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Abstract: In the elderly, geriatric problems such as the risk of fall or frailty are a challenge for society.
Patients with frailty present difficulties in walking and higher fall risk. The use of sensors for gait
analysis allows the detection of objective parameters related to these pathologies and to make an early
diagnosis. Inertial Measurement Units (IMUs) are wearables that, due to their accuracy, portability,
and low price, are an excellent option to analyze human gait parameters in health-monitoring
applications. Many relevant gait parameters (e.g., step time, walking speed) are used to assess
motor, or even cognitive, health problems in the elderly, but we perceived that there is not a full
consensus on which parameters are the most significant to estimate the risk of fall and the frailty
state. In this work, we analyzed the different IMU-based gait parameters proposed in the literature
to assess frailty state (robust, prefrail, or frail) or fall risk. The aim was to collect the most significant
gait parameters, measured from inertial sensors, able to discriminate between patient groups and
to highlight those parameters that are not relevant or for which there is controversy among the
examined works. For this purpose, a literature review of the studies published in recent years was
carried out; apart from 10 previous relevant reviews using inertial and other sensing technologies, a
total of 22 specific studies giving statistical significance values were analyzed. The results showed
that the most significant parameters are double-support time, gait speed, stride time, step time, and
the number of steps/day or walking percentage/day, for frailty diagnosis. In the case of fall risk
detection, parameters related to trunk stability or movements are the most relevant. Although these
results are important, the total number of works found was limited and most of them performed the
significance statistics on subsets of all possible gait parameters; this fact highlights the need for new
frailty studies using a more complete set of gait parameters.

Keywords: frailty; gait analysis; inertial sensor

1. Introduction

Medical and technological advances continue to improve the span and quality of life
of the general population. According to the World Health Organization, the proportion of
the world’s population over 60 y will double from 11% to 22% in 2050 [1]. Global aging is a
triumph, but also a challenge for healthcare systems, because of physical decline and an
intensification of chronic diseases associated with the elderly.

Frailty is a weakness syndrome (set of symptoms) associated with aging, which
represents a physiological decline, i.e., a geriatric condition characterized by an increased
vulnerability to external stressors. Its global prevalence is over 17%, and it increases with
age and is greater in women than men [2]. Frailty is closely related to adverse events
such as falls, decreasing mobility, hindrances in the activities of daily life, hospitalization,
and deaths.

Fried’s phenotype is one of the most widely accepted and used criteria for frailty
diagnosis [3]. It is based on five criteria or conditions, which are collected in the Table 1:
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(1) low physical activity (weekly exercise hours or calories), (2) slow walking speed (m/s),
(3) poor endurance (feeling exhausted or having low energy), (4) weakness or low grip
strength (kg), and (5) unintentional weight loss (change in kg). The existence of these
conditions determines the state of the patient: robust, prefrail (one or two of Fried’s
conditions) or frail (three or more conditions).

Table 1. Fried’s frailty score and criteria. The five Fried’s conditions, their definitions, and possible
values and the frailty score. The table was elaborated from [3].

Conditions Definition Value

1. Low physical activity level Exercise hours or calories per week 0: No 1: Yes
2. Slowness Slow walking speed (m/s) 0: No, 1: yes
3. Poor endurance and energy Indicated by self-report of exhaustion. 0: No, 1: yes
4. Weakness Grip strength in the lowest 20% at baseline 0: No, 1: yes
5. Shrinking Unintentional weight loss 0: No, 1: Yes

Frailty Score Sum of the value of the 5 conditions 0: Robust
1–2: prefrail

3–5: frail

Traditionally, frailty has been diagnosed using the Fried criteria or other frailty scales
or functional tests performed in the doctor’s office, such as gait speed test, the Timed Up
and Go test (TUG) [4], or the Short Physical Performance Battery (SPPB) [5]. Currently,
technological advances are providing more accurate gait analysis methods to detect frailty
and fall risk in elderly people. Moreover, these methods allow more unbiased and realistic
tests to be carried out (in the presence of a doctor, the patients tend to outperform) [6].
These advanced methods for gait analysis can be divided into wearable and nonwearable
systems, and an overview of them is carried out in [7]. Nonwearable systems are based on
image processing or floor sensors. Image processing systems are usually formed by an array
of cameras that capture human movements; however, these systems can be made up of
other types of optical sensors such as laser range scanners or infrared sensors. Floor sensors
consist of a set of pressure sensors located on force platforms, which capture the human gait
by measuring the force exerted by the subject’s feet during the gait. Alternatively, wearable
systems are sensors located on different parts of the body, such as the feet, legs, back,
or chest. There are several sensors: force sensors, which are located under the foot and
measure the ground reaction force; electromyography, measuring the electric signal caused
by contracting muscles with surface electrodes; inertial sensors or Inertial Measurement
Units (IMUs), able to capture the acceleration and angular rate and from them estimate
velocities, angles, or gait cycle ratios.

The advantages and disadvantages of wearable and nonwearable systems are deter-
mined by their characteristics and goal applications. Nonwearable systems are nonintrusive
and highly precise and have a large measurement capacity; however, they are limited by a
controlled environment, so tests must be carried out in laboratories, it being impossible to
monitor real life outside, and have a high cost. Because of these reasons, wearable sensors
are most commonly used in research, and some of their advantages are: the low cost and
the possibility of measuring in any place without needing controlled environments. Their
limitations must be taken into account: battery duration is limited, so very long time tests
(e.g., several days) cannot be performed, and in some cases, complex algorithms to process
the data and remove the noise effects (drifts) are needed.

A review that analyzed the available methodologies for gait phase detection [8]
showed an increase in the use of IMUs due to their advantages over other type of sensors.
There are several studies that supported the use of inertial sensors in medical gait analysis,
representing a new approach that improves the classical methods. A comparison review
between traditional systems and inertial sensors for gait analysis in healthy and pathologi-
cal adults was carried out by [9]. It showed a good concordance between both systems and
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supported the use of inertial sensors as a portable solution for gait analysis in clinical and
laboratory settings, as well as in outdoor spaces in real-life conditions, with good reliability.

Studying the relationship between frailty and gait analysis in the literature, we found
10 different reviews related to these topics. Table 2 contains a summary of these works,
arranged by the following column fields: author, year, patient’s medical condition, gait
analysis technology, number of papers (M) included in each review, and relevant conclu-
sions in the review. Frailty is closely related to fall risk, so reviews that focused on fall risk
in older people are also included in this table. Some reviews studied a large number of
technologies [10–15], whereas [16–18] focused on the use of inertial sensors. These studies
supported the use of gait analysis systems for the evaluation of frailty or fall risk in elderly
patients; some of them identified a few gait parameters related to frailty status or fall risk,
as the stride length, the double support time, the reduction of some parameters (cadence,
gait velocity), or the gait variability, as well as the sensor locations, the lower trunk being
the most common body location among the studies.

By analyzing these revisions, we detected a variety of parameters to be measured,
with different sensor body locations and a large variety of patient studies. However, we
did not find any review that analyzed in depth which are the most relevant parameters
for the diagnosis of frailty using inertial sensors. We detected some limitations in these
reviews with respect to our goal. Most of them did not include studies with frail pa-
tients [8,9,11,12,16,17,19,20], and those focused on frailty did not emphasize the use of
inertial sensors or, specifically, the significance of gait parameters to identify which are the
most relevant gait parameters related to frailty [10,13,21]. For these reason and to give a
response to this problem, in this work, we carried out a review of the state-of-the-art that
highlights the significance of gait parameters that others studies have already quantified
using inertial sensors and present them in an integrated way, so that an engineer can use
it as a guide to design a gait analysis tool with IMUs by estimating in advance the most
promising parameters from inertial measurements to identify the frailty status and fall risk.

The paper is organized as follows: Section 2 gives the background knowledge on and
definitions of frailty, what scoring tests are available, and the used gait cycle terminology
(e.g., phase events and periods). You can skip this section if proficient in this field. Section 3
describes the methodology used and inclusion criteria for the literature search, selection,
and data synthesis. Section 4 describes the results: a brief description of each study
included, the tabulation of the most important characteristic of each study such as the
number of sensors, location, or type of patients and the tabulation of the gait parameters and
their significance. Section 5 contains the discussion, including some limitations detected,
and finally, Section 6 ends the paper with the most relevant conclusions.

Table 2. Summary of the reviews related to frailty or fall risk and gait analysis in the literature: author, year, patient’s
condition, gait analysis technologies included in the article, number of papers included (M), relevant conclusions.

Author, Year Condition * Technology ** M Relevant Conclusions

Vavasour, 2021 [10] Frailty Wearable
sensors 29

Postural transitions, number of steps, and percentage of time in
DPA and intensity of DPA together were the most frequently

measured parameters followed closely by gait speed. All but one
study demonstrated an association between PA and level of frailty.

All reports of gait speed indicated correlation with frailty.

Patel, 2020 [16] Falls Inertial sensors 35 A single sensor located on the lower trunk (the most effective
location) is enough to determine fall risk.

Zampogna,
2020 [19] Others Wearable

sensors 62

Wireless sensors are a sensitive and objective tool for domestic
measurement of control balance, postural dysfunction, gait

disorders, or fall risk, providing data in free-living conditions and
long-term monitoring. Most of the studies included used

inertial devices.
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Table 2. Cont.

Author, Year Condition * Technology ** M Relevant Conclusions

Zhong, 2020 [11] Falls All 21
Parameters related to falls: gait speed, stride length, frequency,
acceleration RMS, step-to-step consistency, autocorrelation and

harmonic ratio.

Petraglia, 2019 [9] Others Inertial sensors 16 Good concordance between classic gait analysis methods and
inertial sensors.

Montesinos,
2018 [17] Falls Inertial sensors 13

Lower back is the most common location. The most significant
parameters related to fallers are: RMS acceleration mediolateral,

No. of steps, time of TUG test, and step time.

Rucco, 2018 [12] Falls Wearable
sensors 42 Accelerometers and gyroscopes are the most used sensors, while

trunk is the most common location.

Mugueta-
Aguinaba,
2017 [13]

Frailty All 104 Supports the use of different technologies in frailty: prevention,
care, diagnosis, and treatment.

Dasenbrock,
2016 [14] Frailty All 28 Parameters to diagnose frailty: stride length, double support time,

gait speed, and cadence.

Taborri, 2016 [8] - All 32 Feet are the most useful location for accelerometers and
gyroscopes in gait analysis.

Howcroft, 2013 [20] Falls Inertial sensors 40 Inertial sensors are promising sensors for fall risk assessment, and
lower trunk is the most common location.

Schwenk, 2013 [21] Frailty All 11
Relevant gait parameters to discriminate between frail groups:
gait speed, gait variability, cadence, step width variability, step

length, and double-support time.

* Condition: the patient’s medical condition or pathology. The studies included patients with frailty (frailty), with fall risk (falls), or with
other diseases (others). ** Technology: consists of the type of technology included in the studies: only inertial sensors (inertial sensors), all
types of wearable devices (wearable sensors), and all types, both wearable and nonwearable (all).

2. Background Concepts

This section details the concept of frailty and the classical methods for its diagnosis,
as well as gait analysis, describing the gait cycle and the most important parameters that
can be extracted from it.

2.1. Frailty Definition and Scoring Tests

Frailty is a syndrome (set of symptoms) associated with aging and represent a decline
in different functional abilities [22]. According to Fried et al. [3], a frailty condition is met
when three (or more) out of five energy-related criteria are satisfied, as shown in Table 1.
Alternatively, frailty has been determined as a risk index by counting the number of deficits
accumulated over time (termed “Frailty Index (FI)”) [22] including disability, diseases,
physical and cognitive impairments, and geriatric syndromes (e.g., falls). However, the five-
component phenotype proposed by Fried et al. [3] is easier to use and more practical in a
clinical setting, compared to the FI that typically contains thirty to seventy items.

It is commonly accepted that there exist three frailty-related states: robust, prefrail
(when one or two above-cited criteria are present), and frail (three or more conditions).
Several studies for long periods (about 5 y) [22] showed that more than 50% of the elderly
population in nursing homes had at least one transition between any two of the three frailty
states. According to Fried et al. [3], in a study for 65+ y persons, 46% did not present any
conditions, 32% 1 condition, 15% 2 conditions, and only 6%, 1%, and 0.2% for 3, 4, and 5
conditions simultaneously. The most frequent condition were, in order, low activity (22%
of the cases), slow walk and grip strength (20% both), exhaustion (17%), and weight loss
(6%).

The evolution of frailty is heterogeneous, complex, and unknown; there is evidence
that a genetic basis exists; in addition, medical diseases and life habits determine its
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further development. The early detection of these functional changes or deficits at the
physiologic level is important for preventing or reversing the development of frailty,
before reaching disability.

Many frailty conditions are related to the motion of a person. From the five conditions
established by Fried et al. [3] for frailty condition, three of them, low energy, slow waking
speed, and low physical activity, could be measured with motion sensors (e.g., inertial).
Weight loss and grip strength conditions would need to be assessed with other sensors.
Regarding low grip strength, in most of the cases, it is a consequence of general weakness,
so we could also assess it with a hand-held dynamometer, from the time needed to perform
strength-related activities, such as getting up/down from a chair, which could also be
measured from inertial sensors.

While relative motion is important, the absolute movement of a person within his/her
living area is also relevant. The low physical activity can be measured by his/her spatial
mobility, defined as the trajectory’s length that a person moves on purpose during daily
routines, as well as the frequency of mobility within a specific time frame.

Frailty Scoring Tests

Walking speed is the most common objective test of functional limitation in the litera-
ture, and it is one of the components of Fried’s frailty phenotype. The speed threshold (cut
point) with the best predictive value for frailty diagnosis is 0.8 m/s. The most commonly
used tests are those that calculate the normal walking speed at traveled distances between
4 m and 6 m [23]. There are more complex walking tests, called dual-task tests, in which the
patient walks while performing another task, such as counting from one to one-hundred.
These dual-task tests are also used to detect cognitive decline or fall risk.

The Timed Up and Go Test (TUG) was specifically designed to quantify mobility and
has proven to be a good predictor of deteriorating health status [4]. It contains a walking
speed test, with a 180◦ turn, in combination with an initial get up from a chair and a final
sit down. Normal time is considered less than 10 s; times longer than 15 s are related to a
high risk of falls; above 20 s is related to a high risk of disability.

Other tests focus on the action of sitting down and getting up from a chair. The 30-s
Chair Stand Test (30-s CST) [24] consists of counting how many times the patient is able to
sit down and stand up for 30 s, whereas the Five-Times Sit to Stand (FTSS), quantifies the
total time to do it five times [25].

The Short Physical Performance Battery (SPPB) [5] is one of the most validated and
reliable tests for detecting frailty and predicting disability, in a scale from zero to twelve
points. It is also known as the Guralnik test: (1) balance (with different foot positions);
(2) speed (time in 4 m path); (3) sitting and standing five times (time needed). Each part
is scored from 0–4, and the sum of the total score provides a classification: 0–3 = severe
functional limitation (dependent subject), 4–6 = moderate functional limitation (subject
with frailty), 7–9 = low functional limitation (prefrail subject), and 10–12 = absent functional
limitation (robust subject).

2.2. Gait Analysis Definitions

Gait analysis is one of the most commonly used methods to detect frailty and fall risk
in elderly people [16]. It consists of identifying the different phases of the gait cycle and
extracting their characteristic parameters. As mentioned above, frailty is directly related to
changes in gait, namely slower gait speed. As frailty increases, mobility capacity decreases
and gait changes become more evident. Through gait analysis and quantification of the
gait parameters, differences can be found between robust, prefrail, and frail patients. These
differences allow discriminating between patient groups, to diagnose frailty, and to provide
early medical attention.

The following is an explanation of the gait cycle phases/events and the parameters
that can be extracted from sequences of gait cycles (e.g., variability or asymmetries).
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2.2.1. Gait Cycle Phases

The Gait Cycle (GC) is mainly divided into two phases: stance and swing, which
usually last 60% and 40% of the GC, respectively. The stance phase occurs when the foot is
in contact with the ground, while during the swing phase, the foot is in motion and without
contact with the floor. The GC begins when the foot first contacts the ground with the heel
(Heel Strike (HS)) and ends the next time the same foot contacts the ground with the heel
again. The stance phase is subdivided into three phases: contact period (lasting 18% of the
GC, from HS to Foot Flat (FFL)), midstance period (full foot on the ground, lasting 24%
of the GC), and propulsive period (starting when the Heel Lifts (HL) and ending when
the Toe is Off (TO), lasting about 20% of the GC). Figure 1 shows the gait cycle and the
different phases. Single-limb support refers to the period when only one foot is in contact
with the ground, whereas Double-Limb Support (DS) occurs when both feet are in contact
with the ground simultaneously.

Contact period Midstance period Swing phasePropulsive period

0 10042 6218% Gait Cycle

Right Foot

R HS R FFL R HL R HSR TO

Late propulsive 

period
Swing phase Contact period Midstance period

Early 

propulsive

Double limb 

support
Single limb support – Right foot

Double limb 

support
Single limb support – Left foot

Left Foot

12 50 68 92

L TO L HS L FFL L HL

Figure 1. Human Gait Cycle (GC). The first line under the foot sketches represents the duration in percentage of the
GC. Below the different gait events: Heel Strike (HL), Toe-Off (TO), Full Forefoot Load (FFL), Heel Lift (HL). Below are
the segmented phases for the right and left feet. The last part indicates the relation between the left and right feet. The gait
phase’s duration is approximate and varies between authors; these percentages are accepted in the literature.

2.2.2. Gait Parameters

The most common spatiotemporal parameters that can be obtained from the identifi-
cation of gait phases are detailed below:

• Step length (m): distance between the point of initial contact of one foot (HS) and the
point of initial contact of the opposite foot (e.g., HS between the left and right feet);

• Stride Length (SL) (m): the distance between successive points of initial contact (HS)
of the same foot;

• Step width (m): lateral separation between both feet. The differences among stride
length, step length, and step width can be found in Figure 2;

• Step time (s): time between two consecutive heel strikes;
• Stride time (s) or Gait Cycle Time (GCT): time between two consecutive heel strikes

by the same foot, as well as time needed to complete a full gait cycle;
• Gait speed (m/s): the stride length divided by the total GCT.
• Cadence (steps/min): number of steps in 1 min.
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Stride Length

Step Length

Step Width

Figure 2. Important spatial gait parameters: step length, stride length, and step width. Black and
grey shaded colors in footprints represent the right and left feet, respectively.

The duration of the different phases and periods of the gait are considered as temporal
parameters: swing phase time, stance phase time, double-support time, or propulsive
period time, are studied in the literature.

In addition, there are other more specific spatial parameters, related to the position of
the foot during a certain moment of the gait cycle, show Figure 3. In the case of inertial
sensors, these parameters are only measurable when the sensor is placed on the foot:

• Toe-off angle (degrees): the degree of inclination of the foot at the moment of take-off;
• Heel strike angle (degrees): the degree of inclination of the foot at the moment when

the heel touches the ground;
• Clearance, max toe (m): the maximum height that the foot reaches during swing phase.

Toe-Off Angle Heel-Strike Angle Max Toe 1 Max Toe 2
Clearance

Figure 3. Specific spatial gait parameters: toe-off angle, heel strike angle and clearance.

Now that all these definitions and concepts are clear, we continue with the next
fundamental sections.

3. Literature Research Methodology
3.1. Search Strategy and Eligibility Criteria

We conducted a literature search in major databases and search engines such as
Google Scholar, PubMed, and Web of Science. The search topics were those related to gait
analysis with inertial sensors for the diagnosis of frailty or fall risk. The combination of key
words used was: gait AND (frail* OR fall risk OR faller OR falls) AND (inertial sensor OR
wearable OR accel* OR gyro*) AND (old* OR elder* OR geriatric OR geront*). The results
were limited to articles written in the English language and publication dates during the
last 10 y. In addition, other relevant studies were identified from the list of references of
each article. These studies were included provided that they satisfied the inclusion criteria:

• Older adult patients (≥60 y);
• Diseases: frailty or fall risk;
• The use of inertial sensors in gait analysis;
• The extraction of gait parameters from inertial data recorded during the walking,

physical daily activity, and frailty assessment tests described;
• Discrimination between patients groups from gait parameters.
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3.2. Data Extraction

The selected studies were individually analyzed in order to extract the most charac-
teristic information of each work: author, year, patients’ information: medical condition
(frailty, fall risk, and others), number of patients, and percentage of healthy patients in-
cluded; sensor information: model, number of IMUs used, and location; performed tests.
Gait parameters were extracted when authors identified a statistical significance between
patient groups.

3.3. Data Synthesis

All these data are summarized and collated in tables. Lastly, the gait parameters
extracted, used, and defined as relevant in each study were analyzed and collected in tables.

4. Results

This section includes the results obtained from the literature review, applying the
methodology described in the previous section.

A total of 22 studies were included in the review, as shown in Table 3, which contains
the most relevant information extracted from each article: author, year, patients’ informa-
tion: medical condition (frailty, fall risk and others), number of patients and percentage
of healthy patients included; sensor information: model, axis, number of IMUs used, and
location; performed tests.

Table 3. Summary of articles included: author, year; patients: medical condition, number of patients (N), and percentage of
healthy patients; sensor and location: model, inertial axes used, number of IMUs (I), and location; tests. Note that L3 and L5
correspond to the 3rd and 5th Lumbar vertebra, respectively.

Author, Year Patients IMUs and Location Motion Tests

Jung, 2021 [26]
Frailty
N = 74
% healthy = 35

Xsens MVN
1 Gyr
I = 2
Feet

7 m walking test

García-Villamil, 2021 [6]
Fall risk
N = 21
% healthy = 47

G-STRIDE (custom-made)
3 Acc + 3 Gyr
I = 1
Instep

30 min walking test

Del Din, 2020 [27]
Frailty
N = 65
% healthy = 55

Axivity AX3
3 Acc
I = 1
L5

Daily physical activity

Apsega, 2020 [28]
Frailty
N = 133
% healthy = 23

Shimmer
3 Acc + 3 Gyr
I = 6
thighs, shins, and feet

3 m TUG test

Padreep-Kumar, 2020 [29]
Frailty
N = 126
% healthy = 34

PAMSys
1 Acc
I = 1
Sternum

Daily physical activity

Porta, 2020 [30]
Fall risk
N = 261
% healthy = 49

Xsens MTx
3 Acc + 3 Gyr
I = 1
Back

3 m walking test
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Table 3. Cont.

Author, Year Patients IMUs and Location Motion Tests

Jansen, 2019 [31]
Frailty
N = 112
% healthy = 47

PAMSys
3 Acc
I = 1
Sternum

Dayly physical activity

LEGSys
3 Acc + 3 Gyr
I = 5
Shank, thighs, and lower back

4.57 m normal walking test
and 10 m fast walking test

Razjouyan, 2018 [32]
Frailty and mind
N = 163
% healthy = 26

PAMSys
3 Acc
I = 1
Chest

Daily physical activity

Bizovska, 2018 [33]
Fall risk
N = 131
% healthy = 61

Trigno Wireless System
3 Acc
I = 3
L5 and shanks

5 min walking test

Jehu, 2018 [34]
Fall risk and Parkinson’s
N = 42
% healthy = 32

APDM
3 Acc
I = 6
wrists, ankles, L5, and
sternum

30 s walking test

Rahemi, 2018 [35]
Frailty
N = 161
% healthy = 30

LEGsys
1 Gyr
I = 2
Shins

4.57 m walking test

Howcroft, 2018 [18]
Fall risk
N = 75
% healthy = 62

X16-1C
3 Acc
I = 3
Lateral shanks and pelvis

7.62 m walking single-task
and dual-task test

Ritt, 2017 [36]
Frailty
N = 123
% healthy = 28

Shimmer 2R
3 Acc + 3 Gyr
I = 2
Heels

Simple walking test

Millor, 2017 [24]
Frailty
N = 718
% healthy = 27

Xsens MTx
3 Acc + 3 Gyr
I = 1
L3

30-s Chair Stand Test and 3 m
gait velocity test

Kikkert, 2017 [37]
Fall risk
N = 61
% healthy = 59

Dynaport, MiniMod
2 Acc
I = 1
L5

160 m walking test

Mohler, 2016 [38]
Frailty and fall risk
N = 119
% healthy = 36

LEGSys
3 Acc + 3 Gyr
I = 5
Shins, thighs, and lower back

4.57 m walking test

PAMSys
3 Acc
I = 1
Sternum

Daily physical activity
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Table 3. Cont.

Author, Year Patients IMUs and Location Motion Tests

Ihlen, 2016 [39]
Frailty and fall risk
N = 71
% healthy = 54

Dynaport Hybrid, McRoberts
3 Acc
I = 1
Lower back

Daily physical activity

Thiede, 2016 [40]

Frailty and peripheral artery
disease
N = 17
% healthy = 47

LEGSys
3 Acc + 3 Gyr
I = 5
Shins, thighs, and trunk

Normal walking, dual-task
overground walk (counting
100 to 1), and fast walk
(minimum of 25 steps)

Galan-Mercant, 2015 [41]
Frailty
N = 30
% healthy = 53

Iphone4
3 Acc + 3 Gyr
I = 1
Sternum

10 m expanded TUG test

Martinez-Ramirez, 2015 [42]
Frailty
N = 718
% healthy = 45

MTx Xsens
3 Acc + 3 Gyr
I = 1
Lumbar spine

3 m walking test

Schwenk, 2015 [15]
Frailty
N=125
% healthy = 35

LEGSys
3 Acc + 3 Gyr
I = 5
Shanks, thighs, and lower
back

4.57 m walking single- and
dual-task test

PAMSys
3 Acc
I = 1
Sternum

Daily physical activity

Greene, 2014 [25]
Frailty and fall risk
N = 124
% healthy = 46

Shimmer
1 Acc + 1 Gyr
I = 5
Shins, thigh, L5, and sternum

TUG, Five-Times Sit to Stand,
and balance

The third column, IMUs and location, contains information about the sensors and their
locations, where the second row represents the number of axes (X Acc + Y Gyr) of the
accelerometers and gyroscopes used in the study. Authors employed different inertial
sensors with different characteristics. Some of them, as the Xsens models, have tri-axial
accelerometers and gyroscopes, but also magnetometers. Others, as Shimmer or LEGSys
models, have triaxial accelerometers and gyroscopes. Among the papers included, the use
of sensors composed of tri-axial accelerometers such as PAMSYS, Axivity, or Dynaport
was also common, with at least 11 papers using these devices. Some authors used the
orthogonal tri-axial sensors, but other used a single axis aligned with the anteroposterior,
mediolateral, or vertical plane.

On the other hand, the Motion tests column contains information about the type of test:
walking, daily physical activity, or classic tests. The time duration or longitude of walking
tests is also included.

4.1. Study Characteristics

The studies included had a different number and patient characteristics, as well as
a different inertial system and motion test. The characteristics are summarized below.

4.1.1. Patients

Patients included in the studies were older adults (over 60 y); the number of participant
in each study varies from 17 to 718, the median being 121 patients per study. The percentage
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of healthy subjects included in the studies was from 23% to 62%, with a median value
equal to 45%.

The studies included patients with frailty, fall risk, both, or other diseases: 11 studies
were focused on patients with frailty [15,24,26–29,31,35,36,41,42], 6 studies patients with
fall risk [6,18,30,33,37,39], and 2 studies combining frailty and fall risk: [25,38]. Two studies
included patients with frailty plus mind and peripheral artery disease [32,40], respectively;
and one study [34] included patients with fall risk and Parkinson’s.

4.1.2. Inertial Sensor: Number and Location

All studies selected employed inertial sensors (some studies used other systems as
well, but these systems were not considered in this work). The number of IMUs used
ranged from 1–6. A large part of the studies used a single sensor, usually located on
the back (lower back, L3 or L5 vertebrae) [24,27,30,37,39,42], or in some cases on the
sternum [29,41], chest [32], or foot [6]. Three studies employed two IMUs, which were
located on the same part of the body: feet [26], shins [35], and heels [36]. Studies that
employed 3 IMUs [18,33], 5 IMUS [15,25,31,38,40], or 6 IMUs [28,34] combined different
body positions as the thighs, shins, feet, shanks, back, ankles, pelvis, or sternum. The
sensor’s body location is represented in the Figure 4.

Figure 4. Sensors’ body locations and papers’ references.

4.1.3. Motion Test

The most frequently repeated tests consisted of simply walking a fixed distance or
time, normally between 3 and m 7 m or 0.5 min and 30 min [6,26,30,31,33–38,42]. Some
studies realized more complex walking tests, in which the subject was performing another
task such as counting (dual-task tests) [15,18,40].

Some studies used the IMUs to record data during the classical frailty test to extract
the kinematic parameters. For example: Reference [24] analyzed the 30-s Chair Stand
Test; Reference [41] captured the 10 m expanded Timed Up to Go test; Reference [25] used
three physical assessments: TUG, Five-Times Sit To Stand, and quiet standing.

There were six studies that captured Daily Physical Activity (DPA) for long periods
of time (days) to analyze the walking periods and parameters as total steps/day, walking
percentage/day, or time in bed [15,27,29,31,32,39].
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4.1.4. Gait Parameters

Authors studied the significance of gait parameters by applying different statistical
methods and a few of them classification methods based on artificial intelligence. Some
of them used common statistical analysis tests such as ANOVA (ANalysis Of VAriance),
t-Student test, or Spearman correlation, among others, [6,18,27,34,36,41]. A large number of
the studies used conventional multivariable models: linear regression or logistic regression
models [15,16,28,29,31,33,38,40]. Other methods such as partial least-squares discriminant
analysis were applied by [37,39], and decision tree models were used by [24,32,42]. More-
over, there were studies that supported the use of new machine learning techniques such
as neural network models [26,35] or support vector machine methods [25].

A large number of gait parameters were identified in the articles studied. These param-
eters are summarized in tables in order to analyze the number of times that each parameter
was studied, as well as the number of times that a parameter was considered as significant
to discriminate between patient groups. Tables 4 and 5 contain the gait parameters related
to frailty and fall risk, respectively, where the columns represent the articles included
and a code number between 0 and 2, with the following meaning: 0 is nonsignificant; 1 is
included the study (more or less significant); 2 is significant. The last three columns are the total
number of occurrences of each parameter (T), the significant cases (Sig, code = 2), and the
nonsignificant cases (NSig, code = 0) of each gait parameter.

In the case of gait parameters related to frailty, they were grouped into: general
parameters, the variability of general parameters, temporal parameters, spatial parameters,
toe-specific parameters, specific gait phases’ speeds, daily physical activity parameters,
and parameters from classical tests, as shown in Table 4.

From the fall risk studies, we identified a lower number of parameters, some of them
repeated in frailty studies. They were divided into general and temporal parameters, vari-
ability, DPA parameters, and parameters related to trunk and corporal stability, as shown
in Table 5.

Note that for a correct interpretation of the last two columns in Tables 4 and 5, the ideal
situation for a significant parameter is to find a high number in Sig and a zero or low
number in NSig. The larger T, the larger the confidence level on that interpretation.

4.1.5. Sensors’ Locations and Parameters

The relation between the gait parameters and the sensors’ body locations is an inter-
esting aspect to know. Therefore, the estimated gait parameters for each sensor’s location
and paper’s reference are summarized in Table 6. The sensors’ locations were divided into
two groups, single and combinations. Single locations define that the inertial sensors were
only located at one position: feet, or instep, or heels; chest or sternum; lower trunk (trunk,
lumbar spine), or L3, or L5; shins. Some authors employed two or more body locations,
combinations, which are represented by a character: A = shins/shanks + thighs + lower
back/trunk; B = shanks + pelvis/L5; C = thighs + shins + feet; D = shins + thighs + L5
+ sternum; E = wrist + ankles + L5 + sternum. The C, D, and E combinations were only
employed by one author, while A was repeated by four authors and B by two authors.
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Table 4. Gait parameters related to frailty. The parameters are rated from 0 to 2 for each article, where 0: nonsignificant,
1: studied and more or less significant, and 2: significant or discriminant. T: number of total Times that each parameter
was included, Sig: number of times that each parameter was considered “Significant”, and NSig: number of times that a
parameter was considered as “Nonsignificant” among frailty groups.

Parameter/Reference [26] [27] [28] [29] [31] [32] [35] [36] [24] [40] [41] [42] [15] [25] T Sig NSig

General Parameters
Cadence (steps/min) 2 0 2 1 1
Stride Length (m) 2 1 1 0
Step Time (s) 2 2 1 1 4 2 0
Stride Time (s) 2 2 2 1 4 3 0
Gait Speed (m/s) 2 2 1 1 2 2 6 4 0

Variability General
Params.
Stride Length Var (%) 0 1 0 1
Stride Time Var (%) 0 1 0 1
Gait Variability (%) 2 1 1 0
Gait Symmetry (%) 0 1 0 1
Speed Variability 2 1 1 0
Stride/Step Regularity 2 1 1 0

Temporal Params.
Stance Phase Time (s) 1 2 2 1 0
Swing Phase Time (s) 1 2 2 1 0
Double Support Time
(s) 2 2 2 2 4 4 0

Propulsion Duration (s) 2 1 1 0

Toe Specific Params.
Toe-Off Angle (◦) 2 1 1 0
Heal Strike Angle (◦) 2 1 1 0
Max Toe (m) 2 1 1 0

Specific Speeds
Toe-Off Speed (◦/s) 2 1 1 0
Midswing Speed (◦/s) 2 0 2 1 1
Mid Stance Speed (◦/s) 2 1 1 0
Propulsion Acceleration
(◦2/s) 2 1 1 0

Speed Norm (degree/s) 2 1 1 0

Trunk-Derived Params.
RMS Trunk Acc. 2 1 1 0

THD Trunk Acc. 2 1 1 0
Trunk Sway 2 1 1 0

DPA Params.
No. of Steps/Day
or Walking Percent-
age/Day

2 2 2 2 2 5 5 0

Time in bed 2 1 1 0
Max. No. of Steps/Bout 2 2 2 2 0

Classic Test Params.
TUG Kinematic Param. 2 2 2 2 0
30-s Chair Test k.p. 2 1 1 0
Five-Times Sit to Stand
Acc. 2 1 1 0
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Table 5. Gait parameters related to fall risk. The parameters are rated from 0 to 2 for each article, where 0: nonsignificant, 1:
studied and more or less significant, and 2: significant or discriminant. T: number of total Times that each parameter is
included, Sig: number of times that each parameter is considered “Significant”, and NSig: number of times that a parameter
is considered as “Nonsignificant” between fall risk patients.

Parameter/Reference [6] [30] [34] [33] [18] [37] [38] [39] T Sig NSig

General and Temporal Params.
Stride Length (m) 2 0 2 1 1
Stride Time (s) 0 2 0 3 1 2
Gait Speed (m/s) 2 0 2 0 4 2 2
Cadence (steps/min) 1 1 1 0
Double Support Time (s) 0 1 0 0
Swing Phase Time (s) 1 1 0 0

Variability Params.
Stride Length Var (%) 0 1 2 0 1
Stride Time Var (%) 1 1 0 0
Swing Time Var (%) 0 1 0 1
Gait Symmetry 0 1 0 1

DPA Params. and Others
No. of Steps/Day or Walking Percentage/Day 2 1 1 0
Total Distance per Bout/Test 2 1 1 0
No. of Steps per Bout/Test 1 1 0 0
Total Time Walking per Bout/Test 0 1 0 1

Trunk and Stability Params.
Trunk Accelerations 2 2 2 2 0
Trunk Stability 2 1 1 0
Trunk Control (k.p) 2 1 1 0
Center of Pressure (CoP) Deviations 2 1 1 0
Dynamic Stability 2 1 1 0
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Table 6. Summary of sensor’s body location, gait parameters, and paper’s references. Single locations: sensors located at a
single body position. Combination: sensors are located at two or more body positions, where: A = shins/shanks + thighs +
lower back/trunk; B = shanks + pelvis/L5; C = thighs + shins + feet; D = shins + thighs + L5 + sternum; E = wrist + ankles +
L5 + sternum.

Single locations Combinations

Parameter/Location
Feet

Instep
Heels

Chest
Sternum

Trunk
L3
L5

Shins A B C D E

General Parameters
Cadence (steps/min) [6] [42] [28]
Stride Length (m) [6] [15,38]
Step Time (s) [26] [29] [42] [15]
Stride Time (s) [26] [29] [37] [15,38] [33] [28]
Gait Speed (m/s) [6] [24,37,42] [15,31,38,40] [33] [28]

Variability Params.
Stride Length Var (%) [6] [29] [30]
Stride Time Var (%) [29] [30]
Gait Variability (%) [29]
Gait Symmetry (%) [29] [38]
Speed Variability [40]
Stride/Step Regularity [42]
Swing Time Var (%) [6]

Temporal Params.
Stance Phase Time (s) [26] [28]
Swing Phase Time (s) [6,26] [28]
Double Support Time (s) [26] [15,38,40] [28]
Propulsion Duration (s) [35]

Toe Specific Params.
Toe-Off Angle (◦) [36]
Heal Strike Angle (◦) [36]
Max Toe (m) [36]

Specific Speeds
Toe-Off Speed (◦/s) [35]
Mid-Swing Speed (◦/s) [35] [40]
Mid Stance Speed (◦/s) [35]
Propulsion Acceleration (◦2/s) [35]
Speed Norm (◦/s) [35]

DPA Params and Others.
No. of Steps/Day or Walking Per-
centage/Day [15,29,31,32,38] [27]

Time in Bed [32]
Max. No. of Steps/Bout [29,31]
Total Distance per Bout/Test [6]
No. of Steps per Bout/Test [6]
Total Time Walking per Bout/Test [6]

Classic Tests Params.
TUG Kinematic Param. [41] [25]
30-s Chair Test k.p. [24]
Five-Times Sit to Stand Acc. [25]

Trunk and Stability Params.
Trunk Accelerations [37,39]
Trunk Stability [33]
Trunk Control (k.p) [34]
Center of Pressure (CoP) Deviations [18]
Dynamic Stability [18]
RMS Trunk Acc. [42]
THD Trunk Acc. [42]
Trunk Sway [40]
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5. Discussion

The main objective of this work was to identify the most relevant gait parameters
to discriminate or classify frail levels and fall risk. The parameters were sorted and
summarized in two tables, Tables 7 and 8, which consider the number of times these
parameters appeared in the literature and, further, the number of times when they were
considered relevant for detection and classification purposes. These results were analyzed
in depth in two subsections, one for parameters related to frailty and another for parameters
related to fall risk.

5.1. Gait Parameters Related to Frailty

By analyzing the data in Tables 4 and 7, we found that the most relevant temporal
gait parameters related to frailty were: gait speed, double support time, stride time, step
time, and the number of steps per day or the walking percentage/day, from daily physical
activity parameters. All these parameters appeared several times (for or more), and all or
most of them were considered as significant or able to discriminate between patient groups.
Furthermore, they were never considered irrelevant in any article studied.

Frailty leads to physical deterioration and reduced mobility. For this reason, frailty
patients show a longer double-support time (when both feet are standing on the floor)
and a longer step and stride time than healthy persons. In addition, the gait speed is lower
than in robust patients (this is the second Fried condition). Others symptoms of frailty
such as the reduction of physical activity, low energy, or fatigue are represented in a lower
number of steps/day or walking percentage/day, i.e, the amount of time that the patient
spends walking every day.

The max number of steps per bout (PDA) or the kinematic parameters obtained from
the Timed Up to Go test are relevant as well; although they only were included in two
articles, but both considered them as important parameters. TUG test is widely used
in clinical tests to diagnose frailty, so its manually use is validated. New approaches
studied, monitoring this test using IMUs, seem to be successful and able to discriminate
frailty states.

There are some parameters such as cadence or midswing speed that had contradictory
results. In some cases, they were considered as relevant parameters, but in others, they
were described as not significant. We can not obtain clear conclusions about this. Frailty can
be associated with the gait or gait parameters’ variability or asymmetry, but by analyzing
the stride length variability, stride time variability, speed variability, gait variability, or gait
symmetry in the Table 7, there was not a clear outcome.

Several gait parameters were found in only one study, and they were considered
important. This was the case of parameters such as toe-off angle, heel strike, or max toe.
To measure them, it is necessary to locate the sensor on the foot, and only two articles used
this body position. Furthermore, some articles developed classical tests as the 30-s Chair
Test or Five-Times Sit to Stand to obtain kinematic parameters (as in the case of the TUG
test), showing good results to discriminate patient groups. Time in bed and quantitative
continuous walking are derived from DPA, coupled with the number of steps/day or
walking percentage/day and the max number of steps per bout, supporting the measure of
DPA using inertial sensors to assess frailty.
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Table 7. Gait parameters related to frailty sorted by importance (total times and significance). R: Ranking, T: number of
total Times that each parameter was included, Sig: number of times that each parameter is considered Significant, and NSig:
number of times that a parameter is considered as “Nonsignificant” among frailty patients.

R Parameter T Sig NSig

1 No. of Steps/Day or Walking Percentage/Day 5 5 0
2 Gait Speed (m/s) 6 4 0
3 Double Support Time (s) 4 4 0
4 Stride Time (s) 4 3 0
5 Step Time (s) 4 2 0

6 TUG Kinematic Param and Max Number of Steps per Bout 2 2 0

7 Stance Phase Time (s) and Swing Phase Time (s) 2 1 0

8 Cadence (steps/min) and Midswing Speed (◦/s) 2 1 1

9

Stride Length (m), Gait Variability (%), Speed Variability, Stride/Step Regularity, Propulsion
Duration (s), Toe-Off Angle (◦), Heal Strike Angle (◦), Max Toe (m), Toe-Off Speed (◦/s), Mid
Stance Speed (◦/s), Propulsion Acceleration (◦2/s), Speed Norm (◦/s), Root-Mean-Squared
(RMS) and Total Harmonic Distortion (THD) from Trunk Accelerations, Trunk Sway, Time in
Bed, 30-s Chair Test Kinematic Parameters, Five-Times Sit to Stand Accelerations

1 1 0

10 Stride Length Var (%), Stride Width Var (%), and Gait Symmetry (%) 1 0 1

5.2. Gait Parameters Related to Fall Risk

In the case of fall risk, Tables 5 and 8 indicate that trunk accelerations are important
to predict or identify fall risk. This parameter appeared two times, and both considered
it as as relevant; moreover, we can include the trunk stability, the trunk control, the dy-
namic stability, or the center of pressure deviations in this category (they appeared only
one time, but all were considered significant in their respective studies, while neither as
nonsignificant). From this, we can assume that when it comes to fall risk, the most relevant
parameters are those related to stability and trunk movements.

Gait speed, stride length, and stride time have inconsistencies. By analyzing them in
depth, we found that stride time, stride length, double-support time, gait symmetry, and
gait speed, were considered as nonsignificant in [38]. The authors indicated that the results
were inconsistent with previous reports, and this could be due to the nonfrail patient
characteristics. The results suggested that balance (stability) and DPA parameters were
predictive of fall risk in frail and prefrail adults. However, gait parameters were not able to
discriminate between patient groups. In addition, they did not observe an increased risk of
falling with increasing frailty status. In [33], gait speed and stride time also did not differ
between patient groups. The relationship between frailty and the risk of falling is certain,
and gait speed was considered as a relevant parameter in classic tests such as TUG, SPPB,
or Fried’s scale.

Therefore, fall risk would also be related to a slower walking speed and stride time,
but the discrepancies between different authors did not allow obtaining clear conclusions.
In short, we can find a relationship between fall risk and trunk stability.

5.3. Limitations

The limitations of this study were due to the number of existing studies using IMUs
for gait analysis in frailty patients, as well as the inconsistencies found in the results. Some
gait parameters were considered relevant and not relevant in different studies.

Furthermore, not all papers estimated all parameters, just a subset of them. Therefore,
this suggest that further studies with the frailty and fall risk population could be performed
with a more complete range of estimated parameters.
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Table 8. Gait parameters related to fall risk sorted by importance (total times and significance). R: Ranking, T: number of
total Times that each parameter is included, Sig: number of times that each parameter is considered “Significant”, and
NSig: number of times that a parameter is considered as “Nonsignificant” among fall risk patients. Symbol “*” marks
the inconsistencies.

R Parameter T Sig NSig

1 Trunk Accelerations 2 2 0
2 Gait Speed (m/s) 4 2 2 *
3 Stride Time (s) 3 1 2 *
4 Stride Length (m) 2 1 1 *

5 Cadence (steps/min), Total Distance per Bout/Test, Trunk Stability, Trunk Control (Kinematic
Parameters), Center of Pressure (CoP) Deviations, Dynamic Stability 1 1 0

6 Swing Phase Time (s), Number of Steps per Bout/Test, and Stride Time Var (%) 1 0 0

7 Stride Length Var (%) 2 0 1

8 Double-Support Time (s), Swing Time Var (%), Gait Symmetry, Total Time Walking per
Bout/Test 1 0 1

6. Conclusions

In this work, a total of 22 articles were analyzed in order to obtain the most relevant
gait parameters that can be measured with inertial sensors, and serve as indicators of
patients’ frailty and fall risk. A literature review in the major databases was carried out,
selecting the articles that complied with all the inclusion criteria such as older patient,
frailty, and fall risk classification, inertial sensors, gait analysis, etc. Gait parameters used
and studied in each article were marked and collected in tables, to analyze the importance
of them.

In the case of frailty, gait speed, double-support time, stride time, and step time, and
the number of steps per day or the walking percentage/day, from daily physical activity
parameters, were the most relevant parameters. Stride length or kinematic parameters
extracted from classic tests (such as the TUG test) were important as well.

For fall risk assessments, the study of the trunk stability and movements was crucial,
being the most relevant parameter to classify between fallers and nonfallers. Other param-
eters, common with frailty, such as stride time, gait speed, or number of steps per day, can
be successful as well.

We found inconsistency in some cases; for example, stride length was relevant in
frailty, but not in the fall risk studies. However, this parameter is closely related to gait and
age, which decreases with frailty and physical condition.

The use of IMUs is widely supported in the diagnosis of frailty or fall risk, and the
literature reviewed showed satisfactory results for this type of application, assuming a new
approach that would allow a more realistic gait analysis for the patients and even using
them to obtain more parameters in the classical tests. This review highlighted the most
relevant parameters that must be identified in frailty or prefrailty diagnosis applications
using inertial sensors. It can serve as a guide for researchers and engineers who develop
sensors and algorithms to analyze the gait in these patients.

As a future work, the authors of this paper consider it interesting to perform new
studies with elderly people in order to assess the significance of most of the parameters
tabulated in this review. In addition, the authors contemplate the study of classifying frailty
patients by machine learning techniques and relevant gait parameters.
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Abbreviations
The following abbreviations are used in this manuscript:

IMU Inertial Measurement Unit
DPA Daily Physical Activity
TUG Timed Up and Go test
SPPB Short Physical Performance Battery
30-s CST 30-second Chair Stand Test
FTSS Five-Times Sit to Stand
GC Gait Cycle
HS Heel Strike
FFL Foot Flat
TO Toe-Off
DS Double-Support
HL Heel Lift
SL Strike Length
GCT Gait Cycle Time
L3 Third Lumbar vertebra
L5 Fifth Lumbar vertebra
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