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Neurologic disability level at hospital discharge is an important outcome in many clinical research 

studies. Outside of clinical trials, neurologic outcomes must typically be extracted by labor 

intensive manual review of clinical notes in the electronic health record (EHR). To overcome this 

challenge, we set out to develop a natural language processing (NLP) approach that automatically 

reads clinical notes to determine neurologic outcomes, to make it possible to conduct larger 

scale neurologic outcomes studies. We obtained 7314 notes from 3632 patients hospitalized at 

two large Boston hospitals between January 2012 and June 2020, including discharge summaries 

(3485), occupational therapy (1472) and physical therapy (2357) notes. Fourteen clinical experts 

reviewed notes to assign scores on the Glasgow Outcome Scale (GOS) with 4 classes, namely 

‘good recovery’, ‘moderate disability’, ‘severe disability’, and ‘death’ and on the Modified Rankin 

Scale (mRS), with 7 classes, namely ‘no symptoms’, ‘no significant disability’, ‘slight disability’, 

‘moderate disability’, ‘moderately severe disability’, ‘severe disability’, and ‘death’. For 428 

patients’ notes, 2 experts scored the cases generating interrater reliability estimates for GOS and 

mRS. After preprocessing and extracting features from the notes, we trained a multiclass logistic 

regression model using LASSO regularization and 5-fold cross validation for hyperparameter 

tuning. The model performed well on the test set, achieving a micro average area under the 

receiver operating characteristic and F-score of 0.94 (95% CI 0.93–0.95) and 0.77 (0.75–0.80) for 

GOS, and 0.90 (0.89–0.91) and 0.59 (0.57–0.62) for mRS, respectively. Our work demonstrates 

that an NLP algorithm can accurately assign neurologic outcomes based on free text clinical notes. 

This algorithm increases the scale of research on neurological outcomes that is possible with EHR 

data.
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1. Introduction

Neurologic disability level is an important outcome in many electronic health records 

(EHR)-based research studies. While extracting structured EHR data is easily automated, 

information about neurologic outcomes is typically obtained by manual review of 

semi-structured or unstructured clinical notes written by physicians, physical therapists, 

occupational therapists, and other healthcare workers. However, chart review is labor 

intensive, limiting the scope of most EHR based neurologic outcome studies.

Medical natural language processing (NLP) research aims to develop automated approaches 

to EHR information extraction. NLP applications in medical research have been growing 

rapidly (Locke et al., 2021; Sheikhalishahi et al., 2019; Yuvaraj & Ahamed, 2021). 

Applications to date using EHR data include detection of adverse medical events (Chu, 

Dong, He, Duan, & Huang, 2018), detection of adverse drug reaction (Santiso, Pérez, & 

Casillas, 2019), drug safety surveillance (Choi, Schuetz, Stewart, & Sun, 2017; Munkhdalai, 

Liu, & Yu, 2018), detection of colorectal cancer (Wang, Nguyen, Islam, Li, & Yang, 2019), 

information extraction from cancer pathology reports (Alawad et al., 2019; Qiu et al., 2019; 

Yoon et al., 2019; H. Yang, 2010; Gao et al., 2018), extraction of medical problems for 
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disease management (Kim & Meystre, 2019), ICD-9 code assignment (Bai & Vucetic, 2019; 

Huang, Osorio, & Sy, 2019; M. Li et al., 2019a), early prediction of acute kidney injury 

in critical care setting (Sun et al., 2019), prediction of postoperative hospital stay based on 

operative reports in neurosurgery (Danilov et al., 2019) and early prediction of diagnostic-

related groups and estimation of hospital costs (J. Liu, Capurro, Nguyen, & Verspoor, 2021).

Among some of the tasks possible with NLP and machine learning, are clinical entity 

recognition (Z. Liu et al., 2017; Richter-Pechanski, Amr, Katus, & Dieterich, 2019; Shi 

et al., 2019; J. Yang, Liu, Qian, Guan, & Yuan, 2019; Zhang, Zhang, Zhou, & Pang, 

2019) and clinical entity relation extraction (Chen et al., 2018; Hu et al., 2018; Z. Li 

et al., 2019b; Munkhdalai et al., 2018; Shi et al., 2019), temporal relation (Choi et al., 

2017), temporal matching (Lüneburg et al., 2019), semantic representation (Deng, Faulstich, 

& Denecke, 2017), de-identification (Lee, Filannino, & Uzuner, 2019; Obeid et al., 

2019; Richter-Pechanski et al., 2019), medical question-answering (Ben Abacha & Demner-

Fushman, 2019; Hu et al., 2018), and dealing with text ambiguity, such as abbreviation 

disambiguation (Joopudi, Dandala, & Devarakonda, 2018), prediction of ambiguous terms 

(Pesaranghader, Matwin, Sokolova, & Pesaranghader, 2019) and disambiguation methods 

(Wei, Lee, Leaman, & Lu, 2019; Weissenbacher et al., 2019).

While NLP has the advantage of being substantially faster than human chart review 

of medical records (Buchan et al., 2011; Nadkarni, Ohno-Machado, & Chapman, 2011; 

Uzuner, South, Shen, & DuVall, 2011; Wilbur, Rzhetsky, & Shatkay, 2006), extraction of 

neurologic outcomes from medical notes using NLP remains an unsolved problem.

Herein we describe how we developed an NLP approach to automatically extract 

neurological outcomes from hospital discharge summaries, physical therapy, and 

occupational therapy notes. Multiclass logistic regression models are developed with the 

one-vs-rest scheme for multi classification, using LASSO regularization for dimensionality 

reduction. Our models assign neurologic outcomes on two widely used scales: Glasgow 

Coma Scale (GOS) (Jennett & Bond, 1975) and the modified Rankin Scale (mRS) (Wilson 

et al., 2002). The models are developed for classification of GOS with four classes, namely 

good recovery, moderate disability, severe disability, and death and for mRS with seven 

classes, namely no symptoms, no significant disability, slight disability, moderate disability, 

moderately severe disability, severe disability, and death. Since the classes are imbalanced 

for both scales, the models are developed with a balanced class weight. We demonstrate that 

the model performs with acceptable accuracy, showing that our NLP algorithm is a useful 

tool for large-scale EHR-based research on neurologic outcomes.

2. Related work

NLP has been increasingly used in the healthcare domain to extract meaningful structured 

information from notes. In a previous study (Fernandes et al., 2021), we developed an 

NLP model to classify discharge dispositions of hospitalized patients with COVID-19 from 

discharge summary notes. Other studies have applied NLP to hospital discharge summaries 

to identify critical illness (Marafino et al., 2018; Weissman et al., 2016), detect adverse 

events (Murff et al., 2003), or other potential medical problems (Meystre & Haug, 2006), 
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to extract medication information (Alfattni, Belousov, Peek, & Nenadic, 2021; H. Yang, 

2010), to predict risk of rehospitalization (Kang & Hurdle, 2020), to predict risk of suicide 

attempts (Buckland, Hogan, & Chen, 2020) and to risk stratify patients (Lehman, Saeed, 

Long, Lee, & Mark, 2012). NLP has also been used to capture mobility information from 

physical therapy notes (Newman-Griffis & Fosler-Lussier, 2021; Thieu et al., 2021). Several 

data mining techniques have also been applied in the field of NLP, namely bag of words 

(BOW) to count individual words (or phrases) that occurred within documents (Agarwala, 

Anagawadi, & Reddy Guddeti, 2021; Clapp et al., 2022; Kang & Hurdle, 2020; Parvin 

& Hoque, 2021; Selby, Narain, Russo, Strong, & Stetson, 2018; Sterling, Patzer, Di, & 

Schrager, 2019; Uyeda et al., 2022), term frequency-inverse document frequency (TF-IDF) 

to quantify the importance of string representations (words, phrases, lemmas) in a document 

amongst a collection of documents (Agarwala et al., 2021; Chen et al., 2020; Gordon et al., 

2022; Liu, Wan, & Su, 2019; Zhan, Humbert-Droz, Mukherjee, & Gevaert, 2021), including 

Word2vec (Agarwala et al., 2021; Gordon et al., 2022; Liu et al., 2019). A wide range of 

machine learning models have been designed to generate predictions, namely regularized 

regression models (Ju, Chen, Rosenberger, & Liu, 2021; Kang & Hurdle, 2020; Parvin & 

Hoque, 2021; Uyeda et al., 2022; Zhan et al., 2021), including LASSO regression (Clapp 

et al., 2022; De Silva et al., 2021), neural network regression models (Sterling et al., 2019), 

three-layer neural networks (Kang & Hurdle, 2020), multinomial Naïve Bayes, support 

vector machines (Kang & Hurdle, 2020; Liu et al., 2019; Parvin & Hoque, 2021), random 

forests, K-nearest neighbors (Kang & Hurdle, 2020; Parvin & Hoque, 2021), adaptive 

boosting (Parvin & Hoque, 2021), and extreme-gradient boosting (Gordon et al., 2022). To 

the best of our knowledge, the present work is the first to develop an NLP model to classify 

GOS and mRS based on clinical notes, thus we are not able to compare performance of our 

model with existing benchmarks. The code to reproduce our results will be made publicly 

available at the time of publication so that future researchers interested in this topic can 

reproduce the results and benchmark against our model.

3. Methods

3.1. Study design

This study is reported in accordance with the STrengthening the Reporting of OBservational 

studies in Epidemiology (STROBE) statement (Vandenbroucke et al., 2007). Data was 

extracted from the hospital electronic medical record under a research protocol approved 

by the Mass General Brigham Institutional Review Board; a waiver of informed consent 

was obtained. Clinical data were retrospectively analyzed for a diverse cohort of 3632 

consecutive adult patients (≥18 years old) admitted to two major Boston hospitals. 

The cohort included 1779 patients discharged from the intensive care unit (ICU) at 

Massachusetts General Hospital (MGH) between January 3rd 2012 to November 3rd 2017, 

and 1853 patients who were discharged from MGH (n = 1273) or Brigham and Women’s 

Hospital (BWH, n = 580) and positive for SARS-CoV-2 infection between March 10th 2020 

to June 30th 2020. Both hospitals use the EPIC EHR software system.

EHR data comprised discharge summaries, occupational therapy notes, and physical therapy 

notes, which consist of semi-structured free text written by physicians, physical therapists 
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and occupational therapists. Patients included in the study had at least one of the above 

types of clinical notes. Patients without an assigned label due to lack of information in the 

notes were excluded (4 patients). To avoid double counting, patients who were admitted at 

different times, first in the ICU and later with COVID-19 infection were removed from the 

ICU cohort (6 patients). We also excluded patients assigned to the rare GOS label “persistent 

vegetative state” (1.4% = 52/3632 patients), for GOS classification.

3.2. Neurological outcomes

The ground truth neurological outcome for each patient was assigned by a team of fourteen 

physician experts who manually read each patient’s notes independently. For the cohort of 

patients admitted with COVID-19, the years of clinical experience of experts was two years 

(SIC, AAB), three and a half years (RT), six years (NV, HSA), nine years (SSM) and ten 

years (SAQ) and for the cohort of patients admitted to the ICU there were seven experts each 

with at least two years of clinical experience, where each case was independently reviewed 

by two experts, with any discrepancies reviewed by a third senior reviewer (Zafar et al., 

2021). A second round of labels’ assignment was performed by the experts for a subset of 

428 patients, to assess interrater reliability. For cases where experts were not able to generate 

a score (4 patients), either due to absence of notes, or severe lack of information in the 

patient’s record, patients were excluded from the study.

Two neurological outcome scales were utilized in this study: a modified version of the 

Glasgow Outcome Scale (GOS), and the Modified Rankin Scale (mRS). GOS is composed 

of five levels: good recovery (GOS 5), moderate disability (GOS 4), severe disability (GOS 

3), persistent vegetative state (GOS 2), and death (GOS 1). We omitted GOS 2 from our 

analysis because this outcome was rare in our cohort. mRS is composed of seven levels: no 

symptoms (mRS 0), no significant disability (mRS 1), slight disability (mRS 2), moderate 

disability (mRS 3), moderately severe disability (mRS 4), severe disability (mRS 5), and 

death (mRS 6).

3.3. Interrater reliability

Pairwise interrater reliability (IRR) was assessed for a subset of patients who had a second 

round of label assignment. We used 100 iterations of bootstrap random sampling with 

replacement to calculate 95% CI for the agreement estimates between experts. The IRR was 

measured as percent agreement among the experts.

3.4. Data processing

All notes were extracted for the period between each patient admission up until three days 

after hospital discharge, to allow for cases where notes are recorded in the system only after 

discharge. For each patient, we selected the discharge summary and the physical therapy and 

occupational therapy notes with the corresponding date closest to the discharge date. These 

notes were then merged into one for analysis. We further address in this section the different 

subtypes of reports we may find for both physical and occupational therapy notes.

Discharge summaries and physical and occupational therapy notes at MGH and BWH 

are semi-structured, with a series of named fields containing specific types of mostly 
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free text information. We present an example of each type of note with protected health 

information removed in Supplementary Table A1. The following subtypes were present in 

the data for both physical and occupational therapy reports: consultation, progress report, 

initial evaluation, re-evaluation, treatment note, service and amendments. For occupational 

therapy, the following additional subtypes of reports were present: discharge report, deferral 

note, daily treatment note, daily progress note, weekly progress update, progress update, 

assessment, screening assessment, screening evaluation and brief positioning evaluation. 

While narratives are often similar among these note subtypes, note structures vary. Thus, 

the methodology for preprocessing physical and occupational therapy reports differed from 

discharge summaries and the strategy is depicted in Fig. 1. The figure is essentially 

composed of two methodological parts. The upper part provides an overview of the notes 

preprocessing steps. The lower part of the figure shows the final stage of processing for the 

merged notes before modeling. The modeling steps are depicted in the lower right corner of 

the figure and described further in Section 3.5.

Notes were subjected to lowercasing, followed by removal of visit dates, birth dates 

punctuation, special characters, blank spaces, and numerical digits. For discharge 

summaries, we generated reduced versions by applying additional preprocessing to extract 

the meaningful information from these long narratives, as performed in a previous study 

(Fernandes et al., 2021). The reduced version of the discharge summaries was then merged 

with the occupational and physical therapy report notes for each patient.

The merged notes were next tokenized, which enabled removal of patients’ names, 

addresses, healthcare facilities and hospital unit names, and single letters, leaving 

only words. Stopwords, which consist of frequent and less relevant words (listed in 

Supplementary Table A3) were removed. Notes were then lemmatized, i.e. different forms 

of the same word were reduced to a common root (“lemma”), using WordNetLemmatizer 
from the NLTK library in Python with a POS tag specified as verb. Finally, abbreviation 

expansion and spell correction were applied for a small list of frequently used clinical 

words, presented in Supplementary Table A4.

Preprocessed merged notes were divided into train and test sets and notes in the training 

set were used to create the training vocabulary. A BoW model was used to represent each 

patient’s notes as a binary vector, indicating the presence of a given n-gram (single word 

or sequence of 2 or 3 words), disregarding grammar and word order, using the function 

CountVectorizer from Python.

Finally, dimensionality reduction was performed by considering only words present in at 

least 10% of notes in the training set, and by using multi-class logistic regression with the 

least absolute shrinkage and selection operator (LASSO) (Tibshirani, 1996) to sparsify the 

model.

The same procedure was applied to convert notes from the test set into feature vectors. Note 

that the feature extraction procedure was based entirely on the training data set.
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3.5. Model development

A multinomial logistic regression model with the one-vs-rest scheme for multi classification 

was trained for each neurological outcome. A binary problem was fitted for the four 

classes in GOS and seven classes in mRS, with a balanced class weight. The one-vs-

rest logistic regression model estimator depicted in Eq. (1) used LASSO regularization 

for dimensionality reduction, with the objective function indicated in Eq. (2). X ∈ ℝn × p

corresponds to the design input matrix consisting of binary values indicating the presence 

or absence of the features in vector x ∈ ℝp, with p as the number of features, namely 

combinations of unigrams, bigrams and trigrams. Y corresponds to the vector of 

observations, in our case the neurological outcomes, where n indicates the number of 

patients. β ∈ ℝp represents the vector of regression coefficients and ‖β‖1 corresponds to 

the L1 norm of this vector. The regularization parameter lambda controls the amount of 

shrinkage, adding a penalty on the weights, thereby preventing overfitting.

β(x) = 1
1 + e−(β0 + xT β) (1)

minimize ∥ Xβ − Y ∥ 2
2 + λ ∥ β ∥ 1 (2)

We created a training set (70%) to develop the model, and an independent hold-out set 

(30%) for evaluating the model, using stratified random sampling to ensure comparable 

distributions of neurologic outcomes. A randomized search was performed during training 

with 100 iterations of 5-fold cross validation (CV) for hyperparameter tuning. The model 

solver algorithm used in the optimization problem was set to “liblinear” and the “warm 

start” hyperparameter was varied between true/false, with “true” corresponding to reusing 

the solution of the previous call to fit as initialization, and “false” corresponding to erasing 

the previous solution. The inverse of the regularization strength, C, was varied among these 

values: 0.005, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.5, 1, 1.5, 2, 2.5, 3, 

3.5, 4, 4.5, 5.

3.6. Performance measures

To select the best model configuration in the training data, the coefficient of determination 

R2 was used as the scoring metric in CV; higher values indicate better performance. 

To encourage model robustness, we applied the one standard error rule to select the 

regularization parameter, which favors models with fewer features over more complex 

models that have similar performance. The one standard error rule selects the simplest model 

whose R2 mean score falls within one standard deviation of the best performing model.

To evaluate the final model on the test data, we used the following metrics: area under 

the receiver operating characteristic curve (AUROC), area under the precision-recall curve 

(AUPRC), average precision (AP), accuracy, recall, specificity and F-score (Azari, Janeja, & 

Levin, 2015). We performed 100 iterations of bootstrap random sampling with replacement 

to calculate 95% confidence intervals (CI) for micro average performance metrics applied 
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to the hold-out test set. Micro average performance is suited for problems with class 

imbalance and consists of calculating metrics globally by counting the total true positives, 

false negatives and false positives. The equations of the metrics presented in this section are 

depicted in Supplementary Table A5.

4. Results

4.1. Patient population

Patient selection into mRS and GOS cohorts is diagrammed in Fig. 2. To avoid double 

counting, 6 patients admitted at different times, first in the ICU and later with COVID-19 

infection were removed from the ICU cohort. Cases of patients where experts were not 

able to generate a score due to lack of physical and occupational therapy notes and lack of 

information in the discharge summaries were not assigned a label. After removing patients 

admitted at different times (6 patients) and those without a label assigned (4 patients), 

from an initial cohort comprising 3642 patients, we were left with 3632 patients for 

mRS classification. We also excluded patients assigned to the rare GOS label “persistent 

vegetative state” (1.4% = 52/3632 patients), leaving 3581 patients for GOS classification.

Stratified random sampling by outcome was applied to split cohorts into train and test sets. 

Cohort baseline characteristics for train and test sets are shown in Table 1. The average age 

was between 59 and 61 years old in both sets. Approximately 62% of patients were White 

(2081/3376 in GOS and 2118/3428 in mRS) and 12% were Black or African American 

(407/3376 in GOS and 412/3428 in mRS). The majority of patients had GOS outcome 

of severe disability 1636/3581 (46%) and mRS outcome of moderately severe disability 

910/3632 (25%). Among all patients with COVID-19, there were 291 (16%) non-survivors. 

Accounting for 382 (21%) non-survivors in the ICU dataset, there were a total of 673 deaths 

(19%) in our study cohort.

Patients’ notes were preprocessed as described in Section 3.4. We obtained 7314 notes from 

the cohort of 3632 patients, including 3485 discharge summaries, 1472 occupational therapy 

and 2357 physical therapy notes. We indicate here the number of tokens (and respective 

outcome for the classification task) present in the training vocabulary, throughout the 

dimensionality reduction steps after data splitting. Before modeling, notes were composed of 

37,693 (GOS) and 37,968 (mRS) tokens. After including only words present in at least 10% 

of the notes, there were 1258 (GOS) and 1267 (mRS) tokens. The tokens removed, such as 

“aaaom”, “aai”, “aala”, are not present in the English language, and may consist of typing 

errors; other words appeared only in a few rare notes. Thus, removal of these tokens was 

important for model generalizability and applicability. From these token sets, 2671 (GOS) 

and 2687 (mRS) combinations of n-grams were generated. Thus, the candidate features in 

the training vocabulary consisted of 1238 (GOS) and 1248 (mRS) unigrams, 864 (GOS) and 

879 (mRS) bigrams, 569 (GOS) and 560 (mRS) trigrams.

4.2. Interrater reliability for extracting neurologic outcomes from charts

Four thousand and twenty-eight cases were reviewed by two experts and determined the IRR 

for mRS and GOS scores from medical charts. For mRS levels 0–6, IRR (95% CI) was 0.83 
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(0.65–1.00), 0.67 (0.36–0.94), 0.53 (0.30–0.72), 0.43 (0.25–0.61), 0.50 (0.29–0.64), 0.33 

(0.10–0.65), 1 (1.00–1.00), respectively. For GOS levels 1 and 3–5, IRR (95% CI) was 1 

(1.00–1.00) and 0.73 (0.59–0.86), 0.60 (0.42–0.76), 0.91 (0.78–1.00), respectively. Overall 

IRR across all levels was 72% for mRS, and 81% for GOS. We specified a priori that an 

80% cut off for GOS would be acceptable, while for mRS we specified a 70% cut off, due to 

a higher number of labels and thus higher chance of disagreement. Cases with discrepancies 

were reviewed, and for cases where experts disagreed, it was observed that there was room 

for disagreement. Thus, we considered these levels of IRR adequate, and for the remaining 

3204 cases only one expert reviewed each chart to extract mRS and GOS scores.

4.3. Modeling performance

The one-vs-rest logistic regression model with the best configuration parameters was 

evaluated in the hold-out test set. Performance results for each neurological outcome are 

shown in Table 2. Performance metrics for the GOS model were generally more robust 

than for the mRS model, potentially due to the greater number of choices on the mRS 

scale (Gupta, Bengio, & Weston, 2014). For mRS, class labels in the extremes, namely 

“no symptoms” (mRS 0) and “death” (mRS 6), were classified more accurately than 

intermediate outcomes (mRS 1 – mRS 5), as shown in Fig. 3. In the GOS model, “moderate 

disability” was less accurately classified compared to other outcome labels, with a recall 

(0.48 95% CI 0.42–0.57) and F1 (0.45 95% CI 0.38–0.52). A possible explanation is the 

lower number of patients with this outcome label (12%) used to train the model. This is 

reflected in the confusion the model makes with the nearest labels “severe disability” and 

“good recovery”, as shown in Fig. 4(a). “Severe disability”, when misclassified, also tends to 

be confused with “moderate disability”. Nevertheless, the majority of patients are correctly 

classified (recall 0.78 95% CI 0.74–0.81, and F1 0.81 95% CI 0.78–0.84).

Models’ performance on the hold-out test set for each outcome label is presented for 

all metrics in Supplementary Table A6. AUROC and AUPRC curves are presented in 

Supplementary Fig. A1.

We also created models for mRS grouped into 3 or 4 levels: no symptoms to slight disability 

(mRS 0–2); moderate to severe disability (mRS 3–5); and death (mRS 6); or: no significant 

disability (mRS 0); slight to moderately severe disability (mRS 1–4); severe disability (mRS 

5); and death (mRS 6). For these groupings, the model achieved an AUROC of 0.96 (95% 

CI 0.96–0.97) and 0.95 (95% CI 0.94–0.96), and F1 of 0.87 (95% CI 0.85–0.89) and 0.82 

(95% CI 0.79–0.84), for the 3 and 4 level mRS groupings, respectively. Performance results 

are shown in Supplementary Table A7 and confusion matrices in Supplementary Fig. A2.

To assess potential bias related to under-representation of minorities in datasets, we assessed 

the GOS and mRS models performance by race, as presented in Table A8. For the patients 

identified as White in the EHR (60% of test data), the confidence intervals range was 

narrower across metrics compared with those of other races, indicating higher confidence 

in the classification. This is likely explained by the fact that the models were developed 

with a higher amount of data from White patients, therefore are more fitted to classify the 

neurological scores for this race. For patients identified as White, the models GOS and mRS 

achieved an AUROC of 0.94 (95% CI 0.92–0.95) and 0.91 (95% CI 0.89–0.92), and a recall 

Fernandes et al. Page 9

Expert Syst Appl. Author manuscript; available in PMC 2023 March 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



of 0.77 (95% CI 0.73–0.80) and 0.58 (95% CI 0.54–0.61), respectively. However, when 

assessing the models’ performance in other race categories, GOS and mRS performed the 

best for Asian patients (4% of test data), achieving an AUROC of 0.96 (95% CI 0.93–0.99) 

and 0.92 (95% CI 0.87–0.96), and a recall of 0.86 (95% CI 0.81–0.98) and 0.67 (95% CI 

0.56–0.81), respectively. For Black or African American patients (13% of test data), GOS 

and mRS achieved an AUROC of 0.94 (95% CI 0.90–0.96) and 0.90 (95% CI 0.86–0.92), 

and a recall of 0.78 (95% CI 0.69–0.86) and 0.59 (95% CI 0.49–0.67), respectively. Among 

patients identifying as Hispanic or Latino (3% of test data), GOS and mRS achieved an 

AUROC of 0.91 (95% CI 0.83–0.97) and 0.90 (95% CI 0.84–0.96), and a recall of 0.71 

(95% CI 0.50–0.86) and 0.67 (95% CI 0.53–0.85), respectively.

4.4. Feature importance

The GOS and mRS feature selection steps reduced the initial training feature sets by 

approximately 91% (243/2671) and 80% (536/2687). These numbers were obtained with 

regularization constant values C of 0.05 for both models. Training performance curves as a 

function of C are presented in Supplementary Fig. A3.

We plot the importance of the top 15 features selected by LASSO regularization in 

Supplementary Figs. A4 and A5. Blue bars correspond to features with positive coefficients 

values and red bars to features with negative coefficients.

For both GOS and mRS, ‘decease’ was considered most important for classifying death 

(GOS 1, mRS 6). For the remaining outcome labels, this feature was assigned high 

importance with a negative coefficient. Features related with discharge disposition, such as 

home, inpatient rehab or skilled nursing facility (snf), were also assigned high importance to 

determine level of disability. For severe disability (GOS 3, mRS 5), ‘discharged home’ was 

assigned a negative coefficient, while ‘inpatient rehab’, ‘skilled nurse’ and ‘snf’ for GOS 3 

and ‘peg’ (percutaneous endoscopic gastrostomy), ‘tube feed’ and ‘dnr’ (do-not-resuscitate 

order) for mRS 5, were assigned positive coefficients. On the contrary, for no symptoms 

(mRS 0) and good recovery (GOS 5), ‘inpatient rehab’ and ‘rehab’ were assigned negative 

coefficients while ‘discharge home’ a positive one for GOS 5. From mild to good recovery 

or no symptoms (mRS 0–3, GOS 4–5), features such as ‘home care’, ‘home support’, 

‘ambulation’, ‘home pt’ (home care physical therapy), ‘iadl’ (instrumental activities of daily 

living) were all assigned positive coefficients, while ‘mechanical’, ‘dnr’, ‘feed’, ‘fibrillation’ 

and ‘htn’ (hypertension) were assigned negative ones.

5. Discussion

5.1. Principal findings

In this study we developed a machine-learning-based NLP pipeline to extract neurologic 

outcomes GOS and mRS from hospital discharge summaries, occupational therapy and 

physical therapy notes of hospitalized adult patients. The analysis included a diverse 

cohort of patients admitted to the ICU and patients admitted with COVID-19 infection. 

Performance was excellent for extreme outcomes, including no symptoms (mRS 0), good 

recovery (GOS 5), and death (GOS 1, mRS 6). For intermediate mRS and GOS outcome 
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labels performance was overall lower which corresponds to lower IRR by experts for 

intermediate scores and remains a challenge in fields utilizing mRS and GOS. However, 

when NLP misclassifications occurred, they were largely to neighboring outcome levels, and 

combining mRS levels into 3 or 4 meaningful groups resulted in higher performance. Our 

method is able to process discharge summaries, physical and occupational therapy reports 

in an automated fashion at scale, extending the scope of feasible research beyond what is 

possible by manual chart review. Using real-world EHR data has been having increased 

recognition for designing outcomes studies in neurology (Biggin, Emsley, & Knight, 2020).

6. Limitations

The analysis included two academic medical centers located in the same geographic region 

(Boston, United States), both of which use the EPIC EHR and may not be representative 

of other US and non-US populations limiting the generalizability of the model across 

populations and hospital settings. An example of this limitation is that the model was 

developed with data from a patient population where White race was the majority, and the 

confidence in the classification for this race was overall higher than for other races. While 

we were encouraged that for other races or for patients who identified as Hispanic or Latino 

in the EHR, classification was not diminished, it is necessary to adapt these models in 

patient populations that reflect different communities. Thus, future studies will utilize this 

algorithm across different hospitals and EHR systems in the United States. Even though the 

analysis is based on data from highly specialized tertiary centers, the specific terms found 

in ICU notes might be also found for example in emergency departments notes, suggesting 

this NLP approach could perform a classification task in different medical settings. Although 

the model was developed with textual information, we did not consider the addition of 

other clinical features, such as age, gender or vital signs, medications and comorbidities. 

While clinicians do not use these factors in generating mRS or GOS scores, unconscious 

biases may occur when determining between levels of disability (mild, moderate or severe) 

in people who are older or have multimorbidity and maybe useful information when 

generating NLP algorithms. We did not consider using bidirectional encoder representations 

from transformers approaches, the current state-of-the-art in many NLP tasks, since their 

application presents limitations on classification of long clinical texts (Gao et al., 2021) and 

they are more complex and time costly. However, we propose to use this method as future 

work to compare the results with the method developed in this study. Another limitation in 

this work was the difficulty in classifying intermediate disability scores, due to the lack of 

training data, where there was a misrepresentation of these classes. Even though the models 

were trained with a balanced class weight, the reduced number of these classes decreased 

the model learning capability. Thus, future work entails acquiring more data, especially from 

patients assigned intermediate neurologic disability scores. Furthermore, we were not able to 

generate scores for four patients, due to lack of physical and occupational therapy notes and 

lack of information in the discharge summaries.

6.1. Conclusions

We developed a machine-learning-based NLP model to automatically and accurately extract 

neurological outcomes in a diverse cohort of hospitalized patients and showed good 
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performance overall. The scale of research can be accelerated by using the methodological 

approach and model developed in this study with EHR data.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Methodology for notes preprocessing and modeling. The list of extraction fields for 

discharge summary processing using regular expressions (regex) is shown in Supplementary 

Table A.2.
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Fig. 2. 
Study cohorts for classification of Glasgow Outcome Scale (GOS) and modified Rankin 

Scale (mRS) outcomes, with inclusion and exclusion criteria. ICU – Intensive Care Unit. 

Persistent vegetative state (GOS 2) was omitted from the analysis because this outcome was 

rare in our cohort.
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Fig. 3. 
Models’ performance on the hold-out test set by class label, for (a) Glasgow Outcome Scale 

and (b) modified Rankin Scale. Labels: GOS 1, mRS 6 – death; GOS 3, mRS 5 – severe 

disability; mRS 4 – moderately severe disability; GOS 4, mRS 3 – moderate disability; mRS 

2 – slight disability; mRS 1 – no significant disability; mRS 0 – no symptoms; GOS 5 – 

good recovery.
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Fig. 4. 
Confusion matrices normalized by (a) recall and (b) precision, for the GOS model, and 

normalized by (c) recall and (d) precision, for the mRS model, evaluated in the hold-out test 

sets. Labels: GOS 1, mRS 6 – death; GOS 3, mRS 5 – severe disability; mRS 4 – moderately 

severe disability; GOS 4, mRS 3 – moderate disability; mRS 2 – slight disability; mRS 1 – 

no significant disability; mRS 0 – no symptoms; GOS 5 – good recovery.
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Table 1

Baseline characteristics of the patient population stratified by train and test sets, for the classification of 

Glasgow Outcome Scale (GOS) and modified Rankin Scale (mRS) outcomes.

Characteristic GOS classification mRS classification

Train set (n = 2506) Test set (n = 1075) Train set (n = 2542) Test set (n = 1090)

Age (years) mean (SD) 60.55 (18.0) 59.44 (17.7) 60.12 (18.0) 60.50 (17.8)

Gender Male, n (%) 1320 (52.7) 581 (54.0) 1330 (52.3) 590 (54.1)

Race, n (%)

 White 1551 (61.9) 631 (58.7) 1562 (61.4) 657 (60.3)

 Hispanic or Latino 59 (2.4) 37 (3.4) 66 (2.6) 30 (2.8)

 Black or African American 297 (11.9) 129 (12.0) 287 (11.3) 143 (13.1)

 Asian 95 (3.8) 38 (3.5) 95 (3.7) 43 (3.9)

 Other
a 504 (20.0) 240 (22.4) 532 (21.0) 217 (19.9)

Institution MGH, n (%) 2114 (84.4) 889 (82.7) 2121 (83.4) 932 (85.5)

COVID-19 positive, n (%) 1286 (51.3) 563 (52.4) 1308 (51.5) 545 (50.0)

Neurologic outcome, n (%)

 Good recovery (GOS 5) 595 (23.7) 255 (23.7) – –

 No symptoms (mRS 0) – – 420 (16.5) 180 (16.5)

 No significant disability (mRS 1) – – 166 (6.5) 71 (6.5)

 Slight disability (mRS 2) – – 188 (7.4) 81 (7.4)

 Moderate disability (mRS 3) – – 304 (12.0) 130 (11.9)

 Moderate disability (GOS 4) 307 (12.3) 132 (12.3) – –

 Moderately severe disability (mRS 4) – – 637 (25.1) 273 (25.0)

 Severe disability (mRS 5) – – 369 (14.5) 158 (14.5)

  Severe disability (GOS 3) 1145 (45.7) 491 (45.7) – –

 Death (GOS 1, mRS 6) 459 (18.3) 197 (18.3) 458 (18.0) 197 (18.1)

The number of patients is represented by n.

a
Other includes ‘unknown’, ‘declined’, ‘unavailable’ and race with a number less than 10, to preserve patient privacy. MGH – Massachusetts 

General Hospital.
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