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Abstract
SARS-CoV-2 is responsible for coronavirus disease 2019 (COVID-19), progressively extended worldwide countries on an 
epidemic scale. Along with all the drug treatments suggested to date, currently, there are no approved management protocols 
and treatment regimens for SARS-CoV-2. The unavailability of optimal medication and effective vaccines against SARS-
CoV-2 indicates the requirement for alternative therapies. Probiotics are living organisms that deliberate beneficial effects 
on the host when used sufficiently and in adequate amounts, and fermented food is their rich source. Probiotics affect viruses 
by antiviral mechanisms and reduce diarrhea and respiratory tract infection. At this point, we comprehensively evaluated the 
antiviral effects of probiotics and their mechanism with a particular focus on SARS-CoV-2. In this review, we suggested the 
conceptual and potential mechanisms of probiotics by which they could exhibit antiviral properties against SARS-CoV-2, 
according to the previous evidence concerning the mechanism of antiviral effects of probiotics. This study reviewed recent 
studies that speculate about the role of probiotics in the prevention of the SARS-CoV-2-induced cytokine storm through 
the mechanisms such as induction of anti-inflammatory cytokines (IL-10), downregulation of pro-inflammatory cytokines 
(TNF-α, IL-2, IL-6), inhibition of JAK signaling pathway, and act as HDAC inhibitor. Also, the recent clinical trials and 
their outcome have been reviewed.
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Abbreviations
ARDS  Acute respiratory distress syndrome
ACE  Angiotensin-converting enzyme
AAK1  Adaptor associated protein kinase 1
CoVs  Coronaviruses
COVID-19  Coronavirus disease 2019
CV-B4  Coxsackievirus B4
CMV  Cytomegalovirus
CTLs  Cytotoxic T lymphocytes

DCs  Dendritic cells
dmLT  Double mutant heat-labile toxin
EBV  Epstein–Barr virus
EcN  Escherichia coli Nissle
EPSs  Extracellular polysaccharides
GAK  G-associated kinase
GRAS  Generally regarded as safe
HSV  Herpes simplex virus
HDAC  Histone deacetylase
HLA  Human leukocyte antigen
HRV  Human Rotavirus
H2O2  Hydrogen peroxide
IFNV  Influenza virus
IFNs  Interferons
JAK  Janus kinase
LT  Labile Toxin
LAB  Lactic Acid Bacteria
MERS-CoV  Middle East respiratory syndrome
NK  Natural killer
NLR  NOD-like receptor
PRRs  Pattern recognition receptors
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PCV2  Porcine circovirus type 2
RSV  Respiratory Syncytial Virus
RLR  RIG-I-like receptor
SARS-CoV-2  Severe Acute Respiratory Syndrome 

Coronavirus 2
SPF  Specific pathogen-free
TLR  Toll-like receptor
TNF  Tumor necrosis factor

Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2), named novel coronavirus by the international virus 
classification commission, is responsible for coronavirus dis-
ease 2019 (COVID-19). It has been progressively extended 
to cover all countries on a wide-ranging scale after its first 
detection in Wuhan, China, in December 2019 (Hashemi et al. 
2021). The Severe Acute Respiratory Syndrome (SARS)-
CoV and the Middle East Respiratory Syndrome (MERS)-
CoV were preceding occurrences of coronaviruses (CoVs), 
which have been previously considered as significant public 
health threats (Mousavi et al. 2020a). Coronaviruses are small 
(ranging from 60 to 140 nm in diameter) positive-sense RNA 
viruses with spike-like glycoproteins on their envelope, which 
are based on their appearance (crown-like) under an electron 
microscope named coronavirus (Singhal 2020). Currently, it 
seems that SARS-CoV-2 transfers from one person to another 
by the following routes: person-to-person contact with sneeze 
or cough or contact with infected people’s secretions. The 
possibility of SARS-CoV-2 transfer from the fecal-oral route 
is still unclear; however, it was detected to happen throughout 
the COVID epidemic (Heymann and Shindo 2020). Although 
different vaccines have been approved against SARS-CoV-2, 
the patients are still overgrowing around the world, signifi-
cantly when control measures are reduced. Until now, four 
variants of concern (VOC) of SARS-CoV-2 have been clas-
sified by World Health Organization (WHO), including Alpha 
(B.1.1.7), Beta (B.1.351), Gamma (P.1), and Delta (B.1.617.2) 
(Tiecco et al. 2022). In November 2021, Omicron (B.1.1.529), 
another deadly super variant of SARS-CoV-2, generally 
makes at least 60 mutations in the virus genome structure 
compared to the original Wuhan strain, was designated the 
fifth VOC. According to the WHO, VOC is the most worrying 
variant of COVID-19.

There are no approved management protocols, and treat-
ment regimens among all the drug treatments suggested to date 
for SARS-CoV-2 (Cunningham et al. 2020). Numerous clinical 
trials were conducted to evaluate a variety of medicines such 
as hydroxychloroquine, lopinavir/ritonavir, corticosteroids, 
and remdesivir for this disease, and the clinical protocols are 
being updated continually (Negahdaripour et al. 2022). The 
effectiveness of most of these medicines is under question for 

the management of SARS-CoV-2; therefore, the clinical prog-
nosis may be unpredictable according to the lack of clinical 
evidence. Thus, developing a complementary way to discover 
new preventive and supportive strategies is one of the serious 
medical needs these days.

In the last ten years, probiotics (viable form) and post-
biotics (non-viable form) have been applied to improve 
physiological conditions such as progressive development 
of epithelial barrier function, gut homeostasis, and healthy 
immune responses (Ashoori et al. 2020). Probiotics are 
potential biological agents with many valuable features in 
treating viral infections. In this review, we highlighted the 
antiviral effects of probiotics and their mechanisms, focus-
ing on their potential ability to manage SARS-CoV-2. These 
mechanisms are based on the antiviral activity of probiotics 
and immunological pathways affected by SARS-CoV-2.

Probiotics and their importance in current 
medicine

Probiotics are determined as living organisms that deliber-
ate beneficial effects on the host when used sufficiently and 
in adequate amounts (Mohkam et al. 2016; Mousavi et al. 
2020b). The most common bacteria used as probiotics are 
lactic acid bacteria (LAB), especially the genus Lactoba-
cillus. These microorganisms are the essential components 
of the intestinal microflora and are known as “generally 
regarded as safe” (GRAS). Members of this genus and their 
characteristics have been redefined many times. In their 
latest taxonomic classification in 2020, 23 new members 
have been added (Zheng et al. 2020). The online searching 
tool, namely “lactotax” (http:// lacto tax. embl. de/ wuyts/ lacto 
tax/), is a handy web-based tool to identify the Lactobacillus 
family further. The appropriate needed dose for probiotic 
products is related to their strain. The over-the-counter prod-
ucts have an average of 1–10 billion colony forming units 
(CFU)/dose, while some products are efficient at the lower 
range, and some require more CFU for a single dose. This is 
why human studies define dosage according to the product’s 
health benefits. Since probiotics are alive, they may die off 
during storage, so the manufacturer should build in overages 
so that the potency mentioned on the label doesn’t fall at the 
end of the product’s shelf life. However, the spore-forming 
strains resist environmental stress during shelf-life (Sanders 
et al. 2010, 2016).

Probiotic‑containing fermented foods 
against COVID‑19

Fermented foods have been the reach source of probiot-
ics and have been used for thousands of years (Zhao et al. 
2019). For instance, kimchi, a traditional Korean fermented 
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food, contains about 200 types of probiotics, or serofluid 
dishes, existing in Chinese culture, produce probiotic cul-
tures, bacteriocins, and enzymes due to forming complex 
and distinct bacterial communities (Chen et al. 2016). Leu-
conostoc mesenteroides and Lactiplantibacillus plantarum 
(L. plantarum) have been identified as the major species 
in kimchi. However, numerous studies suggest that LAB 
contributing to kimchi fermentation include Leuconos-
toc citreum, Leuconostoc gasicomitatum, Levilactobacil-
lus brevis, Latilactobacillus curvatus, Latilactobacillus 
sakei subsp. sakei, Lactococcus lactis, Pediococcus pen-
tosaceus, W. confusa, and W. koreensis (Di Cagno et al. 
2016). Kimchi LAB exhibit antioxidative, anticancer, 
immune-stimulatory effects, anti-obesity, and other pro-
biotic activities (Park et al. 2017). It is proposed that fer-
mented cabbage in kimchi, because of their Lactobacillus 
content, is a proof-of‐concept of dietary management that 
may augment Nrf2‐associated antioxidant effects helpful 
in alleviating COVID‐19 severity (Bousquet et al. 2021). 
The most familiar fermented foods, e.g., probiotic milk, 
yogurt, and honey, also benefit viral diseases. Human milk 
contains LAB, which protects against rotavirus (Mirashrafi 
et al. 2021). Sourdough is the oldest form of slowly fer-
mented leavened bread used as early as 2000 BC by the 
ancient Egyptians. All sourdough starters were harbored 
with Leuconostoc citreum, L. plantarum, and Lactococcus 
lactis, which are almost similar to the microbial profiles of 
dough prior to fermentation (Rizzello et al. 2015). Sour-
dough provides gastrointestinal benefits, contains natural 
prebiotics and probiotics, boosts the number of vitamins 
and minerals, enhances mood and energy, and has antioxi-
dant properties (Lau et al. 2021).

Traditional kefir, derived from the Caucasus Moun-
tains, is a fermented milk drink with a creamy texture, 
sour taste, and subtle effervescence (Lopitz-Otsoa et al. 
2006). Many microbial species have been identified in 
kefir grains, commonly including Levilactobacillus brevis, 
Lacticaseibacillus paracasei subsp. paracasei, L. helveti-
cus, Lactobacillus kefiranofaciens subsp. kefiranofaciens, 
L. plantarum, Lentilactobacillus kefiri, Lactococcus lac-
tis, Streptococcus thermophiles, Acetobacter lovaniensis, 
Acetobacter orientalis, Saccharomyces cerevisiae, S. uni 
sports, Candida kefyr, Kluyveromyces marxianus and Leu-
conostoc mesenteroides (Prado et al. 2015). Kefir exerts 
antimicrobial activity and immunostimulatory effects and 
improves gut dysbiosis (Dimidi et al. 2019). Kefir and 
kefir derivatives can inhibit viral activity by modulating 
immune-system responses and/or disrupting viral adhe-
sion. The antiviral mechanisms of kefir involve enhanc-
ing macrophage production and boosting the activity of 
pro-inflammatory cytokines. Kefir has anti-inflammatory 
activity by inhibiting the activity of pro-inflammatory 
cytokines such as IL-1β, TNF-α, and IL-6. Using kefir 

(and its byproducts) as an inhibitor of the expression of 
pro-inflammatory cytokines in COVID-19 patients could 
be a viable policy (Hamida et al. 2021).

Kombucha is a fermented tea beverage in Northeast 
China around 220 BC and was consumed extensively dur-
ing the Qin Dynasty. Similar fermented tea beverages 
became popular in Russia and Eastern Europe (Mousavi 
et al. 2020b). The bacterial and fungal species presenting 
in the kombucha typically include acetic acid bacteria 
(Acetobacter, Gluconobacter), LAB (Lactobacillus, Lac-
tococcus), and yeasts (Saccharomyces, Zygosaccharomy-
ces) (Coton et al. 2017). Kombucha has been displayed 
to exert effects in animal studies on blood glycemia, 
oxidative stress, diabetes-induced weight loss, chem-
ically-induced nephrotoxicity, hypercholesterolemia, 
and indomethacin-induced gastric ulceration (Dimidi 
et al. 2019). Sauerkraut is one of the most usual form 
of preserved cabbage originating in the 4th century BC. 
Sauerkraut is eaten regularly in Germany, other Euro-
pean and Asian countries, and the United States (Raak 
et al. 2014). Sauerkraut (home-made and shop-bought) 
has been revealed to comprise Bifidobacterium dentium, 
Enterococcus faecalis, Lactobacillus casei, Lactobacillus 
delbrueckii, Staphylococcus epidermidis, Lactobacillus 
sakei, Lactobacillus curvatus, Lactobacillus plantarum, 
Lactobacillus brevis, Weissella confusa, Lactococcus 
lactis, and Enterobacteriaceae (Bati and Boyko 2016). 
Oral administration of sauerkraut juices in Wistar rats 
directed to increased activity of glutathione S-transferase 
(GST) and NAD(P)H: quinone oxidoreductase 1 (NQO1), 
critical liver and kidney detoxifying enzymes (Krajka-
Kuźniak et al. 2011).

The consumption of home-made fermented foods (yogurt, 
kefir, sauerkraut, kombucha) in commercial products con-
taining probiotics and prebiotics is part of a comprehensive 
nutritional strategy to enhance the function of the gut micro-
biota, promote mucosal immunity and potentially upper res-
piratory tract immunity, be potentially better prepared to face 
viral or bacterial infections caused by respiratory syndromes 
(Antunes et al. 2020).

Despite all the positive attitudes, experimental studies 
and trials have not yet confirmed the significant effect of 
probiotics-containing foods in preventing and treating viral 
diseases, especially COVID-19. Kinoshita et al. conducted 
a clinical trial on the dietary intake of yogurt fermented 
with Lactobacillus delbrueckii ssp.. bulgaricus. This trial 
revealed that this diary product could not prevent influ-
enza or enhance NK cell activity (Kinoshita et al. 2019). 
In addition, one should pay serious attention to the inter-
action between food-food and food-medicine when con-
suming probiotics containing food. A recent clinical trial 
indicated that the intake of fermented foods might affect 
the effects of Pediococcus acidilactici on preventing viral 
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respiratory tract infections (Hishiki et al. 2020). Anti-infec-
tious immune systems are induced just in children who eat 
less than two fermented foods or yogurt per week along 
with probiotic strains.

Bioinformatics study and computational 
analysis of probiotics and COVID‑19

Nowadays, bioinformatics tools can be used to analyze 
the properties of different compounds and even their bio-
logical effects with computational mathematical studies 
with less time and lower cost than laboratory studies and 
clinical trials (Negahdaripour et al. 2022). Bioinformat-
ics also provides accurate insight for discovering and 
designing creative therapeutic compounds. Because of the 
importance and urgency of providing an effective medi-
cine for COVID-19, the notable contribution provided by 
the computational approach during the ongoing pandemic 
inspires further efforts toward development and adoption 
(Eetemadi et al. 2020). We can investigate the potential of 
probiotics against SARS-CoV-2 through an in-silico analy-
sis and delves into the nature of bacteria-virus interaction 
by docking approaches.

One of the most exciting new approaches to influence 
the health and disease system is developing the knowl-
edge of the human microbiome as a biological system. The 
recently provided opportunity to profoundly understand 
the complex relationships between the human body and 
the microbiome environment can be seen as a time to par-
adigm-shift health. This unique situation is due to the free 
availability of genomic and proteomic tools, which make 
unprecedented progress in mining and applying biological 
and clinical data, including dietary habits, identification of 
human microbiome species, especially in the gastrointesti-
nal tract, and the expansion of systems biology.

Thus, in the midst of the COVID-19 epidemic, compu-
tational technology and bioinformatics as integral parts of 
probiotic-related research is a potentially quick and practi-
cal approach. In this regard, reviewing existing data sources 
and using a computational approach to analyze available data 
can be better strategies to understand the effectiveness (or 
ineffectiveness) of probiotics. For long-term control of this 
lethal disease, the two main approaches in this field are the 
microbiome-driven and ensemble-driven docking approaches 
(Nguyen et al. 2022). Computational methods associated with 
the microbiome-driven approach can facilitate exploring the 
human microbiome. This type of in-silico research can answer 
the mechanism of affecting the human body microbiome on 
respiratory tract infections and how it may affect the severity 
of COVID-19. In the two contexts of metagenomics and meta-
transcriptomics, several bioinformatics tools for distinguishing 

GI microbiome offer an understanding of the interaction 
between microbiome and COVID-19 (Yeoh et al. 2021).

Ensemble-driven docking approaches can lead to dis-
covering accelerated and more accurate therapeutic targets 
against COVID-19. To that end, COVID-19 data is being 
shared at an unprecedented rate worldwide. Bioinformat-
ics strategies in drug modeling, molecular binding, molecu-
lar dynamics simulation, and ADMET study have been 
profoundly investigated for screening potential molecules 
(including probiotics) to combat COVID-19 from multiple 
databases. In addition, the basic and applied sciences have 
benefited from the analysis of SARS-CoV-2 data by compu-
tational tools. Bioinformatics pushes the experiments about 
probiotics on SARS-CoV-2 to further research antiviral pro-
biotics and find possible SARS-CoV-2 protein targets.

Immunological aspect and mechanism study

While some strains have their unique features for certain neu-
rological, immunological, and antimicrobial activities, some of 
the mechanisms of probiotics may be similar between various 
strains, species, or even genera. For example, many probiotic 
strains may have the ability to produce short-chain fatty acids 
or reduce luminal pH in the colon. Probiotics are likely to influ-
ence intestinal mucosa by controlling the native microbiota 
population, preventing the proliferation of harmful bacteria, 
improving lymphoid tissues in the gut, and enhancing systemic 
immune responses (Azarang et al. 2020; Gholami et al. 2020). 
Particular probiotics offset the production of pro-, and anti-
inflammatory cytokines, so forming the healthy host-microbe 
cross-talk is required to preserve inflammatory responses (Kar-
affova et al. 2017). Probiotics are applied to raise oral vaccine 
responses and treat enteric infections (Zimmermann and Curtis). 
Probiotics reduce the incidence of acute infections in the upper 
respiratory tract and replication of antibiotic use and decrease 
the duration of every episode (Fonollá et al. 2019b). The single 
mutant Labile Toxin (LT) (S61 K) reduced the stimulation of 
tumor necrosis factor (TNF)-α and IL-6 in bone marrow-orig-
inated cells, specifying its potential clinical use for allergy and 
asthma management. Double mutant heat-labile toxin (dmLT) 
(R192G/L211A) was observed to elevate the production of Th17 
cytokine IL-17 A in peripheral blood mononuclear cells. It can 
elicit dendritic cells (DCs) and improve the rate of IL-17 A+, 
IFN γ+, and TNFα + secreting CD4 + T cells in the cervical 
lymph nodes of immunized mice (Jiang et al. 2017b).

Immunologic consequences of probiotic 
supplementation in human

In the last years, probiotics have been considered a regula-
tor of innate and adaptive (humoral and cellular) immunity. 
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Probiotic’s beneficial effects such as augmented peripheral 
immunoglobulin production, induction of IgA secretion, 
and reduced production of pro-inflammatory cytokine 
has been reported previously (Montazeri-Najafabady 
et al. 2019). The valuable properties of probiotics could 
be related to the regulation of immunological pathways. 
As noted, Bifidobacterium or probiotic bacterial species 
secreting less endotoxin than Gram-negative bacteria 
decrease the stimulation of inflammatory intermediates 
like TNF-α. It was described that the administration of 
Limosilactobacillus fermentum (L. fermentum) CECT5716 
meaningfully declined the infection frequency of influ-
enza virus (IFNV) and augmented natural killer (NK) cell 
cytolysis activity and TNF-α, anti-influenza specific IgA, 
and IgM levels (Bajpai et al. 2018). Escherichia coli Nissle 
(EcN) is one of the Gram-negative probiotics that have 
bacteriocidal and immunomodulatory effects, for instance, 
preventing invasion of harmful bacteria to the epithelial 
cells, inducing secretion of β-defensin to epithelial cells, 
and regulating T cell propagation (Gholami et al. 2015; 
Kandasamy et al. 2016). Limosilactobacillus reuteri (L. 
reuteri) encouraged immune response in Specific Patho-
gen-Free (SPF) mice. In healthy SPF mice and SPF mice 
infected with bacterial pathogens, L. reuteri L26 enhanced 
phagocytic activity and amplified the percentage of T-lym-
phocytes, CD4 + lymphocytes, NK cells, and regulatory 
T-cells. Also the upregulated synthesis of pro-inflamma-
tory cytokines (TNF-α, IL-1b, MCP-1) in peripheral blood 
and mesenteric lymph nodes were noted (Karaffova et al. 
2017). Lactobacillus delbrueckii OLL1073R-1 (LDR-1) 
can release immunomodulatory extracellular polysaccha-
rides (EPSs). EPSs facilitate the collaboration of immuno-
biotics and host through attachment to pattern recognition 
receptors (PRRs) expressed in non-immune and immune 
cells, and it can meaningfully elevate IFN-γ synthesis by 
murine splenocytes. Elderly individuals that use the immu-
nobiotic LDR-1 yogurt exhibited high NK cell cytolysis 
activity and decreased the probability of gathering colds 
(Laiño et al. 2016).

Probiotics are widely recognized to act against viruses 
by maintaining host immunological responses through 
induction of immunoeffector cells (interleukins, NK cells, 
macrophages, immunoglobulins, T-helper cells). The anti-
viral properties of probiotics, primarily depend on strain 
specificity, can be through probiotic-virus communication, 
secretion of antiviral and antibacterial substances, and/
or the probiotic-associated regulation of the immunologi-
cal pathways. LAB can also release various substances 
exhibiting antiviral and/or antagonistic properties such 
as hydrogen peroxide  (H2O2), lactic acid, bacteriocins, 
bacteriocin-like substances, short-chain fatty acids, and 
polysaccharides (Arena et al. 2018).

Immunologic features of SARS‑CoV‑2

Generally, after virus entry, virus PRRs comprising C-type 
lectin-like receptors, toll-like receptor (TLR), NOD-like 
receptor (NLR), and RIG-I-like receptor (RLR) is spot-
ted by the host innate immune system. The SARS-CoV-2 
stimulates the synthesis of inflammatory cytokines, the 
development of DCs, and the production of type I interfer-
ons (IFNs) that prevent virus expansion and quicken virus 
phagocytosis by macrophages. Antigenic peptides of coro-
navirus are extended by major histocompatibility complex 
(MHC); or human leukocyte antigen (HLA) in humans) and 
formerly detected by virus-specific cytotoxic T lymphocytes 
(CTLs). The antigen presentation of SARS-CoV-2 mainly 
relies on MHC I molecules, but MHC II also takes part. 
Presentation of antigens on the cell surfaces then induces 
the body’s humoral and cellular immunity, modulated by 
virus-specific B and T cells. The antibody arrangement 
against the SARS-CoV-2 virus has a standard IgM and IgG 
production configuration like acute viral infections. The 
SARS-specific IgM antibodies disappeared 12 weeks after 
their presentation, although the IgG antibody can remain 
for an extended period, which shows that the IgG antibody 
may mostly play a supportive role. The CD4 + and CD8 + T 
cells count in the peripheral blood of SARS-CoV-2-infected 
patients are decreased meaningfully. Huang et al. indicated 
that acute respiratory distress syndrome (ARDS) is the fore-
most death reason for SARS-CoV-2. Cytokine storm [the 
lethal unrestrained systemic inflammatory response after the 
secretion of large quantities of pro-inflammatory cytokines 
(IFN-α, IFN-γ, IL-1β, IL-6, IL-12, IL-18, IL-33, TNF-α, 
TGF-β) and chemokines (CCL2, CCL3, CCL5, CXCL8, 
CXCL9, CXCL10) by active immune cells in SARS-CoV-2 
infection] is known as a primary reason for ARDS (Huang 
et al. 2020b). The immune system attack on the body is 
stimulated by the cytokine storm, resulting in ARDS and 
failure of multiple organs, and lastly, death in the acute 
phase of SARS-CoV-2 infection (Li et al. 2020). Neverthe-
less, the SARS-CoV-2 N protein conceals the virus from 
the immune responses.

Effects of probiotics on previous viral infections

The established effects of immunobiotics against viral infec-
tion were through modulating innate and adaptive immunity 
that results in the decline of the period of the disease, the 
episode counts, and virus cracking (Zelaya et al. 2016).

Ang et al. demonstrated the antiviral properties of L. reu-
teri against enteroviruses (Coxsackievirus A and Enterovirus 
71) (Ang et al. 2016). Other studies displayed the protective 
effects of Bifidobacterium adolescentis (B. adolescentis) as 
opposed to Coxsackievirus B3 (CV-B3) (Kim et al. 2014) 
and Lactiplantibacillus plantarum (L. plantarum) and its 
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culture supernatant against Coxsackievirus B4 (CV-B4) 
(Arena et al. 2018). In another study, probiotic L. reuteri 
showed antiviral properties against porcine circovirus type 
2 (PCV2) in the intestine by promoting the gut immune 
response (Karaffova et al. 2017).

Kandasamy et al. 2016 also informed that EcN and 
Lacticaseibacillus rhamnosus (L. rhamnosus) Strain 
GG had antiviral activity against rotavirus infection by 
modulating B cell responses (Kandasamy et al. 2016b). 
Moreover Bifidobacterium adolescentis SPM0212 and 
SPM1005 exhibited antiviral properties against the Hepa-
titis B virus (Lee et al. 2013) and human papillomavirus 
(Cha et al. 2012), respectively. Also, Bifidobacterium 
and Lactobacillus spp. exerted inhibitory effects on the 
herpes simplex virus (An et al. 2012), human influenza 
virus (Kwak et al. 2013), and human immunodeficiency 
virus (Fuku et al. 2016).

As previously defined, the antiviral activities of probiot-
ics are strain-dependent, and some probiotics have demon-
strated antagonist activity more than others. For example, 
L. fermentum ACA-DC179, E. faecium PCK38, L. plan-
tarum PCA236, Lactiplantibacillus pentosus (L. pentoses) 
PCA227, B. animalis subsp. lactis BB-12, Lacticaseibacil-
lus casei (L. casei) shirota, and B. longum SP07/3 revealed 
the most antiviral activities (Al Kassaa et al. 2014). Other 
published articles already displayed that L. pentosus (Kiso 
et al. 2013)d rhamnosus have advantageous properties as 
opposed to severe viral infections triggered by influenza 
viruses (Song et al. 2016). Dietary supplements of Lac-
tobacillus and Leuconostoc probiotics may encourage 
health benefits against influenza (Bae et al. 2018b). Regu-
lar ingestion of L. casei shirota lowered plasma Cytomeg-
alovirus (CMV) and Epstein–Barr virus (EBV) antibody 
titers, an impact that can be clarified as an advantage to 
overall immune status (Gleeson et al. 2016b). The signifi-
cant decrease in the intestinal and serum Human Rotavirus 
(HRV)-specific Ab responses in EcN-colonized piglets com-
pared with control piglets were in line with the reduction 
in fecal HRV shedding titers and diarrhea in the EcN group 
(Kandasamy et al. 2016b).

In recent times, a clinical study performed on humans 
proved the anti-rotaviral properties of probiotics by rep-
resenting the limitation of the duration of diarrhea, which 
advised that these beneficial microbes might be suitable 
for the management of acute rotaviral gastroenteritis or 
as a substitute treatment without adverse effects (Bajpai 
et al. 2018).

Administration of C. pseudo diphtheriaticum to infant 
mice raised the production of IFN-β, TNF-α, and IL-6. 
Simultaneously, it also enhanced the secretion of IL-10, 
whose most prominent role contributes to restricting inflam-
mation during Respiratory Syncytial Virus (RSV) infection, 

which subsequently reduces damaging effects in response to 
RSV (Kanmani et al. 2017).

One study suggests that EPS from L. delbrueckii 
OLL1073R-1 (LDR-1) could improve intestinal innate anti-
viral response and prevent intestinal viruses such as rotavi-
rus (Kanmani et al. 2018). Microbial dysbiosis due to viral 
infection can also be replaced by probiotic supplementa-
tion. In a recent experiment, a significant reduction in the 
counts of Lactobacillus and Bifidobacterium strains has been 
observed due to COVID-19 (Xu et al. 2020). However, the 
data from another unpublished study represented that the 
probiotic supplementation (Lactobacillus acidophilus and 
Bacillus clausii) of infected animals with coronavirus did 
not affect the severity of infection and expression of corona-
virus receptors (Feng et al. 2020). We provided a list of pro-
biotic strains that had an impact on different viral infections 
and a concise mechanism of action as well as the cell type 
affected. We summarized the majority of antiviral probiot-
ics with other information, including probiotic strain, target 
virus, mechanism of antiviral activity, and examined host 
cell type in Table S1.

Mechanism of antiviral activity of probiotics

Some mechanisms make probiotic therapy of viral infec-
tion successful: (1) direct interaction between probiotic and 
virus, (2) production of antiviral inhibitory metabolites, 
and (3) stimulation of the immune system (Al Kassaa et al. 
2014; Drider et al. 2016; Ichinohe et al. 2011; Wu et al. 
2013). Moreover, it was suggested to consider the effect of 
probiotics on the epithelial cells of the eukaryotic host and 
microbiota that can modify the number of calcium ions and 
electrolyte potential (Hoffmann et al. 2017; Olaya Galán 
et al. 2016).

Probiotics are well known for maintaining immune 
responses, which can boost the immune responses versus 
the virus, inducing antibodies, T-lymphocyte cells (espe-
cially Th cells), NK cells, interleukins, and mononuclear 
phagocytic cells (Maragkoudakis et al. 2010). As another 
possible mechanism of probiotics for immunomodulation, 
they can activate IFNs signaling that cause increasing the 
expression of several IFN-stimulated genes translated to 
proteins that can neutralize the virus transcription (Sadler 
and Williams 2008).

Probiotic strains that can beneficially regulate mucosal 
immunity are called “immunobiotics” (Shigemori and Shi-
mosato 2017). Treatments with immunobiotics can regu-
late the TLR signaling regulator expression and generate of 
cytokines/chemokines, modify the rotaviral-induced inflam-
mation (Ishizuka et al. 2016; Villena et al. 2016). Wang et al. 
(Wang et al. 2010) revealed that probiotics could inhibit the 
replication rate of the Newcastle disease virus.
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Probiotics can produce different substances with anti-
viral features. The inhibition of viral reproduction in tis-
sue cultures by various bacteriocins, lactic acid (Klebanoff 
et al. 1999), and hydrogen peroxide (Dembinski et al. 2014) 
has been presented in some studies (Chikindas et al. 2018). 
Some studies showed that enterocins such as CRL35 or 
ST4V (produced by different subtypes of Enterococcus 
mundtii) and ST5Ha (produced by Enterococcus faecium) 
have virostatic effects on herpes simplex virus (HSV) sub-
types, coxsackie, and poliovirus (Quintana et  al. 2014; 
Todorov et al. 2005, 2010; Wachsman et al. 2003). The 
effectiveness of bacteriocins of Bifidobacteria and Lacto-
bacilli against rotavirus and adenovirus species (Choi et al. 
2009), together with subtilisin, was proved effective against 
HSV-1 and HSV-2 (Torres et al. 2013). L. delbrueckii bac-
teriocin revealed anti-influenza virus activity (Serkedjieva 
et al. 2000). Furthermore, some classic probiotic species 
may trigger the production of several interleukins (namely 
12, 22, 25, and 33), intestinal transforming growth factor via 
antigen-presenting cells; IL22 by innate immune cells; IL12, 
IL25, IL10, and TGF via antigen-presenting cells; improving 
GI wall performance, reducing effector cells and modifying 
immune cell systems (Vlasova et al. 2016). L. casei shi-
rota supplementation in the HIV-infected children caused 
significant raises in CD4 + cells significantly on the Th17 
subset, in combination with a remarkable fall in the amount 
of activated CD8 + cells (Ishizaki et al. 2017). Collectively, 
intervention in DCs differentiation and maturation process 
helps to amplify TLR/nuclear factor-κB signaling pathway, 
and regulate the inflammatory mediators were partially caus-
ing the protective effects of L. rhamnosus GG (Jiang et al., 
2017a). Several possible mechanisms can provide partial 
protection versus human rotavirus infection induced by 
EcN: (a) directly affects the viral infection and (b) kills the 
virus by modifying the immune system of the host (Karaf-
fova et al. 2017).

Probiotic-derived peptides may stop endocytosis via 
interference in clathrin-coated pit formation, which is neces-
sary for the virus to enter the endosomes and, consequently, 
inhibit the viral transcriptional complex. It was shown in 
a study that there is a conjugation between oligopeptides 
of probiotic strains and the viral capsids that can disrupt 
the lipid membrane, followed by pore formation at specific 
concentrations, which lets the viral component diffuse from 
viral cells (Bajpai et al. 2018).

The genome sequencing of several Lactobacillus and 
Bifidobacterium strains reported the presence of some com-
ponents such as surface layer glycoprotein related to the cell 
envelope. It demonstrated a correlation between the ability 
to attach to host cells and the ability of strains to counteract 
the antiviral effects regardless of the impact of their metabo-
lites. These proteins play an essential role in signaling DCs 
and T cell functioning (Abdelhamid et al. 2019).

Furthermore, it is proven that when the elasticity of the 
probiotic cell membrane increases, the immune system regu-
latory mediators such as IL-12 and IFN-γ and anti-inflam-
matory mediators such as macrophage and nitric oxides 
increase (Мokrozub VV et al. 2015). An animal study sug-
gested that due to antagonistic properties and the ability to 
adhere to mice cells, using these probiotic strains may pro-
tect against viral pathogens (Servin 2004).

The systemic activity of probiotics in some body com-
partments reduces viral replication. Taking a specific strain 
of Lacticaseibacillus paracasei (L. paracasei) decreases the 
inflammatory mediators, such as IFN-γ, TNF-α, and IL-17 
in the respiratory system (Dos Santos Pereira Andrade et al. 
2017). S-layer protein of probiotics may also exhibit antivi-
ral effects. For instance, S- the layer protein of Lactobacillus 
can stimulate the mouse DCs activation, H2N9 virus inva-
sion of DCs inhibition, and IFN signaling pathway stimula-
tion could be a promising antiviral compound against H2N9 
infection (Gao et al. 2016).

Besides, proteins produced by probiotic strains (e.g., L. casei 
and B. adolescentis) directly interact with viral surface glycopro-
teins (VP4 or VP7) and prohibit the virus entry into the MA104 
cells and/or virus adhesion (Fernandez-Duarte et al. 2018).

In an attempt to find a potential treatment for SARS-
CoV-2, we assumed using probiotics since their previous 
effects on viral infections and their antiviral mechanisms 
could improve the health status of people with many differ-
ent infectious diseases.

Proposed mechanism of probiotics 
for protection against SARS‑CoV‑2

There is no available vaccine and a prominent worthwhile, 
clinically approved treatment for SARS-CoV-2. The best 
strategies are preventing SARS-CoV-2 by maintaining high 
hygiene by washing our hands, refusing connection with 
infected people, and reinforcing our immune system.

There is a strong evidence of the connections between 
gut microbiome structure and composition and health or 
disease. It has been recently observed that a modification of 
the physiological homeostasis of intestinal microbiota, also 
known as dysbiosis, is associated with some disorders. Dys-
biosis related to loss of strain diversity was correlated with 
various diseases, from antibiotic-associated diarrhea to type 
2 diabetes or common infectious diseases (Le Chatelier et al. 
2013). Janda et al. (2021) suggested that changing micro-
biome composition in the elderly, obese people, and those 
with underlying chronic disease may expose these people 
more extensively to the fetal adverse effects of COVID-19 
than other individuals. In that study, the opinion was that “A 
healthy microbiome could be one of the factors responsi-
ble for lower case fatality ratio on COVID-19 patients”. So, 
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rebalancing the gut microbiome composition with probiot-
ics could be an excellent strategy to counter COVID-19 and 
decrease its fetal rate. In addition, patients with COVID-19 
developed bacterial imbalances and a decrease in the count 
of gut microbiota, especially in the strains of Lactobacil-
lus and Bifidobacteria (Xu et al. 2020). Interestingly, some 
clinical trials have shown that taking a combination of pro-
biotics, including L. rhamnosus GG, live B. subtilis, and 
E. faecalis to admitted patients in the ICU who have been 
inhaled with a ventilator has been able to reduce their risk of 
ventilator-associated pneumonia (Morrow et al. 2010; Zeng 
et al. 2016). Studies have also shown that probiotics can have 
anti-coronavirus effects; however, these effects have not yet 
been studied on the SARS-CoV-2 virus (Baud et al. 2020).

During the last decades, several probiotics prevented and/or 
decreased the duration of either bacterial or viral infections. There 
is no scientific basis for applying probiotics to specifically pro-
tect, prevent, or treat COVID-19. However, based on an indirect 
assumption, some clinical researchers have recommended using 
probiotic supplements for patients with COVID-19 (Mak et al. 
2020). In the following section, we discuss the possible mecha-
nisms of probiotics that may affect SARS-CoV-2 (Fig. 1). The 
conceptual and potential antiviral mechanisms of probiotics against 
SARS-CoV-2 can be classified into three categories as follow:

Direct effect on viruses

Probiotics can act against viral infections directly by producing 
antiviral metabolites like lactate,  H2O2, bacteriocins, polysac-
charides, short-chain fatty acids, subtilisin, nitric oxide, probiotic 
peptides; and inactivation of virus virulence factor (Fig. 2). Wang 
et al. reported that a probiotic strain of Bacillus subtilis and its 
lipoheptapeptide metabolite, surfactin, could be attached to viral 
particles of transmissible gastroenteritis coronavirus after enter-
ing the animal intestinal epithelial cells, inhibit their activity, and 
finally, inactivate the virus life cycle (Wang et al. 2017). Levilac-
tobacillus brevis (L. brevis) strain CD2 can directly interact with 
the herpes simplex virus type 2 through its cell wall components 
and inhibit viral activity (Mastromarino et al. 2011).

Interference in virus endocytosis

SARS-CoV-2 enters target cells through the angiotensin-con-
verting enzyme (ACE) receptor-2 (Sommerstein et al., 2020). 
It was initially suggested that compounds that could block the 
renin-angiotensin system, such as ACE inhibitors, may be the 
potential therapeutic tools for SARS-CoV-2 (Gurwitz 2020). 
Probiotic strains have affected the activity of ACE, both directly 
and indirectly. Peptide metabolites produced by the gut micro-
biota can now block the active site of the ACE during food 
fermentation and inhibit its function. Furthermore, cell body 
masses of probiotics are ACE inhibitors. Therefore, since ACE 

Fig. 1  Proposed mechanisms of antiviral effects attributed to probiotics against SARAS-CoV-2
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receptors are the main gateway for SARS-CoV-2 to enter GI 
cells, probiotics can potentially prevent the virus from entering 
the body by inhibiting ACE receptors (Olaimat et al. 2020).

Moreover, probiotics release ACE-inhibiting peptides 
may be one of the possible mechanisms by which probiot-
ics could block the virus entry into the cells (Ramchandran 
and Shah 2008). A recent in-silico computational study on 
molecular dynamics of probiotic metabolites clearly showed 
the realism of this idea. Anwar et al. bioinformatically eval-
uated the antiviral effect of metabolites of L. plantarum 
through multiple mechanistic approaches and showed their 
potency in blocking the viral entrance to cells via binding to 
RdRp, RBD, and ACE2 (Anwar et al. 2020).

Besides, some protein kinase (NAK family), including 
adaptor-associated protein kinase 1 (AAK1) and cyclin 
G-associated kinase (GAK), cause viral endocytosis and 
are affected by janus kinase (JAK) inhibitors (baricitinib), 
which block virus entry to pneumocytes (Jamilloux et al. 
2019). JAK inhibitors may also be advantageous in the 
cytokine dysregulation associated with SARS-CoV-2 
(Richardson et al. 2020; Stebbing et al. 2020) as they 
could affect the host inflammatory response and virus 
entry to the cells. Previously, it was reported that pro-
biotics could inhibit the JAK/STAT signaling pathway. 
Streptococcus thermophilus prevented the reduction in 
TER induced by TNF-α- and IFN-γ and increased epithe-
lial permeability by inhibiting the JAK/STAT signaling 
pathway (Resta-Lenert and Barrett 2006). The expressions 
of these inflammatory mediators through STAT-1/STAT-3 

activation and JAK2 inactivation are relieved significantly 
by L. plantarum, L. rhamnosus, and L. acidophilus (Lee 
et  al. 2010). Figure 3 schematically depicts the set of 
mechanisms involved in the probiotic effect on the virus 
entering the human cells and the inflammatory responses 
involved in probiotic’s antiviral activity.

Reinforcing immunological responses 
against viruses

When a series of cytokines, including TNF-α, IL-(1β, 2, 
6), IFN- (α, β, γ), and MCP, induce the production of free 
radicals that cause SARS-CoV-2 ARDS and multiple organ 
failure, release, cytokine storm occurs (Tisoncik et al. 2012).

Huang et al. found a correlation between serum level of 
some ILs (2, 7, 10), granulocyte colony-stimulating factor, 
and TNF-α and the severity of COVID-19 (Huang et al. 
2020). Diao et al. found that the severity of COVID-19 is 
associated with TNF-α, IL-6, and IL-10 levels (Diao et al. 
2020). Immunosuppressive approaches for cytokine storm 
include the immune response directed by the regulation of T 
cells, the inhibition of TNF-α, IFN-γ, IL-1, and JAK (Beh-
rens and Koretzky 2017), inhibition of cytokine signaling 
(Kedzierski et al. 2014), and histone deacetylase (HDAC) 
inhibitors (Li et al. 2008).

There are generally two main mechanisms for the 
immunomodulatory effects of using probiotics. First, 
they stimulate the production of IL-12 and subsequently 

Fig. 2  Schematic presentation 
of the direct antiviral mecha-
nism of the probiotics against 
SARS-CoV-2. Probiotics can 
affect the virus by directly 
binding to viral particles, 
producing antiviral compounds, 
and antiviral effects through 
hydrogen peroxide, nitric oxide, 
bacteriocins and subtilisin
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activate NK, Th1, and Th2 immune cells, which are con-
sidered immunostimulatory effects and are used against 
infectious diseases or allergies. Second, cooperation in the 
production of IL-10 and the activation of regulatory T 
cells that modulate the acquired immune system are con-
sidered immunoregulatory effects (Chiba et al. 2010).

Probiotic’s immunomodulatory properties against 
SARS-CoV-2 may be modulated through many different 
functions such as the increase of NK cells, T helper cells, 
immunoglobulins, macrophages, and CD4+; the decrease 
of CD8+; induction of interleukin 10 and TGF-β; suppres-
sion of .TNF-α, IL-2, and IL-6. Also, probiotics show their 
beneficial properties against SARS-CoV-2 by inhibiting 
the JAK/STAT signaling pathway and HDAC. Impair-
ment of viral replication in targeted cells can be caused 
by Type I of INFs that have antiviral activities. Scagnolari 

et al. suggested that IFN-β could act on SARS-CoV better 
than INF-α (Scagnolari et al. 2004). It was disclosed that 
Lactobacillus and Bifidobacterium strains induce different 
IFN-β profiles in DCs (Weiss et al. 2011). In another study, 
L. acidophilus NCFM highly induced IFN-β expression in 
murine DCs (Weiss et al. 2010).

Resta-Lenert and Barrett informed that probiotics 
prevented from harmful effects of TNF-α and IFN-γ 
on epithelial function (Resta-Lenert and Barrett 2006). 
Another study reported that oral administration of L. 
acidophilus strain SW1-induced suppression of pro-
inflammatory cytokine TNF-α through a Treg-dependent 
manner (Resta-Lenert and Barrett 2006). Borruel et al. 
detected a substantial reduction in pro-inflammatory 
TNF-α in inflamed mucosa with L. casei and Lactobacil-
lus delbrueckii subsp. bulgaricus (Borruel et al. 2002). 

Fig. 3  Inhibitory effects of probiotics and their metabolites on viral 
cell endocytosis. Probiotics metabolites can block viral attachment by 
steric hindrance and cover receptor sites in a non-specific manner and 

induction of mucosal regeneration, thus binding virus particles and 
inhibiting adherence to epithelial cells, leading to inhibition of virus 
replication
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Lately, Karamese et al. assessed probiotics effects on the 
immune system via the upregulation of anti-inflamma-
tory cytokines (e.g., IL-10) and the downregulation of 
pro-inflammatory cytokines (e.g., TNF-α and IL-6) by 
supplementing a Lactobacillus and Bifidobacterium spe-
cies mixture to rats (Karamese et al. 2016).L. fermentum 
L930, L. paracasei L350 and B. animalis subsp. anima-
lis IM386 demonstrated significant downregulation of 
pro-inflammatory cytokines IL-12 and IL-6 (Citar et al. 
2015). Also, B. breve reserved inflammation by inducing 
pro-inflammatory cytokine IL-10 (Jeon et al. 2012).

As another possible mechanism to suppress cytokine 
storm induced by SARS-CoV-2, probiotic’s short-chain 
fatty acids (butyrate) can epigenetically regulate the 
expression of host genes via HDAC inhibition. Valeric 
acid produced by M. massiliensis MRx0029 exhibited 
HDAC inhibition activity. Yuille et al. also observed that 
R. intestinalis MRx0071, M. massiliensis MRx0029, and 
B. massiliensis MRx1342 are potent inhibitors for class 
I HDACs, particularly HDAC2 (Yuille et al. 2018). Elu-
cidation of the immune response has also been reported 
by producing the L. plantarum metabolites, including 
γ-aminobutyric acid (GABA), lactic and/or acetic acid, 
and plantaricin (Albarracin et al. 2017). Despite all the 
explanations and information provided, to date, the rea-
sons for the use of probiotics against SARS-CoV-2 have 
been derived only from hypothetical suggestions and, 
thus, it is not possible to make an accurate and evidence-
based conclusion unless proper preclinical and clinical 
studies are designed, and the results are analyzed blindly 
and randomly.

Clinical trials related to probiotic’s effects 
on COVID‑19

Oral or parenteral administration of probiotic dietary sup-
plements to relieve the symptoms of COVID-19 in humans 
by strengthening the host immune response and improving 
intestinal microbiota has been considered by scientists and 
physicians since the beginning of the epidemic. Previously, 
in-vitro and in-vivo studies have shown that different pro-
biotic strains can combat SARS-CoV-2 or its associated 
symptoms. Studies have shown that the consumption of 
specific fermented foods increases the microbiota profile of 
the gut and can strengthen the immune system against viral 
infections.

The fascinating and vital link between probiotics, the 
body microbiome, and COVID-19 led to the designing of 
several clinical trials for treating COVID-19 using those pro-
biotics that may have a high antiviral effect. To date, there 
are about 35 clinical trials performed in different hospitals 
and institutes to evaluate the effects of various strains of 

probiotics on patients with COVID-19, of which 26 have 
been completed, and the rest are continued (Table 1). These 
studies are based on strong evidence: (1) probiotics affect 
viruses through mechanisms described above, (2) probiot-
ics reduce diarrhea and respiratory tract infection, and (3) 
they are affordable and available with low side effects. All 
these studies aim to evaluate the effect of probiotics on 
the duration and severity of COVID-19 and their effect on 
the evolution of oral and fecal microbiota in symptomatic 
patients, all in moderate forms of the COVID-19 disease. 
In one of these double-blind studies, the scientists used two 
probiotic strains and a placebo containing potato starch and 
magnesium stearate. In another study, a probiotic mixture 
was used to improve the symptoms and reduce the hospi-
talization days.

In the study performed in Montreal, Quebec, Canada, the 
safety and validity of nasal irrigation with probiorinse of 
Lactococcus lactis W136 and nasal irrigation with saline 
were compared. Another study in Sweden used a combi-
nation of L. reuteri DSM 17,938 + vitamin D as the treat-
ment group and placebo + vitamin D combination as a 
control group to observe the impact of probiotics on SARS-
CoV-2 specific antibody response upon and after infection 
in healthy adults. A study conducted in Brazil examined 
the effect of oral gel containing Streptococcus salivarius 
K12 and L. brevis CD2 and oral gel containing placebo on 
preventing lung colonization and progression to bacterial 
pneumonia in patients with severe COVID-19 on the first 
ICU day. In Mexico City, the researchers used Nutritional 
Supportive System (NSS) to see if it reduces complications 
in patients with COVID-19 in stage III with co-morbidities. 
NSS contains a combination of three B vitamins (B1, B6, 
B12), Probiotics Saccharomyces boulardii CNCM I-745 
“Floratil” (Saylan et al. 2017).

The therapeutic consequence of probiotics 
in COVID‑19 patients

Although several mechanisms have been proposed for the 
anti-SARS-Co-2 effects of probiotics and its new variant 
Omicron, the results of clinical trials have not yet supported 
these perspectives. Clinical trials have been underway for 
two years, and it needed a longer time to report the out-
comes. However, by carefully studying the results of recently 
published clinical trials, the significant consequences of 
prebiotics in relieving the symptoms of COVID-19 can be 
divided into three categories: modulating levels of immune 
mediators, restoration of healthy gut microbiota, and mod-
ifying the Gut-Lung Axis. The effects on viral titers and 
interferon and antibody production are also proposed; how-
ever, there is no sufficient clinical data.
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Conclusions

Collectively, probiotics can prevent the SARS-CoV-2-in-
duced cytokine storm through the aforementioned mecha-
nisms, such as induction of anti-inflammatory cytokines 
(IL-10) and downregulation of pro-inflammatory cytokines 
(TNF-α, IL-2, IL-6), inhibition of JAK signaling pathway, 
and act as HDAC inhibitor. Further in vitro, in vivo, and 
clinical trial studies should be done to confirm our proposed 
mechanism.

Besides, not all probiotics involve the exact mechanisms 
of action in different diseases, and strain specificity is vital 
to explain the right probiotic for the proper indication. They 
selected an appropriate combination of various strains with 
additional features, a variety of probiotics with prebiotics 
and vitamins, which may be an excellent strategy for effec-
tive formulation against SARS-CoV-2. So far, all the logic 
used to prove probiotics against SARS-CoV-2 has been pro-
posed in an indirect or in-silico study. This study recom-
mends that one avoid excessive and blind consumption of 
various probiotic strains until a better understanding of the 
pathogenesis of SARS-CoV-2 and its effect on the intestinal 
environment. In addition, several preclinical and randomized 
double-blind clinical trials should be designed to become 
more aware of the exact impacts of specific probiotic strains 
on COVID-19 patients.
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