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Modification of the intensification and diversification approaches in the recently developed cuckoo search algorithm (CSA)
is performed. The alteration involves the implementation of adaptive step size adjustment strategy, and thus enabling faster
convergence to the global optimal solutions.The feasibility of the proposed algorithm is validated against benchmark optimization
functions, where the obtained results demonstrate a marked improvement over the standard CSA, in all the cases.

1. Introduction

The solutions to multitudinous domains-whether in engi-
neering design, operational research, industrial process, or
economics inevitably have optimization at heart. However,
having a solid grasp for such problems turns out to be
painstakingly tough and tedious; and thus, gearing towards
an efficient and effective algorithm in the light of solving
increasingly complex optimization problems in practice is
of paramount significance. Extensive and intensive studies
in this aspect fruit in numerous optimization techniques,
particularly, the bioinspired metaheuristic methods which
draw inspiration from the means on how humans and living
creatures struggle to survive in a challenging environment,
for instance, genetic algorithm (GA) [1], particle swarm
optimization (PSO) [2], differential evolution (DE) [3], ant
colony optimization [4], artificial bee colony algorithm [5],
and firefly algorithm [6], form the hot topics in this area.

Cuckoo search algorithm (CSA), another adoption of
biomimicry in the optimization technique which reproduces
the breeding strategy of the best known brood parasitic bird,
the cuckoos, has been proposed by Yang and Deb recently
[7, 8]. Cuckoos, probably one of themost vicious and cunning
species of all bird breeds, clandestinely lay their eggs in the
nests of other host birds, sparing themselves the parental
responsibilities of raising the young. In fact, cuckoos practice
the art of deception all the time in their reproductive life.

They mimic the colour and pattern of the host eggshell in
order to disguise their eggs from being detected by the host
birds. To make more space and food for their young chick,
cuckoos will steal the host egg while sneaking their own into
the nest. However, the relationship between the host species
and the cuckoos is often a continuous arms race. The hosts
learn to discern the imposters and they either throw out the
parasitic eggs or desert the nest; the parasites improve the
forgery skill to make their eggs to appear more alike with the
host eggs.

The feasibility of applying the CSA to locate the global
optimum for the optimization problems has been inves-
tigated in the literature. In the pioneering work of Yang
and Deb, the CSA has been implemented successfully in
optimizing several benchmark functions, and their findings
showed that the global search ability of the CSA is more
efficient than GA and PSO [7, 8]. On the other hand, the CSA
has been employed in diverse domains since its inception;
including engineering design process [9–12], chaotic system
[13], wireless sensor networks [14, 15], structural optimization
problem [9, 16, 17], image processing [18, 19], milling process
[20], and scheduling problem [21–23]. Undoubtedly, its pop-
ularity increases unceasingly in the not-to-distant future.

Nevertheless, in real world situations, obtaining the exact
global optimum is impracticable, as the underlying prob-
lems are always subjected to various uncertainties and con-
straints. In this case, instead of finding the actual optimum,
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the core consideration in selecting an appropriate optimiza-
tion technique is how much improvement is achievable for
a given application at a plausible computational complexity,
with an acceptable error. The main thrust of this paper is
therefore geared towards a modified CSA, which integrates
an accelerated searching strategy in its computation. The
improvement over the CSA is tested and validated through
the optimization of several benchmarks. The paper is orga-
nized as follows. In Section 2, the standard CSA is intro-
duced and its deficiencies are discussed. The modified CSA,
specifically, the adaptive cuckoo search algorithm (ASCA), is
proposed in Section 3, and the comparative results in evalu-
ating the benchmark optimization functions are presented in
Section 4. Finally, some conclusions are drawn in Section 5.

2. Cuckoo Search Algorithm

The CSA, which draws inspiration from cuckoo’s adaption to
breeding and reproduction, is idealized with the assumptions
as follows:

(i) each cuckoo lays one egg in a randomly selected host
nest at a time, where the egg represents the possible
solution for the problem under study;

(ii) the CSA follows the survival of the fittest principle.
Only the fittest among all the host nests with high
quality eggs will be passed on to the next generation;

(iii) the number of host nests in the CSA is fixed before-
hand. The host bird spots the intruder egg with a
probability 𝑝

𝑎
∈ [0, 1]. For such incidents, the host

bird will either evict the parasitic egg or abandon the
nest totally and seek for a new site to rebuild the nest.

Derived from these assumptions, the steps involved in
the computation of the standard CSA are presented in
Algorithm 1 [7].

Such idealized assumptions in the CSA, similarly to what
was previously proposed in other metaheuristic optimization
approaches, make use of the ideas of elitism, intensification,
and diversification. Start with a population of possible solu-
tions, a new and potentially better solution (cuckoo egg) is
generated. If the fitness value of this cuckoo egg is higher than
another randomly selected egg from the available host nests,
then it will replace that poor solution.

The cuckoo lays an egg at random location via Lévy flight,
which is characterized by

𝑥
𝑖
= (𝑖𝑡𝑒𝑟 + 1) = 𝑥

𝑖
(𝑖𝑡𝑒𝑟) + 𝛼 × lévy (𝜆) ,

lévy (𝜆) =
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

Γ (1 + 𝜆) × sin (𝜋𝜆/2)
Γ ((1 + 𝜆) /2) × 𝜆 × 2((𝜆−1)/2)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1/𝜆

,

(1)

where 𝑥
𝑖
is the possible solution, iter denotes the current

generation number, Γ is the gamma function which is defined
by the integral: Γ(𝑥) = ∫∞

0

𝑒
−𝑡

𝑡
𝑥−1

𝑑𝑡, and 𝜆 is a constant
(1 < 𝜆 ≤ 3).

The Lévy flight process is a random walk that forms a
series of instantaneous jumps chosen from a heavy-tailed
probability density function [24]. The step size 𝛼, which

controls the scale of this random search patterns, helps
exploit the search space around the current best solution
and meanwhile explore the search space more thoroughly
by far field randomization such that the search process can
effectively move away from a local optima. Therefore, the
value for 𝛼 must be assigned judiciously. The search process
will be less efficient if 𝛼 is chosen as a small value, since
the location for the new generated solution is near to the
previous. On the other hand, if the value for 𝛼 is too big,
the new cuckoo egg might be placed outside the bounds.
To balance the effectiveness for both intensification and
diversification, Yang and Deb assigned the value of 𝛼 as 1 [7].

Yang and Deb have also pointed out that the CSA
outperforms the GA and the PSO in terms of the number of
parameters to be adjusted [7]. In theCSA, only the probability
of the abandoned nests 𝑝

𝑎
is tuned. However, the setting of

𝑝
𝑎
= 0.25 is sufficient enough, as they found out that the

convergence rate ofCSA is insensitive to𝑝
𝑎
.Thus, the fraction

of nests to desert 𝑝
𝑎
is assigned as 0.25 in this study.

3. Adaptive Cuckoo Search Algorithm

For any optimization approach, finding the optimum solu-
tions competently and accurately relies utterly on the inherent
search process. The effectiveness of the standard CSA is
unquestionable, meaning that when given enough compu-
tation time, it is guaranteed to converge to the optimum
solutions eventually.However, the search processmay be time
consuming, due to the associated randomwalk behavior [24].
In order to improve the convergence rate while maintaining
the eye-catching characteristics of the CSA, an accelerated
searching process which, similarly to the inertia weight
control strategy in the PSO [25], is proposed here.

The step size 𝛼, which manages the local and global
searching, is assigned as constant in the standard CSA, where
𝛼 = 1 is applied. In this present work, a new adaptive cuckoo
search algorithm (ACSA) is presented. Instead of using a
constant value, the step size 𝛼 is adjusted adaptively in the
proposed ACSA, based on the assumption that the cuckoos
lay their eggs at the area with a higher egg survival rate. In
this regard, by adjusting the step size𝛼 adaptively, the cuckoos
search around the current good solutions for laying an egg
as this region probably will contain the optimal solutions,
and, on the contrary, they exploremore rigorously for a better
environment if the current habitat is not suitable for breeding.
The step size 𝛼 is determined adaptively as follows:

𝛼 =

{{{

{{{

{

𝛼
𝐿
+ (𝛼
𝑈
− 𝛼
𝐿
)
𝐹
𝑗
− 𝐹min

𝐹avg − 𝐹min
, 𝐹
𝑗
≤ 𝐹avg

𝛼
𝑈

√𝑡
, 𝐹

𝑗
> 𝐹avg,

(2)

where 𝛼
𝐿
is the predefined minimum step size, 𝛼

𝑈
is the

predefined maximum step size, 𝐹
𝑗
is the fitness value of the

𝑗th cuckoo egg, and 𝐹min and 𝐹avg denote the minimum and
the average fitness values of all host nests, respectively. The
flow of the ACSA is given in Algorithm 2.

The step size 𝛼 determines how far a new cuckoo egg is
located from the current host nest. Specifying the minimum
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begin
Generate initial population of 𝑞 host nest x

𝑖
, 𝑖 = 1, 2, . . . , 𝑞

for all x
𝑖
do

Evaluate the fitness function 𝐹
𝑖
= 𝑓(x

𝑖
)

end for
while (iter <MaxGeneration) or (stopping criterion)
Generate a cuckoo egg x

𝑗
from random host nest by using Lévy flight

Calculate the fitness function 𝐹
𝑗
= 𝑓(x

𝑗
)

Get a random nest 𝑖 among 𝑞 host nest
if (𝐹
𝑗
> 𝐹
𝑖
) then

Replace x
𝑖
with x

𝑗

Replace 𝐹
𝑖
with 𝐹

𝑗

end if
Abandon a fraction 𝑝

𝑎
of the worst nests

Build new nests randomly to replace nests lost
Evaluate the fitness of new nests
end while
end

Algorithm 1: Cuckoo search algorithm.

begin
Generate initial population of 𝑞 host nest x

𝑖
, 𝑖 = 1, 2, . . . , 𝑞

Define minimum step size value 𝛼
𝐿

Define maximum step size value 𝛼
𝑈

for all x
𝑖
do

Evaluate the fitness function 𝐹
𝑖
= 𝑓(x

𝑖
)

end for
while (iter <MaxGeneration) or (stopping criterion)
Calculate the average fitness value 𝐹avg of all the host nests
Find the minimum fitness value 𝐹min among all the host nests
for all host nests do
Current position x

𝑖

Calculate the step size 𝛼 for Lévy flight using (2)
Generate a cuckoo egg x

𝑗
from host nest x

𝑖
by using Lévy flight

if (x
𝑗
falls outside the bounds) then

Replace x
𝑗
with x

𝑖

end if
Calculate the fitness function 𝐹

𝑗
= 𝑓(x

𝑗
)

if (𝐹
𝑗
> 𝐹
𝑖
) then

Replace x
𝑖
with x

𝑗

Replace 𝐹
𝑖
with 𝐹

𝑗

end if
end for
Abandon a fraction 𝑝

𝑎
of the worst nests

Build new nests randomly to replace nests lost
Evaluate the fitness of new nests
end while
end

Algorithm 2: Adaptive cuckoo search algorithm.

and the maximum Lévy flight step size values properly is
crucial such that the search process in the ACSA is neither
too aggressive nor too ineffective. The 𝛼

𝐿
and 𝛼

𝑀
are chosen

based on the domain of x
𝑖
. Additionally, as precautionary

measure, if theACSA generates a cuckoo egg that falls outside
the domain of interest, its position will remain unchanged.

4. Numerical Simulations

To evaluate the feasibility of the proposed ACSA, the
algorithm is applied to optimize the five benchmark functions
with known global optima, where two of which are uni-
modal and three of which are multimodal. The optimization
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performance is compared with the standard CSA. For each
test function, the initial populations of 20 host nests are
generated randomly. The simulations are performed for 30
independent runs. The optimization process stops if the best
fitness value is less than a given tolerance 𝜉 ≤ 10−5. For both
the CSA and ACSA, the Euclidean distance from the known
global minimum to the location of the best host nest with the
lowest fitness value is evaluated in each iteration.The average
of the distance difference for each loop from all the 30 trials
is then measured.

In addition, to authenticate the statistical significance of
the proposed ACSA, the two-tailed 𝑡-test is applied. The null
hypothesis is rejected at the confidence interval of 5% level,
if the difference of the means of both CSA and ACSA is
statistically significant. The results are presented in the last
column of Table 1.

4.1. Ackley’s Function. The Ackley’s function is a multimodal
function which is described as [26]

𝑓 (𝑥) = −20 exp(−0.2√ 1
𝑑

𝑑

∑

𝑖=1

𝑥2
𝑖
)

− exp(1
𝑑

𝑑

∑

𝑖=1

cos (2𝜋𝑥
𝑖
)) + 20 + 𝑒,

(3)

where 𝑥
𝑖
∈ [−32.768, 32.768] and data dimension, 𝑑 = 50,

has a global minima of 𝑓
∗
= 0, at 𝑥

∗
= (0, 0, . . . , 0). The

𝛼
𝐿
and 𝛼

𝑀
are chosen as 0.2∗domain 𝑥

𝑖
and 0.8∗domain

𝑥
𝑖
, respectively. Figure 1 compares the relative performances

of the CSA and ACSA in optimizing Ackley’s function. As
observed in this figure, apparently the convergence rate of the
ACSA is better than the standard CSA on this test function.
Considering Table 1 which summarizes the average cycles
needed for both the algorithms tomeet the stopping criterion,
it can be clearly seen that the CSA takes more iteration to
converge; however, the proposed ACSA reaches the global
optima about one time faster on average. The ACSA is able
to find the global solution, approximately after 2500 fitness
function evaluations, as opposed to CSA which reaches the
global solution after 4000 objective function evaluations.

4.2. De Jong’s Function. As the simplest unimodal test func-
tion, the de Jong’s function is given by [27]

𝑓 (𝑥) =

𝑑

∑

𝑖=1

𝑥
2

𝑖
, (4)

where 𝑥
𝑖
∈ [−5.12, 5.12] and 𝑑 = 50. This is a sphere

function, with the known global minimum of 𝑓
∗
= 0, at

𝑥
∗
= (0, 0, . . . , 0). The 𝛼

𝐿
and 𝛼

𝑀
are chosen as 0.2∗domain

𝑥
𝑖
and 0.8∗domain 𝑥

𝑖
, respectively. The results achieved by

the standard CSA and the proposed ACSA in optimizing
the de Jong’s function are presented in Figure 2. Due to
the simplicity of the test function, it can be found that
both algorithms take considerably less iteration steps for
convergence but, the ACSA with adjustable step size is much
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Figure 1: Comparison of the performance of the standard CSA and
the proposed ACSA for the Ackley’s function.
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Figure 2: Comparison of the performance of the standard CSA and
the proposed ACSA for the de Jong’s function.

more efficient than the standard CSA. As shown in Table 1,
the ACSA reaches the known global optimum in a mean of
1000 cycles, while the CSA requires a longer processing time
in order to converge.

4.3. Griewank’s Function. Figure 3 depicts the optimization
results of the CSA and ACSA in terms of convergence
characteristics for the multimodal Griewank’s function [28]:

𝑓 (𝑥) =
1

4000

𝑑

∑

𝑖=1

𝑥
2

𝑖
−

𝑑

∏

𝑖=1

cos(
𝑥
𝑖

√𝑖
) + 1, (5)



The Scientific World Journal 5

Table 1: Performance comparison of ACSA with CSA (in terms of the number of iterations needed in order to converge).

Benchmark function CSA ACSA Significant
Best Worst Mean SD Best Worst Mean SD

Ackley 3884 4862 4222 250.74 1912 2068 1989 41.03 Yes
De Jong 1690 1833 1763 37.55 1087 1158 1121 19.81 Yes
Griewank 4287 4632 4499 75.63 3617 3880 3725 63.77 Yes
Rastrigin 1582 1994 1734 118.73 1190 1389 1286 50.69 Yes
Rosenbrock 17519 33929 25402 4592.24 9131 28803 22164 5416.74 Yes
∗SD denotes the standard deviation.
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Figure 3: Comparison of the performance of the standard CSA and
the proposed ACSA for the Griewank’s function.

where 𝑥
𝑖
∈ [−600, 600] with 𝑑 = 100. This is a high

dimensional multimodal function, with the known global
minimum of 𝑓

∗
= 0 at 𝑥

∗
= (0, 0, . . . , 0). The 𝛼

𝐿
and

𝛼
𝑀

are chosen as 0.02∗domain 𝑥
𝑖
and 0.08∗domain 𝑥

𝑖
,

respectively. Considering Figure 3 and Table 1, the obtained
results suggest that the ACSA shows improved convergence
efficiency. Moreover, it can be inferred from Table 1 that the
superiority of the ACSA is obvious, as it outperforms the CSA
in terms of the best, worst, average, and standard deviation,
for the number of iterations needed in order to reach the
known global optimum.

4.4. Rastrigin’s Function. Themultimodal Rastrigin’s function
is defined as [29]

𝑓 (𝑥) = 10𝑑 +

𝑑

∑

𝑖=1

[𝑥
2

𝑖
− 10 cos (2𝜋𝑥

𝑖
)] , (6)

where 𝑥
𝑖
∈ [−5.12, 5.12] and 𝑑 = 100, with a globalminimum

of 𝑓
∗
= 0 at 𝑥

∗
= (0, 0, . . . , 0). The 𝛼

𝐿
and 𝛼

𝑀
are chosen

as 0.2∗domain 𝑥
𝑖
and 0.8∗domain 𝑥

𝑖
, respectively. Getting

the global minimum of the Rastrigin’s function is a difficult
process, as this test function has many local minima, which
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Figure 4: The 3-dimensional surface plot for the Rastrigin’s func-
tion.
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Figure 5: Comparison of the performance of the standard CSA and
the proposed ACSA for the Rastrigin’s function.

can be observed in its 3-dimensional surface plot in Figure 4.
A more challenging 100-dimensional Rastrigin’s function is
chosen in this case to corroborate the global searching ability
of the proposed algorithm.
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Figure 6: The 3-dimensional surface plot for the Rosenbrock’s
function.

Figure 5 presents the optimization performances of the
CSA and ACSA for Rastrigin’s function. It can be deduced
from the figure that the proposed ACSA is superior to the
standard CSA in terms of the convergence rate. It is evident
that initially, the CSA appears to converge faster to the known
global minimum than ASCA. However, as the evolution
continues, the ACSA tends to get closer to the true solution
than CSA. This is presumably due to the CSA is getting
trapped in local solution, as there are many local minima
present in this test function. Moreover, the optimization
process of CSA may span a longer period of time than the
proposed ACSA as it makes too small and cautious steps
while exploring the search space, that is, the 𝛼which controls
the scale of the search patterns is specified as 1. On the
contrary, the ACSA with adaptive step size control strategy
performs more rigorous search through the solution space.
The ACSA is able to find the global minimum in a mean of
20000 iterations.While on average, the CSAneeds 2000more
iterations in order to reach the optimal solution.

4.5. Rosenbrock’s Function. Figure 6 illustrates the 3-
dimensional surface plot for the Rosenbrock’s function,
which is defined as [30]:

𝑓 (𝑥) =

𝑑−1

∑

𝑖=1

[(1 − 𝑥
𝑖
)
2

+ 100(𝑥
𝑖+1
− 𝑥
2

𝑖
)
2

] , (7)

where 𝑥
𝑖
∈ [−100, 100] and 𝑑 = 10. This test function has

a global minimum of 𝑓
∗
= 0 at 𝑥

∗
= (1, 1, . . . , 1). The

𝛼
𝐿
and 𝛼

𝑀
are chosen as 0.02∗domain 𝑥

𝑖
and 0.08∗domain

𝑥
𝑖
, respectively. As shown in this figure, there is a long,

narrow and parabolic shaped valley in the surface plot. This
is the region where the global minimum is resided. Although
finding this valley is not tedious, reaching the global optima
is difficult [24].

The performances of the CSA and ACSA in terms of the
convergence efficiency are shown in Figure 7. Comparing the
best obtained results in among all the 30 trials, apparently that
the proposed ACSA speeds up the computation more than
one time faster, as compared to the standard CSA. Moreover,
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Figure 7: Comparison of the performance of the standard CSA and
the proposed ACSA for the Rosenbrock’s function.

it can be noted that the average number of evaluations needed
by the CSA is much inferior to the longest iteration achieved
by the ACSA from among all the 30 independent runs.

4.6. Performance Comparison with Other Optimization Algo-
rithms. In comparing the performances of different algo-
rithms in optimizing the same benchmark functions, several
ways with different stopping criteria can be considered, in
which comparison of best fitness value for a fixed number of
fitness function evaluations, a commonly used approach, has
been adopted in this study.Theother optimization algorithms
considered are DE, evolutionary programming (EP), GA,
PSO, simulated annealing (SA), and CSA.The simulations of
all algorithms are performed for 30 independent runs with
the number of fitness function evaluations is set to 2000.The
best fitness value in each iteration is evaluated, and its average
at each iteration from all the 30 trials is the measured. The
obtained average best fitness values at fixed iteration number
of 1, 500, 1000, 1500, and 2000 in optimizing the benchmark
functions are summarized in Table 2.

As shown in this table, the proposed ACSA has higher
precision than any of the other algorithms for all benchmarks
considered, except for Griewank’s function.TheDE produces
solution that is closer to the global optima than the proposed
ACSA in this case. However, it is pertinent to note that there
is no or marginal improvement in DE after 500 function
evaluations. The obtained best fitness value only decreases
slightly from 0.35 to 0.33, which might indicates that the DE
get trapped in local optima. In fact, as shown in Table 2,
the DE, EP, and PSO algorithms usually converge faster
initially, but they often get stuck in local optima easily, which
is particularly obvious in the case of Ackley, de Jong, and
Griewank’s functions.On the other hand, the proposedACSA
is getting closer to the global optima as the iteration increases
gradually. The superiority of ACSA is more noticeable in
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Table 2: Performance comparison of ACSA with other optimization methods (in terms of fixed iteration number).

Benchmark
function Generation Average best fitness value over 30 independent runs

DE EP GA PSO SA CSA ACSA

Ackley

1 19.15 19.62 20.93 20.77 21.08 20.95 20.90
500 2.68 4.94 11.54 2.69 20.54 11.16 3.76
1000 2.68 4.63 8.44 2.69 19.43 4.01 0.06
1500 2.68 4.41 6.94 2.69 17.57 1.90 6.39𝐸 − 04

2000 2.68 4.29 6.00 2.69 15.39 0.50 8.71𝐸 − 06

de Jong

1 32.88 41.85 334.35 334.12 332.88 335.59 343.79
500 0.02 1.44 17.79 0.27 89.98 1.91 0.14
1000 0.02 1.21 7.65 0.27 68.02 0.02 7.58𝐸 − 05

1500 0.02 1.13 4.52 0.27 40.57 1.29𝐸 − 04 3.91𝐸 − 08

2000 0.02 1.04 2.96 0.27 20.32 1.06𝐸 − 06 2.10𝐸 − 11

Griewank

1 96.76 155.82 2521.20 2477.39 289.59 2516.57 2543.72
500 0.35 0.92 342.43 2.13 252.83 89.87 69.32
1000 0.34 0.85 199.79 2.13 197.62 7.40 4.23
1500 0.33 0.83 136.00 2.13 147.97 1.46 1.17
2000 0.33 0.78 103.27 2.13 106.96 1.01 0.70

Rastrigin

1 119.64 125.49 122.83 126.52 191.39 123.00 122.26
500 14.69 45.90 8.16 28.09 186.84 3.67 2.94
1000 14.69 41.27 4.27 28.08 173.08 0.62 0.25
1500 14.69 38.54 3.21 27.84 165.48 1.16𝐸 − 03 8.82𝐸 − 05

2000 14.69 36.82 2.28 27.78 158.28 9.72𝐸 − 07 8.65𝐸 − 09

Rosenbrock

1 3.11𝐸 + 09 5.10𝐸 + 09 4.81𝐸 + 09 5.54𝐸 + 09 1.79𝐸 + 10 5.44𝐸 + 09 5.90𝐸 + 09

500 1.09𝐸 + 05 3.39𝐸 + 04 3.28𝐸 + 05 7.34𝐸 + 04 7.93𝐸 + 09 205.31 61.01
1000 1.04𝐸 + 05 1.31𝐸 + 04 3.79𝐸 + 04 7.31𝐸 + 04 4.30𝐸 + 08 13.82 6.37
1500 1.04𝐸 + 05 9.34𝐸 + 03 8.99𝐸 + 03 7.31𝐸 + 04 3.02𝐸 + 05 4.72 3.17
2000 1.04𝐸 + 05 8.36𝐸 + 03 5.21𝐸 + 03 7.31𝐸 + 04 8.97𝐸 + 04 2.94 1.75

the case ofAckley, de Jong, andRastrigin’s function,where the
ACSA reaches the near-optimal solution after 1500 function
evaluations.

5. Conclusions

In this paper, by scrutinizing the advantages and the limita-
tions of the standard CSA, a new modified CSA, specifically
the ACSA, which adopts an adjustable step size in its
computation, has been proposed. From all the considered
benchmark optimization functions, the superiority of the
ACSA over the standard CSA is validated, in terms of
the convergence characteristics. The proposed algorithm
preserves the uniqueness and the fascinating features of the
original CSA, as both of the algorithms are able to find
the global optimum when given enough computation time
but the ACSA is able to converge faster in less iteration.
This is probably due to its capability to concurrently refine
the local search phase around the current good solutions
while exploring more aggressively for the optimal solutions,
attributed to the adopted adaptive step size. It is worth
mentioning that through empirical simulations, increasing
themaximum step size value will encourage amore thorough

global exploration and eventually lead to faster convergence;
however, the generated new solutions might fall outside the
design domain for some cases. Thus, a moderate value is
chosen in this study.
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