean estimated Rt is displayed as a full line,
along with its 95% CI as a shaded area, with Rt being estimated
from the inferred infections. In the bottom part, the evolution
of the stringency index is displayed with a colorbar changing
toward dark red as the stringency score goes toward its maximum
value of 100, through the period of interest (from the date of the
5th death up to the 23rd of May). Different interesting phases
of the pandemic are shown in the Austrian example depicted
in Figure 3. Firstly, Rt started to decline before the introduction
of restrictive measures between March 13th and 17th, and this
reduction was intensified by a combination of NPIs which sums
into a high stringency index score. Rt then plateaued at around
0.65 during the lockdown and has been oscillating around one
up to the end date of our analysis (23rd of May). This last phase
shows the emergence of localized clusters.

When countries managed to reduce their Rt estimated on
the confirmed cases below one, they had a mean stringency
index of 79.6 out of 100 with a standard deviation of
14.3. The individual stringency indices for each country are
presented in Figure 4. When Rt dropped below one, the median
severity of the measures along their individual severity out
of 100 for each category defined in the OxCGRT dataset
was the following: (a) School closed (100/100); (b) Non-
essential economic activities closed (100/100); (c) Public events
were canceled (100/100); (d) Gathering of more than 10
people banned (100/100); (e) Mandatory at home policy with
minimal exceptions (67/100); (f) Movements in the country
were restricted (100/100). Figure 5 shows the time from the
5th death to Rt reducing below one against the time from
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FIGURE 1 | Simulated Incident cases for scenario 1 (A) and 2 (B). The incident cases for each of the 100 simulations are reported with a cross while the median is

indicated by the red line.

the 5th death to the date where the stringency reached 35. A
Pearson correlation coefficient of 0.722 was found between the
two variables.

This analysis was repeated for the Rt estimated on the
reported deaths. A gamma distribution with a mean and a
standard deviation equal, respectively, to 9.7 and 6.73 days
was found, using the AIC criterion, to best fit the data from

a case being confirmed to its death. The distribution along
the extracted data are shown in Supplementary Figure 10.
The AIC for the different distribution are summarized in
Supplementary Table 2. This distribution was used to estimate
the Rt on the confirmed deaths. A Pearson correlation coefficient
of 0.338 was obtained between the two variables, that is the
time between the 5th death and the stringency index reaching
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FIGURE 2 | Estimation of Rt for scenario 2, using the baseline method developed by Cori et al. (18) (A) and the developed method (B).

35 and the time between the 5th death and the Rt reducing
below one. The results for this analysis are presented in
Supplementary Figures 11, 12.

The comparison between the level of excess deaths observed
in a given country and the time between the 5th death and
the stringency index reaching 35 are presented in Figure 6.
A Pearson correlation of 0.684 was observed between these
two variables.

DISCUSSION

Evaluation of the Proposed Method to
Estimate Rt

The method developed to estimate the effective reproduction
number Rt is based on the method developed by Cori et al.
(18). This method only requires the infectivity profile and
an initial assumptions of the basic reproduction number R0
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TABLE 2 | Average relative error comparison between the proposed method and

the one developed by Cori et al. (18) measured on synthetic data.

Average relative error [%]

Baseline method Proposed method 1 [%]

Scenario 1 1.81 0.87 −51.9

Scenario 2 17.7 9.01 −49.2

TABLE 3 | Average relative error comparison between the proposed method and

the one developed by Cori et al. (18) measured on the underreported synthetic

data.

Average relative error [%]

Underreporting

rate π

Scenario Baseline method Proposed method 1 [%]

0.2 1 5.34 5.3 −0.75

2 28.91 31.81 10.03

0.4 1 2.27 1.72 −24.23

2 20.02 17.14 −14.39

0.6 1 2.06 1.23 −40.29

2 19.3 12.1 −37.31

0.8 1 1.8 1.04 −42.22

2 18.4 9.78 −46.85

used to initialize the prior. The difference and main advantage
of the proposed method is that we are less reliant on the
initial assumptions of R0. While (18) assumes the prior is fixed
in time, we constantly adapt it with new data. As seen in
Supplementary Figure 2, for a constant reproduction number
both methods, the baseline and the proposed method converge
toward the simulated value of 2.5. The similarity between the two
methods on this scenario is also reflected in the average relative
error presented in Table 2. Both methods have a low error, but
the proposed method reduces the average error by around 1%.
This reduction is mainly due to its faster rate of convergence
toward the start of the simulated data. The difference between the
two methods are more visible in the 2nd scenario which simulate
a discontinuity in Rt . This discontinuity aimed to simulate the
extreme case where the introduction of a given NPI would
have a direct effect on Rt . As seen in Figure 2, the developed
method tracks the sharp change in Rt arising on day 15 much
more closely than the baseline method. As a result the average
relative error over the simulations reduces from 17.7% with the
baseline method to 9.0% with the developed method. This result
is expected given that the distribution’s prior is updated with the
most recent data, while in the method proposed by Cori et al.
(18), only the posterior evolves.

The baseline method was shown by its authors to be
robust to underreporting (18). Given it is a known issue in
the current pandemic and it was even more so toward the
start of the pandemic, it was important to verify than the
proposed methods retained this beneficial characteristic. As
described in section Comparison of the methods to estimate

Rt on synthetic data, underreporting was simulated on the
synthetic data. As shown in Table 3, the developed method
overperformed the baseline one in all simulated cases, except
the 2nd scenario with a reporting factor of 20%. This error
mainly arises from the incident cases which lies at the end
of the simulated periods with only one or two incident cases
being simulated over the last 15 days. Over all simulations
which replicates underreporting (Supplementary Figures 3–8),
the proposed method has a larger confidence interval when Rt
is estimated on very small incident cases.

Challenges in Estimating Rt on Real Data
As it is very difficult at the beginning of an epidemic to correctly
evaluate R0 (42), it is important to update the prior as more data
become available. In the future, our method will therefore be
generalizable to new epidemic and provide reliable data at the
start of the epidemic by being less reliant on the initial estimation
of R0. However, as previous methods developed to estimate Rt ,
our method is sensible to change in testing policy within a given
country. It is also important to note that as there is a delay
between the infection of an individual and the individual testing
positive or dying, the Rt measured today reflects the evolution
of the pandemic shifted in the past by the distribution of the
period between the infection and the case being confirmed or the
death of the individual. Models aiming to correct this delay have
been initially developed to correct the data following the delay
between a positive test and the test being reported (43) in order to
allow real-time tracking of epidemics. More recently, Nowcasting
methods using hierarchical Bayesian model have been used to
provide reliable and up-to-date estimate of the Rt (44).

Confirmed cases and deaths are widely available in the public
domain, but to estimate the infection dates, the incubation period
and the period between the onset of the symptoms and the person
having a positive test or the death of the individual is required.
The incubation period was initially derived on Chinese cases (39)
and it was assumed that this property is intrinsic to the virus and
is therefore relevant for European countries. The period between
the symptoms onset and a case being confirmed has been derived
on Swiss patient (40). The period between the symptoms onset
and the death of the patient was derived on Chinese data (39),
but this period was not available for European patients. Based
on 1,430 Swiss cases, we found this period to have a mean of
15.3 days compared to 16.3 days in Linton et al. (39). It was then
assumed that this period was relevant for the European countries
included in our study. All the periods distribution used for the
rest of the analysis are summarized in Table 1.

Impact of data sources have been qualitatively evaluated for
Switzerland. Rt has been separately estimated on data from
the international repository of JHU (33) and the national
repository of FOPH (35) for the same period of time
(Supplementary Figure 9). The average relative error equation
(9) between the two estimated Rt is 6%. This value is relatively
low compared to the changes in the reported cases. As an
example, Rt dropped below one for the first time for both
estimates on the 18th of March, even though on the exact same
day, the confirmed new cases were reported to be, respectively,
328 and 1,211, for JHU and FOPH sources. As visible in
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TABLE 4 | List of countries along dates characterizing the evolution of the epidemic (with Rt measured on the confirmed cases) and measured excess deaths in percent

of the number of average death observed between 2015 and 2019.

Date Value Days from 5th death to:

5th death Stridx > 35 Rt <1 Stridx when Rt <1 Stridx >35 Rt <1 Excess death [%]

Albania 26.03.2020 09.03.2020 31.03.2020 84 −17 5

Andorra 29.03.2020 25.03.2020 24.03.2020 35 −4 −5

Austria 19.03.2020 13.03.2020 22.03.2020 85 −6 3 7.5

Belgium 17.03.2020 14.03.2020 04.04.2020 81 −3 18 45

Bosnia and Herzegovina 29.03.2020 11.03.2020 01.04.2020 90 −18 3

Bulgaria 28.03.2020 13.03.2020 29.03.2020 73 −15 1

Croatia 29.03.2020 14.03.2020 26.03.2020 96 −15 −3

Czechia 25.03.2020 11.03.2020 26.03.2020 82 −14 1

Denmark 19.03.2020 11.03.2020 31.03.2020 72 −8 12 3.9

Estonia 02.04.2020 16.03.2020 27.03.2020 72 −17 −6 4.6

Finland 27.03.2020 16.03.2020 04.04.2020 60 −11 8 7.7

France 05.03.2020 13.03.2020 08.04.2020 91 8 34 23

Germany 13.03.2020 16.03.2020 26.03.2020 73 3 13 5.5

Greece 19.03.2020 12.03.2020 26.03.2020 84 −7 7 2.9

Hungary 22.03.2020 11.03.2020 08.04.2020 77 −11 17 0.2

Iceland 06.04.2020 16.03.2020 23.03.2020 54 −21 −14

Ireland 23.03.2020 13.03.2020 09.04.2020 91 −10 17

Italy 24.02.2020 22.02.2020 20.03.2020 92 −2 25 43

Luxembourg 21.03.2020 13.03.2020 22.03.2020 80 −8 1 17

Netherlands 13.03.2020 12.03.2020 05.04.2020 80 −1 23 34

Norway 18.03.2020 12.03.2020 23.03.2020 70 −6 5 2.6

Poland 22.03.2020 12.03.2020 05.04.2020 81 −10 14 2.8

Portugal 20.03.2020 16.03.2020 29.03.2020 82 −4 9 14

Romania 23.03.2020 09.03.2020 09.04.2020 87 −14 17

Serbia 28.03.2020 15.03.2020 11.04.2020 100 −13 14

Slovakia 15.04.2020 10.03.2020 13.04.2020 87 −36 −2

Slovenia 26.03.2020 16.03.2020 24.03.2020 79 −10 −2 2.9

Spain 07.03.2020 10.03.2020 25.03.2020 72 3 18 55

Sweden 16.03.2020 29.03.2020 19.04.2020 46 13 34 29

Switzerland 13.03.2020 13.03.2020 21.03.2020 77 0 8 16

United Kingdom 10.03.2020 22.03.2020 08.04.2020 76 12 29

Stridx denotes the Stringency index.

Supplementary Figure 9 in the appendix, the method seems to
mitigate reporting inaccuracies, by providing an Rt with very
similar trend.

Impact of NPIs
Our analysis shows that when Rt , based on the confirmed cases,
reduced below one, the median severity of the measures for each
category was important with a median stringency index of 79.6
out of 100. In addition, the standard deviation of the index, which
is equal to 14.3, shows that most countries required measures
with similar intensity achieved through different combinations of
NPIs. It is not possible to determine the impact of each individual
measure as most countries took them in different order and often
a given country tookmultiples ones at the same time, but the high
stringency index reinforces the central idea that only important
combinations of NPIs allow to control the pandemic. This finding

is consistent with the findings presented in (23) where it is shown
that initial NPIs managed to reduce the Rt , but that only a full
contact ban reduced it below one. It is interesting to analyze the
measure individually, not to determine their individual impact,
but to determine which set of measures country had put in
place when they successfully controlled the epidemic. If we look
at the median restrictions when countries managed to control
the epidemic, they were all at their maximum level apart from
some exceptions on the closing of public transport as well as
people being allowed to go out of with minimal daily exceptions.
The two categories which had the strongest restrictions were
the restrictions on public events and the school closing. All
countries required canceling public events apart from Sweden
and Andorra which only recommended to cancel them. One
limitation of the dataset used in this analysis is that it does
not measure whether people have to wear mask either in public

Frontiers in Public Health | www.frontiersin.org 9 January 2021 | Volume 8 | Article 583401

https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/public-health#articles


Turbé et al. Adaptive SARS-CoV-2 Public Measure Evaluation

FIGURE 3 | Illustration of key steps of the methodology on Austria case study. Top part: histogram of the daily confirmed cases, and inferred daily infections from daily

confirmed cases and the derived period distributions displayed as a dashed line. Middle part: the mean estimated Rt is displayed as a full line, along with its 95% CI

displayed as a shaded area, with Rt being estimated from the inferred infections. Bottom part: the evolution of the stringency index is displayed with a colorbar

changing toward dark red as the stringency score goes toward its maximum value of 100, through the period of interest (from the date of the 5th death up to the 23rd

of May).

FIGURE 4 | Stringency Index per country when Rt evaluated on the confirmed cases reduced below 1. The median value for the set of countries presented in the

figure is indicated with the vertical black dotted line.

transport or in all closed environments. It would be important to
include those data as more countries are introducing this type of
measures to prevent the resurgence of the virus. Also some NPIs
could have a higher impact on the mortality, without having a

significant impact on Rt evaluated on the confirmed cases. Lastly,
the adherence of the population to NPIs is not taken into account
here, and is definitely an important parameter to assess their
impact on the spread of the pandemic within a country.
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FIGURE 5 | Period required to contain the epidemic (Rt smaller than one) evaluated on the confirmed cases as a function of the period between the 5th death and the

introduction of initial restrictive measures (stringency index above 35). The linear trend is added for reference.

FIGURE 6 | Excess death measured in percent of the number of average death observed between 2015 and 2019 as a function of the period between the 5th death

and the introduction of initial restrictive measures (stringency index above 35). The linear trend is added for reference.
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Our analysis also looked at the timing of NPIs introduction
with the results presented in Figure 5. A strong correlation
(Pearson coefficient of 0.722) between the time at which NPIs
were introduced and the time at which a country managed to
reduce Rt below one was found. This correlation indicates that
countries which introduced NPIs early on manage to control
the evolution of the pandemic within a shorter time frame.
The use of the 5th death as a starting date allows to take into
account that the pandemic did not start at the same time in all
the countries analyzed in this study. The United Kingdom can
serve as an interesting example. The UK had initially planned
to build “targeted herd immunity” delaying the introduction of
restrictive measure. As a result of this delay, the UK was only able
to contain the epidemic 29 days after the 5th death occurred in
the country when the median time for the countries included
in our analysis was of 8 days. There are three outliers in our
analysis being Andorra, Sweden and Iceland. Sweden has decided
not to introduce a complete lockdown and stands with one of the
highest daily death incidence in Europe [May 23rd: Sweden−5.34
deaths per million people per day; other European countries
analyzed 0.82 on the same day (34)]. In the preceding analysis,
no delay between the application of a measure and its effects on
the reproduction number was taken into account. By doing so,
the aim is to measure the timing between the introduction of
the given measures and its effect on the Rt irrespectively of the
behavioral impact it has on the inhabitants who might anticipate
the introduction of the measures or inversely take some time to
adapt to the introduced measures.

The analysis was replicated using Rt computed on the deaths
linked to a SARS-COV2 infections and the data can be found in
Supplementary Figures 11, 12. Similarly to the results presented
above, countries had a median stringency index of 81.48 when
they managed to reduce the Rt computed on deaths below one.
It is interesting however to note that the analysis between the
introduction of the NPIs and the time at which the Rt reduced
below one showedmuch poorer correlation, Pearsons correlation
factor of 0.338, compared to the same analysis on the confirmed
cases. A critical limitation when analyzing the evolution of Rt
evaluated on reported deaths is that the large variance in the
distribution between the onset of the symptoms and the deaths
of an individual spreads the retrieved infections. As a results,
it becomes very difficult to detect sharp changes in Rt induced
by the introduction of NPIs. This effect is similar to the effect
of increasing the variance of the incubation period which was
shown to decrease the ability to detect changes in Rt (18). The
chosen method retrieves the infections dates by subtracting a
shift drawn from the distribution of interest. The latter can
effectively be seen as a convolution of the confirmed and death
cases with the inverse distribution of the corresponding shift,
hence spreading the retrieved in time compared to the true level
of infections. Using a deconvolution method to retrieve the date
of infections instead of the chosen method could improve the
detection of changepoints in the trend.

The excess death observed in each country was compared
to the timing of the introduction of the NPIs. This analysis
has two main benefits. First, it allows to measure the impact
of NPIs independently of the estimated Rt and its associated

drawbacks described previously. Second, it allows to compare the
size of the pandemic in each country without any bias introduced
by changes in reporting policy withing a given country which
impacts the Rt . Such bias would include a rapid increase in the
number of tests being performed as tests become more widely
available. A Pearson correlation factor of 0.684 between these two
variables indicates that countries which took restrictive measures
earlier observed lower excess deaths. This high correlation
between the timing at which NPIs were introduced and the level
of excess death confirms the idea that the Rt evaluated on the
confirmed deaths is not appropriate to evaluate the impact of
these measures. One bias introduced by using the level of excess
deaths to assess the impact of NPIs is that excess deaths will be
larger in countries with older populations for a given penetration
of the virus in the population as the elderly are much more
vulnerable to the virus (45, 46).

A drawback of considering the evolution in the different
countries at a national level and not at a regional one is that
the heterogeneity of the spread of the virus is disregarded. To
evaluate not only the effects of NPIs but also the resurgence of
localized clusters, whose identification will be critical to avoid
new waves, it is important to look where the cases are located
at a more local level. There is therefore a trade-off where Rt
is more reliable when evaluated on a larger amount of cases,
but less representative as it does not take into account local
disparities. Given the greater risk for older population to die or
be hospitalized, it would also be interesting to assess the impact
of different NPIs across different age groups.

CONCLUSION

The proposed method to estimate the effective reproduction
number Rt has been shown to be less reliant on the initial
assumptions of R0 and to effectively improve the modelization
of discontinuities in Rt which could be for example observed
near the introduction of NPIs. The developed method was
subsequently used to analyze the impact of NPIs on 31 European
countries. It was first demonstrated that during the first semester
of 2020, most European countries had to implement important
restrictions to control the pandemic. Our analysis was further
extended to show that early introduction of NPIs shortened the
time required to control the evolution of the pandemic. The latter
correlation was validated by highlighting a direct correlation
between early adoption of restrictive measures and a reduction
in the excess deaths.

Our study on the impact of health measures focused on
European countries but can be extended to other countries for
which data on the daily incidence as well as the NPIs taken
on a given day are available. To extend this study to a larger
set of countries, it would however be necessary to adapt the
period between the onset of the symptoms and a case being
confirmed or the death of a patient. However, while a sensitivity
analysis would be required to assert the influence of variations in
the different period distributions, the relatively small difference
between the periods derived in Switzerland and in China (6.3%)
in regards to the incertitude on the other parameters (daily
incidence, infectivity profile) lets us believe that this factor is
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likely to play a marginal role if our analysis was to be extended
to more countries.

Additional data could help refining our conclusions. First, we
could add hospitalizations data as those would not be influenced
by change in testing policies within a given country. In addition,
looking at Rt within the different age groups could improve
our understanding of the impacts of the different NPIs on
these various groups. This information would be crucial to
develop effective health policies protecting the most vulnerable
while provoking minimal disruptions to the society and
the economy.
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