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Abstract

Extracting biologically meaningful information from chromosomal interactions obtained with 

genome-wide chromosome conformation capture (3C) analyses requires elimination of systematic 

biases. We present a pipeline that integrates a strategy for mapping of sequencing reads and a 

data-driven method for iterative correction of biases, yielding genome-wide maps of relative 

contact probabilities. We validate ICE (Iterative Correction and Eigenvector decomposition) on 

published Hi-C data, and demonstrate that eigenvector decomposition of the obtained maps 

provides insights into local chromatin states, global patterns of chromosomal interactions, and the 

conserved organization of human and mouse chromosomes.

Introduction

Obtaining views of genomic organization and function free from experiment-induced biases 

remains a major challenge for any genome-scale study. The raw outputs of many genomic 

technologies are affected both by technical biases, including those from sequencing and 

mapping2,3, and biological factors, such as those resulting from intrinsic physical properties 

of distinct chromatin states4. As a result, different regions of the genome appear to have 

different experimental “visibility”, making it difficult to compare their contributions, and 

potentially leading to false-positives or false-negatives. Recently-developed high-throughput 

3C-based methods5-12 (for example Hi-C) for investigating physical contacts between distal 

genomic loci have begun to provide key insights into the spatial organization of 
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genomes7-11,13-16. However, the raw outputs of 3C-based methods may be influenced by 

various forms of biases17.

Here, we present ICE (Iterative Correction and Eigenvector decomposition), a pipeline that 

includes processing paired sequence reads obtained from genome-wide 3C-based 

methods8-11,14 and a method of iterative correction, which eliminates biases and is based on 

the assumption that all loci should have equal visibility (Fig. 1). Iterative correction 

leverages the unique pairwise and genome-wide structure of Hi-C data to decompose contact 

maps into a set of biases and a map of relative contact probabilities between any two 

genomic loci (Fig. 1b,c), achieving equal visibility across all genomic regions. The obtained 

corrected interaction maps can then be further decomposed into a set of genome-wide tracks 

(eigenvectors) describing several levels of higher-order chromatin organization (Fig. 1e). 

We apply our pipeline to three datasets from a human lymphoblastoid cell line: two datasets 

generated by Hi-C8 using either HindIII (Hi-C HindIII) or NcoI (Hi-C NcoI) digestion, and 

one generated by a Hi-C variant, Tethered Chromosome Capture10, using HindIII digestion 

(TCC). We also analyze one HindIII-digested mouse pro-B cell Hi-C dataset16.

Results

Read alignment and classification

Our pipeline begins with the alignment of read-pairs obtained from genome-wide 3C-based 

methods to a reference genome. To account for the specific structure of Hi-C ligation 

products, we align the first portion of each read, truncating the read to a certain length, and 

then aggregate alignments over increasing truncation lengths (Fig. 1a, Supplementary Fig. 1, 

and Online Methods). This procedure yields many more double-sided mapped reads than 

using a fixed truncation length (Fig. 1a). After alignment, the pipeline discards molecular 

byproducts (Supplementary Figs. 1 and 2, and Online Methods). The remaining read-pairs 

include: double-sided reads (DS reads), which represent a contact between two mappable 

portions of the genome, and single-sided reads (SS reads), which often represent a contact 

between a mappable and an unmappable portion of the genome (Fig. 1a). SS reads make an 

important contribution to the total coverage in peri-centromeric regions, where decreased 

intra-chromosomal DS coverage balances a reciprocal increase in the SS coverage (Fig. 1d).

Iterative Correction

The next step removes biases introduced by experimental procedures and by intrinsic 

properties of the genome, and converts observed Hi-C maps into corrected maps of relative 

contact probabilities (Fig. 1b,c). We do not assume specific sources of biases and correct 

collectively for all factors affecting experimental visibility, including DNA sequencing bias 

or restriction site density. We assume, and demonstrate below, that the bias for detecting 

contacts between two regions can be represented as the product of the individual biases of 

these regions. Given this assumption of factorizable biases, the expected contact frequency, 

Eij, for every pair of regions, (i,j), can be written as: Eij = Bi Bj Tij, where Bi and Bj are the 

biases and Tij is the sought matrix of relative contact probabilities, normalized as Σi≠j,j±1Tij 

=1. This normalization ensures a uniform coverage profile, equal visibility of each region in 

an iteratively corrected contact map (Fig. 1c), can reveal specific interactions otherwise 
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buried by visibility-induced biases (Fig. 2a), and allows unbiased comparisons within and 

between Hi-C datasets. Since an experiment represents a sample from a distribution of 

possible interactions, the observed interaction frequency is a realization from some 

distribution with expectation Eij. For a range of distributions, the maximum likelihood 

solution for biases Bi is obtained by iteratively solving a system of equations (iterative 

correction), yielding a corrected Hi-C map. We note that this procedure can be extended to 

include single-sided reads (Supplementary Fig. 3).

We validate our assumption of factorizable biases by analyzing inter-chromosomal biases 

inferred via a recently proposed computationally-intensive machine learning procedure17. 

This study calculated a matrix of biases, Bij, by explicitly considering restriction fragment 

level biases associated with fragment length, GC content, and mappability at megabase 

resolution. We find that Bij can be accurately described as a product of two vectors of biases 

(Bij≈ BiBj), explaining 99.99% of the variance (Fig. 2b). Iteratively corrected inter-

chromosomal data is highly correlated with previously obtained corrected maps17 (r = 0.98, 

here and below Spearman correlation, P < 10e-10, Supplementary Fig. 4). Since known 

biases are factorizable, uncharacterized biases are likely to be factorizable, and would be 

removed by ICE.

To validate our method, we first compare Hi-C maps obtained using different restriction 

enzymes (Fig. 2c,d). In raw data, the correlation between Hi-C data generated with different 

enzymes can be quite low due to enzyme-dependent biases. Corrected maps show an 

increased between-enzyme correlation of corresponding off-diagonal intra-chromosomal 

elements (Fig. 2c). Iterative correction also increases between-enzyme correlation for inter-

chromosomal maps to the level of correlation between halves of the same dataset (Fig. 2d 

and Supplementary Fig. 5a). To compare to a previous method17 we applied the same 

smoothing technique and obtained a similar between-enzyme correlation r=0.71 (r=0.59 

obtained earlier17). Next, we perform cross-validations using 10% or 90% of the read-pairs 

and obtain biases that are highly correlated (r =0.98, P < 10e-10, HindIII), demonstrating 

that our method does not over-fit (Fig. 2e). We also note that an important property of intra-

chromosomal maps, the decay of contact probability with genomic distance, remains 

unchanged after correction (Fig. 2e).

Previous attempts to correct Hi-C data used a single division by a product of the visibilities 

of two regions8,11,17. Applying this procedure once only partially corrects for non-uniform 

coverage (Fig. 2c), tends to flip the coverage profile (Supplementary Fig. 5c), and leads to a 

solution that depends on the initial normalization of the data, thus making results of the 

correction unpredictable. However, applying this procedure iteratively eliminates all 

factorizable biases, leads to uniform coverage, and obtains better agreement between 

datasets (Fig. 2c,d).

Eigenvector analysis reveals patterns of chromosomal organization

The next step in ICE analysis decomposes an iteratively corrected genome-wide map into a 

series of genomic tracks to reveal the main features of higher-order chromosomal 

organization (Fig. 3 and Online Methods). Each track k represents interaction preferences 

(Ek
i) of genomic region i. Independent interaction preference tracks Ek can be found as 
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eigenvectors of the corrected map Tij(Tij=Σkλk·Ek
i·Ek

j+const), where the relative weights of 

their contributions λk are the corresponding eigenvalues. The contribution of each track to 

the total interaction frequency between a pair of regions in the corrected map Tij is 

proportional to a product of these preferences (Ek
i·Ek

j). Eigenvectors are then sorted (E1, E2, 

E3…) in descending order by the magnitude of their corresponding eigenvalues. Our 

decomposition operates directly on corrected Hi-C data, unlike a previous method that 

makes several additional transformations of the data8. Permutation analysis shows that the 

first 13 eigenvectors are statistically significant (P < .001). Moreover, the first three are 

robust to details of the experiment (Fig. 3e, Supplementary Fig. 6 and Online Methods) and 

explain 72% of the inter-chromosomal data reconstructed from the first 13 eigenvectors. 

Thus, we focus on the first three eigenvectors for further analysis of inter-chromosomal 

interaction preferences.

The leading eigenvector, E1, provides a genomic track of inter-chromosomal interaction 

preferences along the genome, and shows correlation with many genomic features (Fig. 

3a,b), including GC content (r = .80, P < 1e-10), replication timing (r = .82, P < 1e-10, GEO 

GSM500943), DNAse I hypersensitivity (r = .79, P < 1e-10, GEO GSE4334) and many 

histone marks (Supplementary Table 1). The profile of E1 is similar to chromatin 

compartments found previously8, yet E1 shows higher correlation with many genomic 

features18 both along the chromosomes and for average values of whole chromosomes (Fig. 

3b, r=0.95, P=4e-06, vs r=-0.31 for chromatin compartments, Supplementary Fig. 6).

Interaction preferences represented by E1 connect spatial and functional genomic 

organization, as regions with high E1, which are gene-rich and enriched for active chromatin 

marks, tend to interact more with other similar regions (Fig. 3c). Conversely, gene-poor 

regions with low E1 tend to interact more with other gene-poor regions. Despite its tendency 

to partition active and inactive regions of the genome, E1 does not show any bimodality 

(Fig. 3d, left). Neighboring genomic regions display similar interaction preferences as seen 

from the autocorrelation (Fig. 3d, right) that decays with a characteristic length of about 

6Mb. Taken together, these characteristics of E1 suggest that continuous interaction 

preferences better capture the complexity of chromatin interaction landscape at megabase 

resolution than a two-compartment model8 proposed earlier.

Furthermore, we find evidence for the evolutionary conservation of genome-wide 

chromosome organization by comparing E1 for human and mouse datasets. E1 has high 

correlation (r = 0.81, P < 1e-10) in syntenic regions19 of human and mouse genomes at the 

megabase level (Fig. 4a). Moreover, the conservation of E1 cannot be explained by a 

confounding effect of similar GC content profiles as demonstrated by a GC-content 

stratified permutation test (Fig. 4a, Online Methods).

We then study the interaction preference tracks, E2 and E3, which constitute the greatest 

contributions to the corrected map after E1. Both E2 and E3 vary with position along 

chromosomal arms (Figs. 1e and 3f), with increased magnitude near centromeres for E2 and 

telomeres for E3 (Supplementary Fig. 8) This pattern of interaction is prominent on average 

inter-arm maps, which reveal an enrichment of centromere-centromere and telomere-

telomere contacts (Fig. 4b). Average inter-arm maps constructed from projections of the 
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data on E2 and/or E3, but not E1, show a similar pattern of contact enrichment, directly 

confirming that arm-level organization is largely captured by E2 and E3 (Supplementary Fig. 

8). This pattern is consistent with co-localization of centromeres and a similar co-

localization of telomeres, as described in imaging studies20,21. We observe a consistent 

pattern of contact enrichment for all studied human and mouse datasets, despite the 

acrocentric structure of mouse chromosomes (Fig. 4b). For the mouse dataset, both 

centromere-centromere and telomere-telomere enrichment are captured by E3 

(Supplementary Fig. 8), while E2 refines the signal. The consistent pattern of average inter-

arm maps suggests that interactions between chromosomal arms are among the most 

prominent features of higher-order chromatin organization in the human and mouse 

genomes20,21

Multiple attempts have been made to identify distinct chromatin types based on Hi-C 

data8,17. We compare the E1 and E2 representation of inter-chromosomal interactions to a 

model of three chromatin types identified earlier by k-means clustering17 (Fig. 3g). We find 

that the suggested clusters do not show evident separation and the suggested division into 

three chromatin types is ambiguous22 (Supplementary Fig. 9). 22We also note that E1 

captures variation in epigenomic tracks much better than the three chromatin types 

(Supplementary Fig. 10).

Discussion

By requiring equal visibility of genomic loci, the iterative correction in ICE yields a matrix 

of relative contact probabilities. This approach preserves and highlights specific contacts, 

simultaneously ensuring that high-frequency contacts cannot be explained solely by elevated 

visibilities of participating loci (Fig. 2a). Iterative correction can be used to reveal relative 

contact probabilities of contact maps for individual chromosomes or for the genome-wide 

inter-chromosomal contact map. Most importantly, it allows unbiased comparison of Hi-C 

data within and between datasets, cell types and organisms.

We note that our data-driven method is specific to techniques that yield a pairwise and 

genome-wide matrix of contacts; while other 3C-based methods that do not yield all-by-all 

interaction maps have similar systematic biases (4C5,6, 5C7), they must be corrected using 

an alternate approach17. We also note that iterative correction operates on binned data, and 

thus does not correct Hi-C data at resolutions below a chosen bin size (here, 200 kb and 1 

Mb). However, with sufficient sequencing depth, iterative correction can be performed at 

increasingly high resolution, potentially up to that of a single restriction fragment (see 

Supplementary Text).

Our analysis of inter-chromosomal Hi-C data suggests that at megabase resolution, 3D 

genomic organization depends upon at least two continuous features: one that relates to 

genomic sequence and local epigenetic chromatin states, and a second related to position 

along the chromosome arm. The first feature further suggests that interphase chromatin 

folding may be encoded by a combination of the genomic sequence itself and local 

chromatin activity. In combination, these two features constitute the experimentally robust 

signal in recent datasets. Moreover, the prominence of these features is remarkably 
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consistent between human and mouse genomes. Taken together, our analysis implicates 

these features as general principles of mammalian interphase inter-chromosomal 

organization.

ICE is available at http://bitbucket.org/mirnylab/hiclib

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Pipeline for mapping, filtering, and iterative correction of Hi-C reads
(a) Interacting chromatin regions are sequenced and reads are mapped to the genome using 

iterative mapping. Only the depicted double-sided reads (DS), or single-sided reads (SS) are 

retained. Bars show the fraction of DS reads mapped by truncation to fixed length, red line 

shows result of iterative mapping.(b, c) Raw and iteratively corrected whole-genome Hi-C 

maps binned at 1Mb resolution (filtered-out megabases are not shown). Coverage profile is 

the sum of each column in the map. Vertical yellow lines show chromosome boundaries. 

Note that after iterative correction the coverage profile is uniform. (d) Fractions of SS and 

DS intra-chromosomal reads as a function of centromeric distance, plotted at 1 Mb 

resolution for distances up to 10 Mb from each centromere; lines represent mean values and 

vertical bars represent 25th and 75th percentiles](e) Factorizable biases and eigenvectors (E1 

and E2) obtained by ICE (at 1Mb resolution). Regions that do not pass filters (see Online 

Methods) or contain no mapped reads are shown as gaps. Vertical yellow lines show 

boundaries of chromosomes.
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Figure 2. Iterative correction of Hi-C data
(a) Illustration of iterative correction using simulated data. (Top) two specific interactions 

(shown by arches) within a chromosome, (middle) its simulated Hi-C heatmap and a vector 

of random experimental visibility. Notice that visibility-induced noise obscures specific 

interactions. (bottom) Iteratively corrected map of the chromosome, where visibility is 

equalized, revealing two specific interactions as bright spots on the heatmap. (b) Matrix of 

biases computed by Yaffe and Tanay17 at 1Mb resolution (top) can be approximated by a 

product of bias vectors Bi × Bj (middle), yielding an essentially identical matrix of biases (r 

=0.99), with their algebraic difference shown at the bottom in the same colorscheme (also 

Supplementary Fig. 4). (c) Comparison of intra-chromosomal Hi-C maps obtained using 

HindIII and NcoI enzymes (200kb resolution). The correlation is computed between off-

diagonal regions of the map and plotted as a function of distance from the main diagonal, 

that is, the genomic separation, as shown in the inset. Analysis was performed on raw data 

(red), single corrected (blue) and iteratively corrected (yellow). (d) Inter-chromosomal 

heatmaps (chr1 vs. chr2, coarse-grained to 10MB, contact frequencies shown by color for 

HindIII and Ncol before (top row) and after correction (bottom raw) (also see 

Supplementary Fig. 5). (e) (left) Cross-validation for biases inferred from 10% vs. 90% of 

the reads. (right) Scaling of intra-chromosomal contact probability with genomic distance, L 

for Hi-C HindIII8 data, at 200 kb resolution, before (red) and after correction (yellow). 

Black line shows 1/L scaling reported previously8.
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Figure 3. Eigenvector decomposition of iteratively corrected Hi-C data reveals genome-wide 
features of chromosome organization
(a) Profiles of E1 and genomic features along chr1 (1Mb resolution), E1 from Hi-C HindIII 

data8(b) Scatter plot of E1 vs GC content. Gray dots show GC content and E1 of individual 

1Mb regions. Black squares show mean chromosomal values of E1 and mean GC content. 

Several chromosomes are indicated by numbers. (c) Heatmap of inter-chromosomal contacts 

between pairs of genomic regions as a function of their E1 values; heatmap shows natural 

log of contact enrichment (see Online Methods). Notice the tendency of regions with similar 

values of E1 to interact with each other. (d) (Left) Distribution of E1 values. (Right) 

Autocorrelation of E1 (blue) compared to 1000 shuffled E1 (gray line shows mean, errorbars 

show standard deviation). (e) (Left) Distribution of observed eigenvalues (λk) and the 

distribution of eigenvalues for randomly re-sampled data (see Online Methods). Thirteen 

significant eigenvalues are shown in red. (Right) Matrix of Pearson correlation coefficients 

of leading eigenvectors obtained for Ncol and HindIII Hi-C data, revealing robustness of top 

three eigenvectors. (f) Variation of E2 along chromosomal arms, with higher values near 

centromeres and telomeres. Grey points show values for individual genomic regions, black 

line shows the mean. (g) Genome-wide inter-chromosomal interactions mapped onto E1 and 

E2 space at 1Mb resolution. Regions are colored according to previously proposed17 

chromatin types17. Notice no 17evident separation into distinct clusters. E1 and E2 calculated 

for Hi-C HindIII dataset8.
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Figure 4. Cross-dataset and cross-species comparisons reveals evolutionary conserved genome-
wide chromosome organization
(a) (top left) Scatter plot of E1 for human vs. mouse in syntenic regions; (top right) 

comparison of observed between-species correlation of E1 (r =.81, P < 1e-10) with GC-

content stratified permuted data (r =.50, P < 1e-10); (bottom) human vs. syntenic mouse E1 

along human chr1; gaps in the mouse profile reflect regions of human chr1 without a 

corresponding syntenic region in mouse. Human E1 is for TCC HindIII10 data, mouse E1 

was calculated for mouse Hi-C16 data. (b) Heatmaps of iteratively-corrected inter-

chromosomal contact probability averaged over all chromosomal arm pairs; heatmaps show 

the natural log of the contact enrichment, re-scaled and re-binned to 80×80 map (see Online 

Methods). The data are for human lymphoblastoid Hi-C HindIII8, human lymphoblastoid 

TCC10, and mouse pro-B cell Hi-C16. 16
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