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FBP1 regulates proliferation, metastasis, and chemoresistance
by participating in C-MYC/STAT3 signaling axis in ovarian

cancer
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Fructose-1,6-bisphosphatase (FBP1) is a rate-limiting enzyme in gluconeogenesis and an important tumor suppressor in human
malignancies. Here, we aimed to investigate the expression profile of FBP1 in ovarian cancer, the molecular mechanisms that
regulate FBP1 expression and to examine how the FBP1 regulatory axis contributes to tumorigenesis and progression in
ovarian cancer. We showed that FBP1 expression was significantly decreased in ovarian cancer tissues compared with normal
ovarian tissues, and low-FBP1 expression predicted poor prognosis in patients with ovarian cancer. The enhanced expression
of FBP1 in ovarian cancer cell lines suppressed proliferation and 2-D/3-D invasion, reduced aerobic glycolysis, and sensitized
cancer cells to cisplatin-induced apoptosis. Moreover, DNA methylation and C-MYC binding at the promoter inhibited FBP1
expression. Furthermore, through physical interactions with signal transducer and activator of transcription 3 (STAT3),

FBP1 suppressed nuclear translocation of STAT3 and exerted its non-metabolic enzymatic activity to induce the dysfunction of
STAT3. Thus, our study suggests that FBP1 may be a valuable prognostic predictor for ovarian cancer. C-MYC-dependent
downregulation of FBP1 acted as a tumor suppressor via modulating STAT3, and the C-MYC/FBP1/STAT3 axis could be a

therapeutic target.

Oncogene (2021) 40:5938-5949; https://doi.org/10.1038/s41388-021-01957-5

INTRODUCTION

Epithelial ovarian carcinoma is the most malignant tumor of the
female reproductive system. Despite recent advances in epithelial
ovarian carcinoma detection and treatment, the overall prognosis
remains poor [1]. Therefore, there is still a need for the
development of diagnostic and predictive molecular biomarkers
to better understand the disease [2].

Tumor cells have a higher rate of aerobic glycolysis than oxidative
phosphorylation [3-5]. FBP1, the rate-limiting enzyme in glycolysis,
catalyzes the hydrolysis of fructose-1,6-bisphosphate (F-1,6-BP) to
fructose-6-phosphate and inorganic phosphate. F-1,6-BP is a known
allosteric activator of Pyruvate kinase isozyme type M2 (PKM2),
which is an important enzyme in glycolysis. Therefore, FBP1 may
inhibit the effect of glycolysis in tumor cells [6, 7]. Recently, low
expression of FBP1 is regarded as a potential prognostic factor for
malignancies including gastric cancer, breast cancer, and lung
cancer [8, 9].

Downregulation of FBP1 expression causes an increase in
glycolysis and the number of cancer stem cells (CSCs) [10].

Moreover, beyond its role in inhibition of glycolysis, some studies
have reported that overexpressed FBP1 may directly suppress
tumor growth and migration in breast cancer [10-12] and renal
cell carcinoma by interacting with the hypoxia-inducible factor
(HIF) domain [13]. It was also reported that FBP1 inhibited ERK
activation and bypassed gemcitabine resistance in pancreatic
cancer by blocking the interaction between 1Q motif-containing
GTPase activating protein 1 (/QGAPT) and MAPK [14]. Increasing
evidence showed that low expression of FBP1 was caused by the
methylation of FBP1 promoter [10, 15-17]. All these studies
suggest that epigenetic regulation of FBP1 plays a critical role in
modulating tumor initiation and progression in various
cancer types.

In the present study, we validated FBP1 as a negative regulator
of tumor invasiveness and chemoresistance in ovarian cancer.
Mechanistically, we demonstrated that the loss of FBP1 expression
in ovarian cancer was due to C-MYC-mediated promoter
hypermethylation and that enhanced FBP1 directly interacted
with STAT3 to inhibit its nuclear translocation and the subsequent
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activation of STAT3-regulated genes. Our results demonstrate the
regulatory function of C-MYC/FBP1/STAT3 signaling axis on cell
proliferation, metastasis, and chemoresistance in ovarian cancer.

RESULTS

FBP1 expression is inversely correlated with tumor
progression in ovarian cancer

To assess the clinical significance of FBP1 in ovarian cancer, we
compared FBP1T mRNA expression in ovarian cancer and healthy
ovarian tissue using data from the Oncomine database (www.
oncomine.org). The FBP1 expression level was significantly lower
in ovarian cancer tissue than in normal ovarian tissue in both the
Bonome and TCGA cohorts (Fig. 1A). We then analyzed FBP1
protein expression in 375 tumor tissues and 23 normal ovarian
tissues (FUSCC cohort) by immunohistochemical staining. We
found that 47.2% (n=177) of the tumor tissues exhibited high-
FBP1 immunostaining (defined as moderate or strong), and 52.8%
(n=198) exhibited low-FBP1 immunostaining (defined as nega-
tive or weak) (Fig. 1B, C). FBP1 protein expression levels were high
in a larger percentage of normal tissues (19/23, 82.6%) than tumor
tissues (Fig. 1C). Analysis of the correlation of the FBP1 levels
(grouped as high or low) with clinicopathological data showed
that low-FBP1 expression was negatively associated with ascites,
residual tumor size, the chemotherapeutic response, and recur-
rence (Supplementary Table 1). Moreover, we found that
significantly more patients with high-FBP1 expression were
sensitive to chemotherapy rather than resistant to chemotherapy
in the FUSCC cohort (Fig. 1D). We then studied whether there was
a correlation between FBP1 protein levels, metastasis, and SUV
values using preoperative PET/CT scan data and immunohisto-
chemical staining data from 100 ovarian carcinoma patients. We
found that patients with no metastasis had high-FBP1 protein
levels, whereas patients with metastasis presented with low-FBP1
levels; in addition, SUVmax values were significantly lower in
patients with high-FBP1 protein levels than in those with low-FBP1
protein staining (Fig. 1E, F). These data indicate that FBP1 is
downregulated and correlated with the tumor progression,
metastasis, and chemosensitivity in ovarian cancer.

To evaluate if FBP1 expression could be used as a prognosis
factor in ovarian cancer. We also evaluated the correlation
between FBP1 immunostaining and the prognosis of ovarian
cancer patients by survival analysis with the log-rank test. Patients
with low-FBP1 expression had significantly shorter disease-free
survival (DFS) (P=0.002) and overall survival (OS) (P<0.001,
Fig. 1G) than patients with high-FBP1 expression. Further stratified
analyses with different clinicopathological factors showed that
among patients with an advanced tumor stage, the presence of
ascites, or the presence of chemotherapeutic resistance, patients
with low-FBP1 expression showed decreased DFS and OS
compared with patients with high-FBP1 expression (Fig. TH-J).
Low-FBP1T mRNA expression was also found to be correlated with
significantly worse OS (n = 1656, P = 2.5e—05) and DFS (n = 1435,
P=7.3e—05, Supplementary Fig. 1A) in an independent cohort
available in the KMplot database (http://kmplot.com) [18], and
further stratified analyses showed the same results among
patients with advanced tumor stage (Supplementary Fig. 1B).
Multivariate analysis with the Cox proportional hazards model
revealed that chemotherapeutic response (HR 3.840, P = 0.000),
FBP1 expression (HR 0.582, P =0.000), and FIGO stage (HR 1.402,
P =0.028) were independent prognostic factors for OS in ovarian
cancer (Supplementary Table 1). In addition, chemotherapeutic
response (HR 2481, P=0.000), FBP1 expression (HR 0.621,
P =0.000), and FIGO stage (HR 1.693, P = 0.009) were independent
prognostic factors for DFS in ovarian cancer. These data indicate
that FBP1 expression positively correlates with patient prognosis
in ovarian cancer, especially in patients at advanced stage, with
ascites and chemoresistance.
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Modulation of FBP1 levels affects expression of genes
involved in migration, proliferation, and chemosensitivity
Immunoblotting analysis of the background expression level of
FBP1 in 12 ovarian cancer cell lines showed that the expression
level of FBP1 was lower in A2780 and SKOV3 cells (Supplementary
Fig. 2A) and higher in OVCA433 and OVCA420, so these four cell
lines were selected for further experiments. We induced FBP1
cDNA in A2780 and SKOV3 cells and constructed stably FBP1-
overexpressing cell lines (A2780/FBP10E and SKOV3/FBP10E cells,
Supplementary Fig. 2B).

To explore the potential regulatory function of FBP1 in ovarian
cancer, we used gene-chip assays to compare the expression of
FBP1-related genes in A2780/FBP10E cells with that in control
cells. Through this approach, we found that genes involved in
metastasis, apoptosis, response to cisplatin, and oxidative
phosphorylation were enriched in cells with high-FBP1 expression
(Supplementary Fig. 2C, D). All these signs indicated that FBP1
may play a critical role in ovarian cancer cell proliferation,
apoptosis, metastasis, and response to cisplatin through involve-
ment in oxidative phosphorylation.

FBP1 inhibits proliferation, metastasis, and glycolysis in
ovarian cancer cells

To determine the role of FBP1 in regulating cell proliferation, we
performed CCK-8 and colony-formation assays and found that,
compared with control cells, enhanced FBP1 suppressed cell
growth and reduced the number and size of the colonies in A2780
and SKOV3 cell lines (Supplementary Fig. 3A-C). We then tested
the effect of FBP1 expression on migration and invasion by
transwell and scratch assay, and found that overexpression of
FBP1 decreased the migration and invasiveness of A2780 and
SKOV3 cells (Supplementary Fig. 3D-G). Western blotting results
also demonstrated that FBP1-overexpressing reduced expression
levels of MMP3 and Bcl-2, while increased E-cadherin of in A2780
and SKOV3 cells (Supplementary Fig. 3H). On the basis of these
results, FBP1 appears to halt ovarian cancer cell proliferation,
invasion, and migration, possibly by suppressing the expression of
MMP3, and Bcl-2, and stimulating the expression of E-cadherin,
which was consistent with the results of Zang et al. [19] in prostate
cancer. To further validate the role of FBP1 in carcinogenesis, we
silenced the expression of FBP1 in OVCA420 and OVCA433 cells
(OVCA420/ShFBP1 and OVCA433/ShFBP1, Supplementary Fig. 4A).
The colony formation assay (Supplementary Fig. 4B, C) and
transwell assay (Supplementary Fig. 4D, E) showed consistent
results as above, which indicating that FBP1 had a vital impact on
the metastatic ability of ovarian cancer cells, which was consistent
with our gene-chip results.

Since FBP1 is the rate-limiting enzyme in gluconeogenesis, we
suspected whether FBP1 negatively regulates cell growth by
blocking glucose metabolism in ovarian cancer cells. As shown in
Supplementary Fig. 5A-E, glucose uptake, lactate and ATP
production, extracellular acidification rate, and oxygen consump-
tion rate were all dramatically decreased in cells overexpressing
FBP1 compared with controls (P < 0.05). The detection of western
blotting showed that enhanced FBP1 reduced expression levels of
GLUT1, HK2, and LDHA in A2780 and SKOV3 cells (Supplementary
Fig. 5F). In addition, PET-CT analysis showed that overexpression
of FBP1 significantly suppressed the glucose uptake of xeno-
grafted ovarian cancer cells in vivo and resulted in a lower
SUVmax value (Supplementary Fig. 5G).

FBP1 sensitizes ovarian cancer cells to cisplatin and represses
cell sphere-forming capacity of ovarian cancer cells

To illustrate the role of FBP1 in ovarian cancer cisplatin resistance,
we established 33 cisplatin-sensitive ovarian cancer organoids and
24 cisplatin-resistant ovarian cancer organoids (Fig. 2A). We found
that the expression of PAX8, a marker of ovarian cancer, was
higher in cisplatin-resistant ovarian cancer organoids than those
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with cisplatin sensitivity, but FBP1 was opposite (Fig. 2A). And
then, we treated A2780 cells and the cisplatin-resistant ovarian
cancer cell line A2780/DDP (A2780-cis) with different concentra-
tions of cisplatin for 48 h. CCK-8 assays and flow cytometry
analysis revealed that FBP1 increased the sensitivity to cisplatin of

SPRINGER NATURE

Time (months) Time (months)

A2780 and A2780-cis cells (Fig. 2B, C). The loss of FBP1 decreased
the sensitivity to cisplatin of OVCA420 and OVCA433 cells as well
(Supplementary Fig. 6). Then, we studied the induction of
apoptosis after 48 h of treatment with different concentrations
of cisplatin, we found that overexpression of FBP1 led to the
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FBP1 inhibits the nuclear translocation of STAT3 via an enzymatic activity-dependent mechanism. A Box plots comparing FBP1

MRNA expression levels in the Bonome cohort and TCGA cohort were download from the Oncomine database. B Representative images from
ovarian cancer and normal ovarian biopsy samples with various levels of FBP1 immunohistochemical staining (4x and 400x). C FBP1
expression in human ovarian carcinoma sections (n = 375, left) and normal ovarian tissues (n = 23, right). D Relationship of FBP1 expression

with ovarian cancer chemotherapeutic resistance

test). E Representative '8F-FDG PET/CT images from ovarian cancer patients with

negative (left), weak (middle), or high (right) FBP1 expression (all 400x). F SUVmax of ovarian cancer patients with low-FBP1 expression and
metastasis or high-FBP1 expression and no metastasis (n = 100). G Kaplan-Meier DFS and OS curves (log-rank tests) for patients with high and
low expression of FBP1 based on IHC staining scores. H Kaplan-Meier DFS and OS curves for patients with high or low-FBP1 expression levels
in patients stratified by the tumor stage. | Kaplan-Meier DFS and OS curves for patients with high or low-FBP1 expression levels stratified by
present of ascites. J Kaplan-Meier DFS and OS curves for patients with high or low-FBP1 expression levels stratified by present of drug

resistance status.

upregulation of the pro-apoptotic protein BAX but downregulated
the anti-apoptotic protein Bcl-2 in a dose-dependent manner in
both cell lines (Fig. 2D). Previous studies disclosed that CSC-like
property was close correlated with chemotherapy resistance in
cancer cells. To identify whether FBP1 affected CSC-like property
of ovarian cancer cells, we performed a sphere formation assay
and analyzed the proportion of ALDH expression. Compared with
the control group, sphere formation efficiency was suppressed in
both A2780 and SKOV3 cell lines with elevated FBP1 expression
(Fig. 2E) and the proportion of ALDH" expression was lower in
cells overexpressing FBP1 (Fig. 2F, G). Consistently, FBP1 over-
expression obviously inhibited the expression of SOX2, OCT4, and
NANOG (Fig. 2H), which regulated CSC-like property in various
cancers. Taken together, these results suggested that FBP1-
overexpressing cells had a higher rate of apoptosis than control
cells in response to cisplatin treatment, and that FBP1 over-
expression synergized with cisplatin to inhibit cell proliferation,
migration, and invasion.

FBP1 inhibits the progression of ovarian cancer and sensitizes
cancer cells to cisplatin-induced apoptosis in vivo

We next tested anti-tumor effects of FBP1 in vivo. To observe
subcutaneous tumor formation, we injected A2780 and SKOV3
cells either overexpressing FBP1 or harboring empty vector into
the flanks of nude mice. As is shown in Fig. 3A-D, overexpression
of FBP1 slowed the speed of tumor growth and reduced overall
tumor weight in vivo. After the tumor volume reached 100 mm?,
the mice were treated with cisplatin on alternate days. Fluores-
cence imaging showed that the FBP1 overexpression led to
reduced tumor volume and weight following cisplatin treatment,
relative to cells harboring empty vector (Fig. 3A-D).

Next, using murine intraperitoneal xenotransplantation models,
we found that overexpression of FBP1 inhibited tumor metastasis,
reducing both the number and the weight of peritoneal
disseminated lesions (Fig. 3E, F). Moreover, the weight of these
mice was significantly less than controls (Fig. 3G). Our in vivo
findings indicated that the overexpression of FBP1 could exert an
anti-tumor effect on ovarian cancer cells and sensitize ovarian
cancer cells to cisplatin treatment both in vitro and in vivo.

To determine whether FBP1 could decrease the expression of
genes involved in epithelial-mesenchymal transition (EMT),
apoptosis, and stemness, we performed IHC assay using
transplanted murine tumors. Our results were in accordance with
earlier results obtained in cell lines (Supplementary Fig. 7).

The anti-tumor effect of FBP1 may be achieved by direct
influence on the STAT3 expression

To further elucidate the molecular mechanism underlying the anti-
tumor effect of FBP1, we performed mass spectrum analysis in
A2780 cells with high expression of FBP1. The FBP1-bound
complex was then analyzed using SDS-PAGE, and the gel was
stained with Coomassie blue. The lane with the FBP1-bound
complex was excised and subjected to LC/MS analysis, which
identified STAT3 as a potential FBP1 binding partner (Supplemen-
tary Fig. 8A).

Oncogene (2021) 40:5938 - 5949

The results of co-immunoprecipitation (Fig. 4A) and Forster
resonance energy transfer—fluorescence lifetime imaging (FRET-
FLIM) (Fig. 4B) further demonstrated the interaction between FBP1
and STAT3, which confirmed the results analyzed from mass
spectrometry assay.

We also found that overexpression of FBP1 decreased the
expression level of STAT3 in A2780 and SKOV3 cells (Supplemen-
tary Fig. 8B), which was supported by the results of IHC assay
using xenografted tumors (Supplementary Fig. 8C). Interestingly,
we found that FBP1 overexpression significantly reduced the
accumulation of STAT3 protein in the nucleus, whereas had no
impact on cytoplasmic levels of STAT3 detected by co-
immunoprecipitation and immunofluorescence assay (Fig. 4C-E).
We thus hypothesized that FBP1 might regulate STAT3 by
preventing nuclear entry, thereby blocking its ability to regulate
the expression of downstream target genes. To explore this
further, we cloned six functional domains of the STAT3 protein,
including the N-terminal region (1-137 bp, D1), the coiled-coil
domain (CCD, 137-320bp, D2), the DNA-binding domain (DBD,
320-494 bp, D3), the linker domain (495-583 bp, D4), the SH2
domain (584-688 bp, D5) and the C-terminal region (transactiva-
tion domain, TAD, 689-770 bp, D6) (Fig. 4F-G). These were then
expressed in vitro and subjected to a GST pull-down assay, which
revealed that endogenous FBP1 protein (extracted from A2780/
FBP10OE cell lysates) bound specifically to the fragments corre-
sponding to D1 (1-137), D3 (320-494), and D6 (689-770) domains
of STAT3 (Fig. 4H). To further map regions of FBP1 that are critical
for STAT3 recognition, we ectopically expressed seven exons of
FBP1 (Fig. 4G) and performed co-immunoprecipitation with
epitope-tagged STAT3 protein domains (Fig. 4F). We found that
STAT3 D1 (1-137) co-immunoprecipitated with FBP1 all exons, D3
co-immunoprecipitated with FBP1 exon 2, and D6 co-
immunoprecipitated with FBP1 exon 3, 4 (Fig. 4H).

To determine whether FBP1 affected the binding of STAT3 to
the promoter of STAT3-mediated target genes, we performed
chromatin immunoprecipitation (ChIP) assay to test the binding of
STAT3 to the promoter of MMP3, Bcl-2, and HIF-1a, which had
been identified as STAT3-mediated genes, in A2780 cells
introduced with FBP1 ¢cDNA or control vector. As shown in
Fig. 4l, we found that overexpression of FBP1 obviously weakened
the binding of STAT3 to the promoter of MMP3, Bcl-2 and HIF-1q,
indicated that FBP1 exerted its inhibitory function on cell
proliferation, metastasis, chemoresistance by blocking the binding
of STAT3 to the promoter of STAT3-mediated genes.

To determine whether the metabolic enzymatic activity of FBP1
is required to inhibit STAT3, we expressed a previously described,
catalytically inactive FBP1 G260R mutant [13] in A2780 and SKOV3
cells (Supplementary Fig. 9A, B). By Co-immunoprecipitation, we
confirmed that FBP1 G260R also bound with STAT3 (Supplemen-
tary Fig. 9C). Moreover, FBP1 G260R overexpression significantly
reduced the accumulation of STAT3 protein in the nucleus,
whereas had no impact on cytoplasmic levels of STAT3 (Supple-
mentary Fig. 9D). Further co-immunoprecipitation (Supplementary
Fig. 9E), FRET-FLIM (Supplementary Fig. 9E, F), and immunofluor-
escence assay (Supplementary Fig. 9G) demonstrated that this
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Fig.2 FBP1 overexpression sensitizes ovarian cancer cells to cisplatin. A IF staining of the representative human ovarian cancer organoid
lines with PAX8, FBP1, and DAPI (DNA) as indicated. B CCK-8 assays showed the effect of empty vector and FBP1 OE on the chemosensitivity of
ovarian cancer cells to the cytotoxic effect of cisplatin. C The percentage of apoptotic cells in indicated group after cisplatin treatment. Cells
were stained with annexin V-fluorescein isothiocyanate (FITC) and propidium iodide (PI) to detect cells in early apoptosis (annexin V+ PI-)
and late apoptosis (annexin V+ Pl+). Representative pictures are shown. D The expression levels of Bcl-2 and BAX in vector control (Vec) and
FBP1 overexpressing (FBP1 OE) ovarian cancer cells were examined by western blotting. E Representative images showed the representative
number of spheres counted each day over a period of 7 days for A2780 cells stably expressing empty vector (Vec) or FBP1 (FBP1 OE). F, G The
percentage of ALDH-positive ovarian cancer cells in the vector and FBP1 OE groups were determined by flow cytometry and statistically
analyzed. H Immunoblotting analysis of the apoptosis-associated proteins SOX2, OCT4 and NANOG. Data are shown as the means + SD.
*P < 0.05, **P < 0.01.

direct interaction can prevent STAT3 nuclear translocation. (Supplementary Fig. 10D-E), apoptosis (Supplementary Fig. 10F-G),
Functionally, FBP1 G260R inhibited cell growth to a comparable and STAT3 target gene expression (Supplementary Fig. 10H) to the
level of wild-type FBP1 at 10 mM glucose (Supplementary Fig. 10A). same extent of wild-type FBP1 in A2780 and SKOV3 cells. These
FBP1 G260R also influenced colony formation (Supplementary Fig. results suggest that FBP1 interferes with STAT3 function through a
10B), metastasis (Supplementary Fig. 10C), glucose metabolism metabolic catalytic activity-independent mechanism.
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Next, we determined whether the introduction of STAT3 cDNA
could reverse the effect of FBP1 in ovarian cancer cells. We
transiently overexpressed STAT3 cDNA in FBP1-overexpressing
A2780 and SKOV3 cells. Induction of STAT3 cDNA strongly
suppressed the inhibition of cell migration (Supplementary Fig.
11A, B), cell proliferation (Supplementary Fig. 11C, D), and
glycolysis (Supplementary Fig. 11E, F) mediated by FBP1-
overexpressing. Consistently, western blotting results also con-
firmed that the FBP1-mediated decrease in Bcl-2, MMP3, GLUT4,
and LDHA protein levels were rescued by overexpression of
STAT3, however, the increase in BAX and E-cadherin was
suppressed by overexpression of STAT3 (Supplementary
Fig. 11G). We further found that STAT3 significantly attenuated
FBP1-overexpressing induced cisplatin sensitivity in both A2780
and A2780-<is cells (Supplementary Fig. 11H), which was also
confirmed by the western blotting results (Supplementary Fig.
111). In vivo studies also confirmed the role of STAT3 in the effect
of FBP1 in ovarian cancer cells with or without cisplatin treatment
(Supplementary Fig. 12).

FBP1 is directly regulated by C-MYC in ovarian cancer

Our results suggested that FBP1 was downregulated in ovarian
cancer and that this could be related to tumor progression;
therefore, next we aim to investigate the mechanisms of FBP1
downregulation in this type of cancer. The downregulation of
FBP1 expression due to promoter DNA methylation has been
observed in multiple human malignancies [10, 16, 17]. Therefore,
we compared the FBP1 expression level and FBP1 promoter DNA
methylation levels across 47 ovarian cancer cell lines from the
Cancer Cell Line Encyclopedia (CCLE) [20]. We found that 63.08%
(41/65) of ovarian cancer cell lines from the CCLE database
harbored FBP1 promoter DNA methylation and the degree of
methylation was negatively correlated with the FBPT mRNA
expression level (Fig. 5A).

To investigate which transcription factors were involved in DNA
methylation-mediated regulation of FBP1 expression, we investi-
gated transcription factor binding at the FBP1 promoter. We
analyzed the ENCODE TFBS ChIP sequencing (ChlIP-seq) data and
the genomic locus information for FBP1 from UCSC (http://
genome.ucsc.edu), and we found that C-MYC was highly enriched
at the FBP1 promoter (Fig. 5B). Interestingly, C-MYC has been
reported to inhibit the expression of its target genes by inducing
promoter DNA methylation in human breast cancer [21]. Indeed,
methylation-specific PCR analysis of ovarian tissue samples
showed that compared to healthy ovarian tissue (n = 10), ovarian
cancer patients (n=10) with high C-MYC expression levels
exhibited high DNA methylation of FBP1 (Fig. 5C). We also found
a negative relationship between endogenous FBP1 and C-MYC
protein levels in four ovarian cancer cell lines (Supplementary Fig.
13A). Accordingly, FBP1 was upregulated when C-MYC was
knocked down in A2780 and SKOV3 cells (Supplementary Fig.
13B, Fig. 5D-E), which was validated by the result of immuno-
fluorescence experiments that confirmed an increase in FBP1
protein levels in the cytoplasm is associated with C-MYC knock-
down (Fig. 5F). These results indicate that FBP1 is regulated by
C-MYC and promoter DNA methylation in ovarian cancer.

Next, we constructed a FBP1 promoter luciferase reporter
plasmid and performed a luciferase reporter assay to confirm the
mechanistic link between FBP1 and C-MYC. Firstly, we transfected
FBP1 promoter plasmids into A2780 and SKOV3 cell lines with
transient shC-MYC plasmid. Compared with the control groups,
knockdown of c-myc significantly increased luciferase expression
(Fig. 5G). To confirm the exact region within the FBP1 promoter
that C-MYC binds, we performed ChIP in A2780 cell lines. These
experiments identified three C-MYC binding sites existed at
approximately 1800-2400 bp and 2700-3000 bp upstream of the
open reading frame (ORF) of FBP1 (Fig. 5H). We individually
mutated each of these binding sites and repeated the luciferase
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assay, and showed that mutation of the third binding site alone
abrogated luciferase activity, suggesting that this was a C-MYC
binding site (Fig. 5I). Together, the above data indicate that FBP1 is
a vital target gene of C-MYC and C-MYC may suppress FBP1
promoter activity by DNA methylation.

Abrogation of FBP1 expression attenuates tumor-suppressive
properties mediated by C-MYC silencing

To further demonstrate that FBP1 is a critical target gene of C-MYC,
we performed the rescue experiment by knocking down the
expression of C-MYC and FBP1 with shRNA and observed the
impact on cell proliferation, invasion, migration, cisplatin-induced
apoptosis and glycolysis. In both cell lines, FBP1 depletion partially
reversed the reduction of cell growth and migration caused by the
knockdown of C-MYC (Supplementary Fig. 13C, D). In addition,
FBP1 knockdown significantly reverted C-MYC knockdown-
mediated decrease in glucose consumption and lactose produc-
tion (Supplementary Fig. 13E, F), as well as the C-MYC knockdown-
mediated sensitization to cell death induced by cisplatin (Supple-
mentary Fig. 13G). By western blotting, we also observed that FBP1
and C-MYC depletion decreased expression of the pro-apoptotic
protein BAX while increased the anti-apoptotic protein Bcl-2 and
EMT-related protein MMP3 in both A2780 and A2780-cis cell lines
when they were pretreated with cisplatin (Supplementary Fig.
13H), and FBP1 rescued the expression of C-MYC-mediated
proteins involving in cell proliferation, invasion, migration,
apoptosis, and glycolysis (Supplementary Fig. 13I). Taken together,
these findings demonstrate that may promote tumor progression
and cisplatin resistance by suppressing FBP1 expression.

Expression of C-MYC, STAT3, and p-STAT3 is related to poor
survival in ovarian cancer patients

To ascertain the clinical significance of C-MYC, STAT3, and p-STAT3
in ovarian cancer, we assessed their expression in an ovarian tissue
microarray (n = 375). C-MYC was expressed at high levels in 45.1%
(169/375) of ovarian cancer tissues, 66 (14.9%) patients showed
“high” expression of STAT3, and 67 (15.1%) patients showed “high”
expression of p-STAT3 (Fig. 6A, Supplementary Tables 1 and 2).
High expression of C-MYC (log-rank, P=0.005), STAT3 (log-rank,
P=0.009) and p-STAT3 (log-rank, P =0.024) were all correlated
with poor OS (Fig. 6B). The correlation of FBP1, C-MYC, STAT3, and
p-STAT3 with clinicopathological characteristics in ovarian cancer
patients were showed in Supplementary Table 2. In agreement
with our earlier observations, C-MYC expression was inversely
correlated with FBP1 expression (r=-0.217, P<0.001), in
addition, STAT3 (r=—0.110, P=0.033) and p-STAT3 (r=—0.103,
P =0.047) expression levels were also inversely correlated with
FBP1 expression (Fig. 6C). Finally, we identify a C-MYC-FBP1-STAT3
signaling axis in ovarian tumorigenesis (Fig. 6D).

DISCUSSION

Here, we identified an anticancer role of FBP1 and a C-MYC-FBP1-
STAT3 axis in ovarian tumorigenesis, which could yield a potential
future molecular marker for the chemosensitivity and prognosis of
epithelial ovarian carcinoma.

First, we observed that downregulation of FBP1 was prevalent in
ovarian tumor tissues and was associated with poor prognosis. We
then found that enhanced FBP1 efficaciously reduced the
malignancy of cancer cells, whereas FBP1 depletion did the
opposite. FBP1 was originally identified as the rate-limiting enzyme
in gluconeogenesis and loss of FBP1-mediated metabolic repro-
gramming that resulted in malignant behavior in cancer cells [10].
In agreement with previous studies [22, 23], our data showed that
FBP1 strongly reduced the glucose metabolism. Also its direct role
in tumorigenesis and tumor progression are gradually identified
[13]. In consistent with one recent study [24], we found that STAT3
is a potential target of FBP1 in cancer cells. Interestingly, in addition
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to directly binding to the transactivation domain of STAT3, our
further research found that FBP1 also bound to the domain
containing the nuclear translocation signal of STAT3, thus
detaining STAT3 in the cytoplasm. This finding reveals the
mechanism underlying the suppressive effect of FBP1 on cell
proliferation, apoptosis, migration, and invasion in cancer cells.

SPRINGER NATURE

Second, we discovered that C-MYC interacted directly with the
FBP1 promoter and regulated the expression of FBP1T mRNA. C-MYC
is a well-known oncogene that is frequently upregulated in different
malignancies and plays a pivotal role in promoting cell growth and
proliferation [25, 26]. It has been reported before that C-MYC might
be an indirect downstream molecule [27-29]. However, as a
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Immunohistochemical staining of C-MYC, STAT3, and p-STAT3 in ovarian cancer. A Representative images of biopsies containing

negative, weak, moderate, and strong expression of C-MYC, STAT3, and p-STAT3 (all 400x). B Survival analysis of patients by Kaplan-Meier
plots and log-rank tests. Patients were categorized as having high or low expression of C-MYC, STAT3, and p-STAT3 on the basis of IHC staining
scores. H high; L low. Only IHC scores >3 were considered high. € Correlation of IHC scores between FBP1 and C-MYC, STAT3, and p-STAT3.
D Schematic model showing the role of C-MYC-FBP1-STAT3 signaling axis in the regulation of cell proliferation, metastasis, and

chemosensitivity.

transcription factor, C-MYC transcriptionally regulates target gene
involved in glycolytic flux [30, 31]. Previous studies have shown that
hypermethylation of the FBP1 promoter region is the main cause of
loss of FBP1 in various cancers [9, 10, 15-17]. Our results suggested
that C-MYC directly bound to the promoter region of FBP1 and
promoted its methylation, reinforcing the importance of promoter
methylation in abrogating FBP1 expression. Furthermore, reducing
FBP1 expression in ovarian cancer cells reversed the inhibition of cell
progression induced by C-MYC knockdown.

Thus, this novel C-MYC-FBP1 signaling axis critically contributed
to the Warburg effect in ovarian cancer cells and, as a result, to the
development and progression of ovarian cancer.

Third, we found that overexpression of FBP1 conferred sensitivity
to cisplatin. Platinum resistance has always been a serious challenge
in the treatment of ovarian cancer patients. The persistent
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accumulation of irreparable double-strand breaks (DSBs) was
recognized as the main mechanism of cisplatin-induced cancer cell
death [32]. Therefore, meformin was proven to enhance the effect of
cisplatin in ovarian cancer due to its impact on DNA damage [33, 34].
In addition, cisplatin can also exert an inhibitory effect on glycolysis in
cancer cells in recent studies. Currently, combined treatment
modalities that target glycolytic pathways hold promise for the
treatment of chemoresistant cancer cells [35]. Inhibition of glycolysis
enhances drug-induced apoptosis in ovarian cancer, lung cancer, and
leukemia [36-38]. Therefore, inhibition of glycolysis by targeting FBP1
may play a vital role in restoring cisplatin sensitivity. To our
knowledge, this is the first time that FBP1 has been linked to
chemosensitivity in ovarian cancer.

In sum, our data provided mechanistic insight into the role of FBP1
and C-MYC-FBP1-STAT3 axis in the tumorigenesis and progression of
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ovarian cancer. Therefore, FBP1 may warrant consideration as a
predictive biomarker for the individual response of ovarian cancer
patients to chemotherapy in prospective clinical studies.

MATERIALS AND METHOD

Patients and tissue samples

Tissue microarrays were made using high-grade serous adenocarcinoma
samples from 375 formalin-fixed paraffin-embedded lesions of the
ovarian cancer patients with FIGO (International Federation of Gynecol-
ogy and Obstetrics, 2014) stages I-IV and 23 cervical cancer patients with
normal ovary between March 2008 and March 2012 available at the tissue
bank of Fudan University Shanghai Cancer Center (FUSCC). Each patient’s
follow-up was initiated at the beginning of chemotherapy. All the 375
patients underwent cytoreduction surgery combined with postoperative
platinum and taxane therapy, and the other patients just underwent
cytoreduction surgery. Disease-free time (DFS) was calculated from the
end of chemotherapy to the date of clinically proven progression. OS was
defined as the length of time from the date of diagnosis to the date of
cancer-related death or the last visit. DFS>6 months was defined as
sensitivity to the last platinum-based chemotherapy, and DFS < 6 months
was defined as resistant to the last platinum-based chemotherapy. All
studies involving human participants were approved by Ethics Commit-
tee at FUSCC. A written informed consent was approved from all
recruited individuals, and each clinical investigation was conducted
according to the principles expressed in the Declaration of Helsinki
consent.

Cell lines and culture

The established human ovarian cancer cell lines were obtained from the
Cell Bank of the Chinese Academy of Science. All cells were maintained in
Dulbecco’s modified Eagle’s medium (DMEM, HyClone, Thermo Scientific,
USA) supplemented with 10% fetal bovine serum (Gibco, Life technologies,
USA), 100U/ml penicillin (Biowest, Nuaillé, France), and 100 U/ml
streptomycin (Biowest, Nuaillé, France) and incubated at 37°C in a
humidified atmosphere with 7% CO,.

Chromatin immunoprecipitation (ChIP) assay

ChIP assays were performed using Pierce Agarose ChIP Kit (Thermo, #27177).
Briefly, A2780 were crosslinked by 1% formaldehyde for 10 min at 37 °C. The
cross-linking reaction was quenched by glycine and cells were lysed in SDS
buffer containing protease inhibitor cocktail. Cell lysates were sonicated to
shear chromatin DNA into fragments with 200-1000 base pairs in size and
then subjected to immunoprecipitation with 4ul IgG (Cell Signaling
Technology), 7ul C¢-MYC (ab32, mouse monoclonal antibody, Abcam) or
STAT3 (#9139, mouse monoclonal antibody, Cell Signaling Technology) or 2 pl
Polymerase Il (Imgenex) antibodies. After washing with a series of low and
high salt concentration washing buffers, immunoprecipitated DNA fragments
were de-crosslinked at 77 °C in high salt condition, purified using QIAquick
PCR purification kit (Qiagen), and then analyzed by gRT-PCR.

Using the GAPDH promoter primers (Supplementary Table 3) confirmed
the effectiveness of conventional PCR chip results. The correct chip results
should be that only the input and RNApolll samples will have positive
results, which could be shown as a 300 bp band PCR, and the other three
groups (IgG, C-MYC, and STAT group 3) appeared no band. In the ORF
region of human FBP1 gene, which located within upstream 3000 bp long
of the target gene, a pair of primers was designed by using of Primer7.0
every 300 bp or so.

Statistical analysis

The data in this study were calculated using Graph Pad Prism and reported
as mean + SD. Clinico-pathologic characteristics analysis was performed
using SPSS 23.0 (SPSS Inc., Chicago, IL). Comparisons between controls and
treated groups were determined by paired t test or one-way ANOVA
followed by Tukey’s multiple comparison tests. The relationship between
FBP1 and C-MYC, STAT3, and p-STAT3 was conducted using Spearman
Correlation Coefficient. The association between FBP1, C-MYC, STAT3, and
p-STAT3 expression and clinicopathological characteristics was evaluated
using the x? test. The Kaplan-Meier method with log-rank analysis was
used to obtain estimates of DFS and OS. Variables with a value of p < 0.05
in univariate analysis were included in subsequent multivariate analysis on
the basis of the Cox proportional hazards model. A probability value of less
than 0.05 was considered statistically significantly different.
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