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A B S T R A C T   

The present article aims to extend some of the already existing fluid models to a large class of 
fluids namely, “Oldroyd-B couple stress fluid (OBCSF)”. The main focus of the present work is to 
combine the existing fluid models in ordered to get a new class of fluid. The unsteady magne
tohydrodynamics (MHD) Oldroyd-B fluid (OBF) with couple stresses, porosity, heat and mass 
transfer is considered in the present analysis. The Oldroyd-B couple stress fluid is assumed to flow 
in channel. The classical model is fractionalized by considering Atangana-Baleanu (AB) operator 
in ordered to highlight the memory analysis. To develop closed form solutions the combined 
(Laplace + Fourier) integrals have been used. The results obtained are portrayed through graphs 
for all pertinent flow parameters which involved in the present dynamic model. Moreover, the 
impact of AB time fractional parameter is investigated graphically on flow, temperature and 
concentration distributions exploiting MATHCAD software. Secondly, for better understanding 
the present solutions of Oldroyd-B couple stress fluid (OBCSF) are reduced to Odroyd-B fluid 
(OBF) without couple stresses, Maxwell solutions, Couple stress solutions and Newtonian viscous 
fluid solutions and the results have been compared for classical and fractional order derivatives. 
In addition to this a limiting case is carried out by our solutions to already published work which 
verify our solutions. In addition to this during the analysis we noticed that the flow heat and 
concentrated get lowered for the escalating numerical values of AB fractional derivatives. Simi
larly, it is also noticed that the velocity in channel accelerated with the increment of numeric 
values of pressure, porosity, thermal buoyancy and relaxation time parameter. In the same 
manner temperature and concertation profiles gets low with the higher values of Prandtl number, 
Reynold number and fractional operator. Finally, skin friction for momentum equation, Nusselt 
number for temperature and Sherwood number for concentration have been calculated and given 
in tabular forms.  
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1. Introduction 

The researchers are taking interest in the flows of non-Newtonian fluids due to world-wide use and its practical uses in various fields 
of engineering and sciences. There are many types of non-Newtonian fluids like, grease, oil, drugs, lubricants, plastic, honey, cool tar, 
paint and toothpaste etc. And these fluids are described by different non-Newtonian fluid models. Simple Navier-Stokes equations 
cannot describe these non-Newtonian fluid models. In order to explain the characteristics, features and the dynamics there exists many 
models which describe non-Newtonian fluids. 

The Oldroyd-B fluid model is a constitutive equation used to describe the behavior of viscoelastic fluids, which exhibit both viscous 
and elastic properties. The model was introduced by Oldroyd [1] in 1950 and is commonly used in the study of polymer solutions, 
melts, and other complex fluids. The Oldroyd-B model assumes that the stress tensor in the fluid can be decomposed into two parts: a 
purely viscous contribution and a contribution due to the deformation of elastic molecules within the fluid. The elastic contribution is 
described using a generalized Maxwell model, which consists of a series of springs and dashpots in parallel. The resulting constitutive 
equation is a partial differential equation relating the stress tensor to the rate of deformation tensor. 

Furthermore, in the Oldroyd-B model where the author derived a non-Newtonian fluid model namely “Oldroyd-B fluid”. It is the 
type of non-Newtonian fluid model which store energy as a linear elastic solid material and the dissipation of this model is due to the 
dissipative mechanism and rise from the mixture of two viscous fluids. The fluid have this kind of properties can be describe as stress 
relaxation time, creep and the difference between the normal shear stresses which developed during simple shear flows. This special 
fluid have the property to use as for describing the response of polymeric liquids. The nature of OBF is same like non-Newtonian fluid 
because the stress and rate of strain have non-linear relationship. Further OBF classified and has the characteristics of rate type fluid. 
Oldroyd was the first who developed the method for the flow of rate type fluid. OBF has many enormous practical uses in fluid dy
namics. It is worth noting that the OBF is the generalized version of viscoelastic Maxwell model [2]. Motivated from the applications of 
OBF in real life an increasing number of researchers have been attracted to perform their studies by considering this advance class of 
the fluid. Recently, many researchers studied the characteristics and flow behavior of OBF in different circumstances, like Prema et al. 
[3] where the author studied OBF and explain the heat and mass transfer within the porous medium. Hamza et al. [4] developed the 
flow of MHD OBF in porous medium along with the external pressure. Fetecau et al. [5] collected some characteristics of OBF and 
wrote a note on the flows of OBF by choosing the plate having constant acceleration. In another paper Fetecau et al. [6] concerning the 
efficiency of the unsteady OBF by taking the impulsive motion of the plate between the two side walls which are perpendicular to the 
plate. Elhanafy et al. [7] calculated the solutions of this complex model by employing the numerical scheme and discussed the ap
plications of hemodynamics. Tahir et al. [8] discussing the impact of OBF flow passing through the two rotating cylinders. Mahmud 
et al. [9] investigated the impact of magnetic field and the influence of shear thinning with zero mass flux by assuming the applications 
of Oldroyd-B fluid model. In another paper Mahmud et al. [10] studied Oldroyd-B fluid with the impact of chemical reaction MHD 
effect and the flow is a non-Fourier heat flux model with physical applications. 

The non-Newtonian fluids have useful applications when dealing with real world problems and due to this reason, the non- 
Newtonian fluids getting more attention of the researchers from the last few decades. Then scientists and mathematicians like, 
Euler, Newton, Navier, Stokes, Abel and Fourier etc, constructed many fluid models to analyze the dynamics of non-Newtonian fluid in 
nature and developed different equations to describe the characteristic behavior of the fluid flow models. To highlight the flow 
behavior of Couple stress fluid (CSF) model which is one of the non-Newtonian fluid model. This idea is given by famous mathe
matician Stokes in 1964 [11] who introduce the CSF. CSF model is the generalized form of simple Navier-Stokes theory. The CSF model 
has the polar effect like, the body couples and couple stresses are considered to develop the fluid flow. The equation of motion for CSF 
is quiet similar to Navier-Stokes theory with an extra term of order four. The CSF model explain many fluid flow like, liquid crystals, 
muddy water, greases, engine oil, honey and animal blood [12]. There are many studies recorded to explain the uses of CSF theory. Let 
us recall some of the studies like, Arif et al. [13] where the author investigated CSF flow in between channel along with the pressure 
exerted on the fluid externally, and for solutions using the applications of integral transforms, Laplace and Fourier. Similarly, some 
unique solutions can be found in the study of Reddy et al. [14] who developed the CSF fluid model and provided some advance 
applications of CSF with the impact of MHD heat and mass transfer in the radiative flow of vertical cylinder. Recently, some interesting 
results of CSF have been highlighted by the authors in various physical situations like, Kumar et al. [15] where the authors inspected 
CSF fluid using the method of differential transform to the unsteady free convection flow over stretching sheet. Some other aspects of 
CSF fluid with the super critical heat transfer analysis of the flow due to a vertical cylinder with applications is inspected by Basha et al. 
[16]. Moreover, Herimath et al. [17] and Reddy et al. [18] developed CSF model and calculated the numerical investigations in the 
heat and mass transfer phenomena under the influence of moving cylinder and shrinking porous sheet. Mehmood et al. [19] explained 
the effects of thermal diffusion on the flow of couple stress fluid over a stretched plate with the applications of high order chemical 
reaction. 

In the last few decades, the depicted scenarios, an increasing real-life applications of fractional order derivatives which is widely 
used in heterogeneous set of fluid dynamics as well as the memory effect in different dynamical systems. There are many complex 
dynamical systems which cannot be highlighted by applying the derivatives. Therefore, it is worth mentioning that the involvement of 
fractional order derivatives is used to highlight some of the hidden properties of different dynamical systems which is known as 
sensitive memory effect. The FC played a vital role in every field of sciences like, engineering, biological sciences and industrial 
sciences. From the last few decades visualizes that fractional derivative is more appropriate as compared to simple derivatives due to 
its unique memory property. Fractional calculus become a vast field due to its enormous applications in modern science. Therefore, a 
variety of fractional operators have been introduced and use in different situations. In all operator the most famous operator which is 
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developed by Atangana-Baleanu (AB) [20] in 2016. They modified the CF operator and developed a fractional operator have 
non-singular and non-local kernel. This AB fractional derivatives have many applications in the field of fluid dynamics and industrial 
sciences. Let us recall some recently developed fractional models and their applications to fluid dynamics. Recently, Arif et al. [21] 
where the authors discussed the influence and dynamics of CSF in channel with the involvement of external pressure, it is worth 
mentioning in this study that the fractional results obtained for Caputo-Fabrizio (CF) and Atangana-Baleanu (AB) fractional derivatives 
have been compared and highlight in graphs. Similarly, work have been done by Arif et al. [22], where the author have considered the 
impact of fractional derivatives on the Casson fluid with ramped wall temperature. In addition, Baleanu and Agarwal [23] highlighted 
some advance applications of fractional calculus the details is given in a very famous article which name as “Fractional Calculus in the 
Sky”. In another paper Baleanu [24], where the author concerning the evaluation of the memory effect of fractional derivatives in 
different real-world problems. In addition to this Bas and Ozarslan [25] analyzed some real-world applications of AB fractional de
rivatives in modern sciences and technology. Similarly, Syam and Al-Refai [26] added some advance applications of AB fractional 
derivatives. Addition to this AB operator describe the hidden sensitive properties of a dynamical system with a good memory and 
explained the sensitivity analysis of the physical models. The models developed by taking AB operator can be describe many complex 
physical situations with an appropriate result. Furthermore, the term “memory” means to highlight the hidden sensitive properties of 
any physical phenomena that’s why fractional derivative has been used. 

The research of heat and mass transfer have various physical applications in different thermal and cooling systems. It is the reason 
that the scholars take interest in the phenomena of heat and mass transfer and highlighted their useful applications. Heat and mass 
transfer phenomenon use in different physical situations, industries, heat pumps, turbines, heat generator, and many other fields of 
sciences and engineering. Motivated from the modern applications of heat and mass transfer some fundamental applications are 
presented in the book of Bergman et al. [27]. In the paper of Arif et al. [28] where the author explained the presence of heat and mass 
transfer in working fluids using nanoparticles for the thermal transport properties, with the impact of ramped heating. Similarly, the 
comprehensive information regarding to heat and mass transfer for practicing engineers and researchers are given in the book of 
Kothandaraman [29] where the author discussed the advance thermal characteristics of heat and mass transfer. In another paper, Khan 
et al. [30] studied the phenomena of heat and mass transfer of the fluid which are allowed to pass through shrinking permeable 
surfaces. 

The electrically conducting fluid with magnetohydrodynamics (MHD) flow in channel have enormous applications, like MHD 
generator, magnetic therapy, MRI, MHD turbines and some applications in engineering and sciences. Let us to give some relevant 
examples in Fabich [31] where the author examined MHD applications using the high power protons beam shocks in a mercury jet 
target for neutrino factory. In another paper, Asadullah et al. [32] developed MHD Jeffery fluid flow for the advance applications in 
fluid dynamics and discussed the fluid flow in channel. Furthermore, the applications of MHD is given by Ali et al. [33] where the 
authors discussed the impact of MHD on Casson fluid with the influence of heat, thermal radiation and chemical reaction on the fluid 
flow. Similarly, Zheng et al. [34] studied MHD effect in non-Newtonian Oldroyd-B fluid flow fluid is disturbed and start motion due to 
the accelerating plate employing the fractional operator and the exact solutions have been recovered using the Fox H-function with the 
discrete Laplace transform. In addition to this some unique features of Oldroyd-B fluid with MHD effect have been highlighted by 
Abbasi et al. [35]. Furthermore, in another paper Sravanthi et al. [36] and Abbasi et al. [37] where the authors inspected the impact of 
the Oldroyd-B fluid with MHD effect by highlighting various physical applications. Furthermore, some new advance and unique 
applications of MHD in fluid flow problems have been investigated by Rashid et al. [38] where the authors inspected EMHD nanofluid 
in curved channel through corrugated walls. Riaz et al. [39] describe some new insight into the cilia motion through electrically 
conducting fluid with MHD applications. Some other advance applications of MHD in various real-life applications is given in Refs. 
[40–42]. 

The main novelty of the present research work is to extend available results from the literature to a new class of fluid namely, 
“Oldroyd-B couple stress fluid”. This is for the first time the two non-Newtonian fluid models collected and developed in this analysis as 
a new model and given a name as “Oldroyd-B couple stress fluid model”. In the literature this model is developed for the first time 
which is not calculated before that is the reason to consider it and fill the gap, which is the main novelty of the present analysis. 
Motivated from the above the flow of incompressible unsteady MHD Oldroyd-B couple stress fluid has been considered in order to 
highlight its impact on the heat and mass transport phenomena. Furthermore, in the study the famous Atangana-Baleanu time frac
tional derivative is applied to generalize the Oldroyd-B couple stress fluid model for describing the sensitive memory effects in the fluid 
dynamics. Additionally, the present work established the exact solutions of the Oldroyd-B couple stress fluid model of order four using 
the joint applications of the Laplace and finite Fourier sine transforms. We provide the exact solutions of the corresponding mo
mentum, energy and concentration equations. Moreover, the skin friction, Nusselt number and Sherwood number are presented in 
tabular form. The influence of all parameters is investigated which affect the fluid flow. Furthermore, the influence of AB time 
fractional parameter is highlighted on flow, temperature and concentration distributions. Secondly, for better understanding the 
present solutions are reduced to Maxwell solutions, Odroyd-B solutions without couple stresses, Couple stress solutions and Newtonian 
viscous fluid solutions and compared these solutions for classical and fractional order derivatives. Apart from several other applica
tions the present work is significance and worthwhile as the exact solutions obtained during this study are important and not only new, 
but these exact solutions can be used as bench mark for numerical solvers and it will helped them to verify different numerical schemes. 
Finally, the rest of the paper is arranged as follow. The mathematical modeling of the present work is given in section 2. Section 3 aims 
to formulate the given model. The present classical model is transformed by applying the Atangana-Baleanu fractional model is 
provided in section 4. Furthermore, the solutions of energy, concentration and momentum equation is provided in subsection 4.1, 4.2 
and 4.3 respectively. Some special cases of the given model are provided in section 5. The Nusselt number, Sherwood number and skin 
friction are given in section 6. The graphical results and discussion is presented in section 7. The conclusion of the present analysis is 

M. Arif et al.                                                                                                                                                                                                            



Heliyon 9 (2023) e17642

4

provided in section 8. At the end of the manuscript the appendix have been provided. 
The present analysis we have considered the following assumptions.  

• We have considered the impact of couple stresses in the Oldroyd-B fluid make them and advance class of non-Newtonian fluid 
model have many applications  

• The present study describes heat and mass transfer effect of the fluid flow.  
• The fluid is considered in the channel with external pressure.  
• The classical model have been transformed by considering the AB fractional derivatives.  
• The present analysis the impact of MHD and porosity are also considered. 

2. Mathematical modeling 

The OBF with CSF effect have been considered in this report. The incompressible unsteady flow of OBCSF is taken in channel. In 
addition this research addressed the impact of MHD and porosity with the collective thermal and concentration effect. The fluid is 
allowed in channel bounded by plates with distance d between them. The fluid is taken in porous channel with the involvement of 
external pressure and also the magnetic field B0 is taken which is normal to the fluid motion. The governing equations of the flow are 
given by Ref. [43]: 

The continuity equation must satisfied because we have considered the incompressible fluid. 

∇·V
⇀
= 0, (1) 

The vector notation of momentum equation is given by Ref. [43]: 

ρ
[

∂ V→

∂t
+
(

V→·∇
)

V→
]

= − ∇p+ divT − η∇×
(
∇×

(
∇×

(
∇×V

⇀)))

+J×B+ gρβ(T − T∞)+ gρβ(C − C∞)+R.

(2) 

The expression for heat equation is as follows: 

ρcp
∂T

⇀

∂t
= k∇×∇× T

⇀
, (3) 

The mass equations mathematically can be expressed as: 

∂C
⇀

∂t
=D∇×∇× C

⇀
, (4)  

where V
⇀
,T

⇀ 
and C

⇀ 
are the vector form of velocity, temperature and concentration. Where ρ, J,B, g, η, βT, βC k,D, cp,R, and t represents 

density of the fluid, current density of the fluid, MHD, gravity, couple stress parameter, volume thermal expansion, volume con
centration expansion, thermal conductivity, diffusivity, specific heat, Darcy’s resistance and time of the fluid respectively. Further

more, vector form of velocity V→ temeprature T
⇀

, concentration C
⇀ 

and Cauchy stress tensor T for OBF for unidirectional and one 
dimension can be defined as: 

The velocity flow, energy and concentration component form can be expressed as: 

V
⇀
=(u(y, t), 0, 0),T

⇀
=(T(y, t), 0, 0) and C

⇀
=(C(y, t), 0, 0). (5) 

From the expressions defined above it is clear that the flow heat and concertation of the present study is along the x-axis. 
Mathematically representation of Cauchy stress is given below [44,45]: 

T=S − pI . (6)  

Where S and − pI here shows the extra stress and indeterminate stresses respectively. Additionally, S can be defined as: 

μ
(

1+
λ1.D
Dt

)

=S
(

1+
λ2.D
Dt

)

, (7) 

In the above expression μ, λ1 and λ2 shows dynamic viscosity, retardation time and relaxation time respectively. Furthermore, 
material time derivative D

Dt and Rivilin-Ericksen tensor A1 can be written as: 

DS
Dt

=
∂S
∂t

+ u
(

∂S
∂x

)

+ v
(

∂S
∂y

)

+ w
(

∂S
∂z

)

, (8)  

A1 =∇.V→+
(
∇.V→

)T
=

[
0 uy
uy 0

]

. (9) 
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In the given study we have consider OBF, therefor, there is a modification in Darcy’s law. 
[1, 46]: 

−
μφ
k0

(

1+ λR

∂
∂t

)

.V→=

(

1+ λ
∂
∂t

)

R, (10) 

In the above law φ and k notations for porous medium and the porous medium permeability. Maxwell equation can be expressed as: 

∇
→

·B= 0, (11)  

∇
→

× E→= − ∂B
∂E = 0, where we have total electric field E = 0, (12) 

The total electric field is represented by E and by Ohm’s Law (the generalized form) can be expressed as: 

J = σ
(

E→+ V→×B
)
= σ
(

V→×B
)
. (13) 

From above we get: 

J ×B= σ
(

V→×B
)
×B B=B0 + b, (14) 

The above MHD term can be expressed in more suitable form as: 

J ×B= − σ
{

B×
(

V→×B
)}

= − σ
{
(B ·B)V→−

(
B · V→

)
B
}
, (15)  

J ×B= − σ
{
(B ·B)V→− 0

}
= − σB2

0u. (16) 

Using equations 5–16, applying Maxwell equation and Darcy’s law and multiply it by 
(
1+λ ∂

∂t

)
Eq. (2) becomes: 

ρ
(

1+ λ
∂
∂t

)
∂u
∂t

=G+ μ
(

1+ λR

∂
∂t

)
∂2u
∂y2 − η0

(

1+ λ
∂
∂t

)
∂4u
∂y4 − σB2

0

(

1+ λ
∂
∂t

)

u

−
μφ
k0

(

1+ λR

∂
∂t

)

u+ gρβ
(

1+ λ
∂
∂t

)

(T − T∞)+ gρβ
(

1+ λ
∂
∂t

)

(C − C∞).

(17) 

Equation (17) represents the momentum equation of the present flow. 

3. Formulation of the problem 

This research is focused on the new class of fluid model known as “Oldroyd-B couple stress fluid (OBCSF)” flow in channel. The 
OBCSF passing through the porous channel with the impact of MHD and external pressure. The fluid is assumed to flow in a vertical 
channel and initially both the left and right plate were at rest having ambient temperature T∞ and concertation C∞. After some times 
the left plate start motion with a constant velocity and the temperature and concertation at the left plate raised to the surface tem
perature T and concertation C. The geometrical representation of the considered model is given in Fig. 1. 

The system of equations which describe the given flow model is given in Eqs. 18–20 along with the IC’s and BC’s which is provided 
in Eq. (21) ref. [1,46,47]: 

ρ
(

1+ λ
∂
∂t

)
∂u
∂t

=G+ μ
(

1+ λR

∂
∂t

)
∂2u
∂y2 − η0

(

1+ λ
∂
∂t

)
∂4u
∂y4 − σB2

0

(

1+ λ
∂
∂t

)

u

−
μφ
k0

(

1+ λR

∂
∂t

)

u+ gρβ
(

1+ λ
∂
∂t

)

(T − T∞)+ gρβ
(

1+ λ
∂
∂t

)

(C − C∞),

(18)  

(
ρcp
) ∂T(y, t)

∂t
= k

∂2T(y, t)
∂y2 , (19)  

∂C(y, t)
∂t

=D
∂2C(y, t)

∂y2 , (20)  
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u(y, t) = 0

T(y, t) = T∞

C(y, t) = C∞

⎞

⎟
⎟
⎠ for, 0 < y < d and t = 0,

u(y, t) = H(t)U0

T(y, t) = Tw

C(y, t) = Cw

⎞

⎟
⎟
⎠ for, y = 0 and t > 0,

u(d, t) = 0

T(d, t) = T

C(d, t) = C∞

∂2u(0, t)
∂y2 =

∂2u(d, t)
∂y2 = 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

for, y = 0, y = d and t > 0.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (21) 

To make the governing equations along with IC’s and BC’s dimensionless the following variables are used which is given in (22): 

ξ=
y
d
,w=

u
U0

, τ=U0t
d
, η= η0

μd2,P=
d2

μU0
G,Θ=

T − T∞

Tw − T∞
,Φ=

C − C∞

Cw − C∞
,

}

. (22) 

The dimensionless system of equations are: 

Re
(

1+ λ1
∂
∂τ

)
∂w(ξ, τ)

∂τ =P+

(

1+ λ2
∂
∂τ

)
∂2w(ξ, τ)

∂ξ2

− η
(

1+ λ1
∂
∂τ

)
∂4w(ξ, τ)

∂ξ4 − M
(

1+ λ1
∂
∂τ

)

w(ξ, τ)

−
1
K

(

1+ λ2
∂
∂τ

)

w(ξ, τ)+Gr
(

1+ λ1
∂
∂τ

)

Θ(ξ, τ)+Gm
(

1+ λ1
∂
∂τ

)

Φ(ξ, τ),

(23)  

b1
∂Θ(ξ, τ)

∂τ =
∂2Θ(ξ, τ)

∂ξ2 , (24)  

b2
∂Φ(ξ, τ)

∂τ =
∂2Φ(ξ, τ)

∂ξ2 , (25)  

w(ξ, 0) = 0,Θ(ξ, 0) = 0,Φ(ξ, 0) = 0, for 0 ≤ ξ ≤ 1

w(0, τ) = 1,Θ(0, τ) = 1,Φ(0, τ) = 1, for τ > 0,

w(1, τ) = 0,Θ(1, τ) = 0,Φ(1, τ) = 0, for τ > 0,

∂2w(0, τ)
∂ξ2 =

∂2w(1, τ)
∂ξ2 = 0, for τ > 0,

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (26) 

Where 

Gr=
gρβT d2(Tw − T∞)

U0μ ,Gm=
gρβCd2(Cw − C∞)

U0μ ,Pr=
μcp

k
,Re=

U0d
υ , Sc=

υ
D
,

M =
σB2

0d2

μ ,
1
K

=
d2φ
k0

, λ1 =
λU2

0

υ , λ2 =
λRU2

0

υ , b1 = Pr.Re, b2 = Sc..Re.

Where Gr and Gm represents Grashof and modified Grashof number, Pr and Re represent Prandtl and Reynolds number, similarly, Sc, M 
and K represents Schmidth number, magnetic parameter and porous media parameter respectively, λ1 and λ2 relaxation and retar
dation parameter respectively. 

Definition: The AB fractional derivative of fractional order β is defined as [20]. 

Fig. 1. (A): Geometry of the problem. 
Fig. 1 (b): Solution Methodology and operational framework. 
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AB℘β
τ (τ)=

Z(β)
(1 − β)

∫τ

0

Eβ

(
− β(τ − t)β

1 − β

)

f ′(τ)dt, (27)  

where Z(β) is normalization function such that Z(1) = Z(0) = 1 and β ∈ (0, 1).. 
Where from Eq. (27) Eβ is the generalized Mittag-Leffler function [48]. 

Eβ
(
− tβ)=

∑∞

k=0

(− t)βk

Γ(βk + 1)
. (28) 

The LT of AB is given below: 

L
( AB℘β

τ (τ)
)
=

sβL(η(τ)) − sβ− 1η(0)
(1 − β)sβ + β

. (29) 

The generalized Mittag-Leffler function is provided in Eq. (28) and The LT of AB definition is given in Eq. (29). 

4. Atangana-Baleanu fractional model 

Applying the AB time fractional derivative, equations 23–25 can be written in generalized form as: 

Re
(
1 + λ1

AB℘β
τ
)AB℘β

τ w(ξ, τ)=P+
(
1+ λ2

AB℘β
τ
) ∂2w(ξ, τ)

∂ξ2 − η
(
1+ λ1

AB℘β
τ
) ∂4w(ξ, τ)

∂ξ4

− M
(
1+ λ1

AB℘β
τ
)
w(ξ, τ) − 1

K
(
1+ λ2

AB℘β
τ
)
w(ξ, τ)+Gr

(
1+ λ1

AB℘β
τ
)
Θ(ξ, τ)

+Gm
(
1+ λ1

AB℘β
τ
)
Φ(ξ, τ),

(30)  

b1
AB℘β

τ Θ(ξ, τ)= ∂2Θ(ξ, τ)
∂ξ2 , (31)  

b2
AB℘β

τ Φ(ξ, τ)= ∂2Φ(ξ, τ)
∂ξ2 . (32) 

The generalized system of equations is given in Eqs. 30–32 

4.1. Exact solutions of energy equation 

The proposed model can be evaluated by using the Laplace transform to equation (31) and imposing the given conditions from 
equation (26) we get the transform results as: 

b1.
qβ

(1 − β)qβ + β
Θ(ξ, q)=

d2Θ(ξ, q)
dξ2 , (33) 

equation (33) can be written in more convenient form as given in Eq. (34): 

m0.qβ

qβ + m1
Θ(ξ, q)=

d2Θ(ξ, q)
dξ2 , (34) 

With the Fourier finite sine transform that read as given in Eq. (35): 

m0.qβ

qβ + m1
ΘNs(N, q)= − γNΘNs(N, q) + γNΘ(0, q), (35) 

equivalently, we can write as: 

ΘNs(N, q)=
m2(qβ + m1)

q(qβ + m3)
, (36) 

applying partial fraction on Eq. (36) we get: 

ΘNs(N, q)=
m1.m2

m3.q
+

m2(m3 − m1)

m3

1
q1− β(qβ + m3)

, (37) 

by applying inverse LT, Equation (37) becomes: 

ΘNs(N, τ)=m1.m2

m3
+

m2(m3 − m1)

m3
h(τ)*Fβ(− m3, τ), (38) 

Equation (38), represents the solution after applying Laplace inverse transform. 
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Applying the inverse Fourier transform we get: 

Θ(ξ, τ)= 1 −
ξ
d
−

(
ξ(d − 1)

d

)

+
2
d
∑∞

N=1

m2(m3 − m1)

m3
h(τ)*Fβ(− m3, τ)sin

(
Nπξ

d

)

. (39) 

Equation (39), shows the final solutions of the energy equation. 

4.2. Exact solutions of concentration equation 

For the exact solutions first applying the Laplace transform to concentration equation (32) and imposing the IC’s from equation 
(26), we get: 

b2.
qβ

(1 − β)qβ + β
Φ(ξ, q)=

d2Φ(ξ, q)
dξ2 , (40) 

equation (40) can be written as: 

m4.qβ

qβ + m1
Φ(ξ, q)=

d2Φ(ξ, q)
dξ2 , (41) 

applying the Fourier finite sine transform to Eq. (41) the results obtaining: 

m4.qβ

qβ + m1
ΦNs(N, q)= − γNΦNs(N, q) + γNΦ(0, q), (42) 

Simplifying Eq. (42), we get the following result: 

ΦNs(N, q)=
m5(qβ + m1)

q(qβ + m6)
, (43) 

applying partial fraction on Eq. (43), we get: 

ΦNs(N, q)=
m5.m1

m6.q
+

m5(m6 − m1)

m6

1
q1− β(qβ + m6)

, (44) 

by applying inverse LT, Equation (44) becomes: 

ΦNs(N, τ)=m5.m1

m6
+

m5(m6 − m1)

m6
h(τ)*Fβ(− m6, τ), (45) 

applying the inverse Fourier transform on Eq. (45), we get: 

Φ(ξ, τ)= 1 −
ξ
d
−

(
ξ(d − 1)

d

)

+
2
d
∑∞

N=1

m5(m6 − m1)

m6
h(τ)*Fβ(− m4, τ)sin

(
Nπξ

d

)

. (46) 

Equation (46) shows the final solution of the concentration equation. 

4.3. Exact solutions of momentum equation 

For the exact solutions of momentum, the Laplace transform is applied to equation (30) and using conditions from equation (26), 
we get: 

Re
(

1+ λ1
qβ

(1 − β)qβ + β

)
qβ

(1 − β)qβ + β
w(ξ, q)=

P
q
+

(

1+ λ2
qβ

(1 − β)qβ + β

)
∂2w(ξ, q)

∂ξ2

− η
(

1+ λ1
qβ

(1 − β)qβ + β

)
∂4w(ξ, q)

∂ξ4 − M
(

1+ λ1
qβ

(1 − β)qβ + β

)

w(ξ, q)

−
1
K

(

1+ λ2
qβ

(1 − β)qβ + β

)

w(ξ, q)+GrΘ(ξ, q)+GmΦ(ξ, q),

(47) 

equation (47) becomes: 

Re
(

1+ λ1
m7.qβ

qβ + m1

)
m7.qβ

qβ + m1
w(ξ, q)=

P
q
+

(

1+ λ2
m7.qβ

qβ + m1

)
∂2w(ξ, q)

∂ξ2

− η
(

1+ λ1
m7.qβ

qβ + m1

)
∂4w(ξ, q)

∂ξ4 − M
(

1+ λ1
m7.qβ

qβ + m1

)

w(ξ, q)

−
1
K

(

1+ λ2
m7.qβ

qβ + m1

)

w(ξ, q)+GrΘ(ξ, q)+GmΦ(ξ, q),

(48) 

applying the Fourier finite sine transform to Eq. (48), we get: 
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Re
(

1+ λ1
m7.qβ

qβ + m1

)
m7.qβ

qβ + m1
wNs(N, q)=

P
q
+

(

1+ λ2
m7.qβ

qβ + m1

)
[
− γ2

NwNs(N, q)+ γNw(0, q)
]

− η
(

1+ λ1
m7.qβ

qβ + m1

)
[
γ4

NwNs(N, q) − γ3
Nw(0, q)

]
− M

(

1+ λ1
m7.qβ

qβ + m1

)

wNs(N, q)

−
1
K

(

1+ λ2
m7.qβ

qβ + m1

)

wNs(N, q)+GrΘNs(N, q)+GmΦNs(N, q),

(49) 

after some calculi Eq. (49), can be written as given below: 

wNs(N, q) =
[

qβ + m1

m18
(
qβ + m10

)(
qβ + m15

)
+ m19

(
qβ + m12

)(
qβ + m1

)

]

×
m16
(
qβ + m17

)

q
[ (

qβ + m1
)2

m18
(
qβ + m10

)(
qβ + m15

)
+ m19

(
qβ + m12

)(
qβ + m1

)

]

× GrΘNs(N, q)

[ (
qβ + m1

)2

m18
(
qβ + m10

)(
qβ + m15

)
+ m19

(
qβ + m12

)(
qβ + m1

)

]

× GmΦNs(N, q),

(50) 

The result in Eq. (50) obtained after applying the Laplace and Fourier transforms. 

wNs(N, q) =
m16
(
q2β + m20qβ + m21

)

q(m22q2β + m23qβ + m24
)

[ (
qβ + m1

)2

q(m22q2β + m23qβ + m24
)

]

× [GrΘNs(N, q) + GmΦNs(N, q)],

(51) 

Equation (51), can be expressed in more simplified form as: 

wNs(N, q)=A(q)+B(q) × [GrΘNs(N, q)+GmΦNs(N, q)], (52) 

applying Laplace inverse on Eq. (52), we get the following result: 

wNs(N, τ)=A(τ) + B(τ)*[GrΘNs(N, τ)+GmΦNs(N, τ)], (53) 

now applying the Fourier inverse on Eq. (53), we get the following result: 

w(ξ, τ)= 2
d
∑∞

N=1
(A(τ))sin

(
Nπξ

h

)

+
2
d
∑∞

N=1
[B(τ)*[GrΘ(ξ, τ)+GmΦ(ξ, τ)]]sin

(
Nπξ

h

)

. (54) 

Equation (54), present the final solutions of the momentum equation. 

5. Special cases 

5.1. Solution of Oldroyd-B fluid velocity 

By putting the couple stress parameter = 0 , our solutions of velocity profile reduced to simple oldroyd-B fluid without couple 
stresses. To find the solutions repeating the above-mentioned process we get the solutions of Oldroyd-B fluid without couple stresses. 

Re
(

1+ λ1
m7.qβ

qβ + m1

)
m7.qβ

qβ + m1
w(ξ, q)=

P
q
+

(

1+ λ2
m7.qβ

qβ + m1

)
∂2w(ξ, q)

∂ξ2

− M
(

1+ λ1
m7.qβ

qβ + m1

)

w(ξ, q) −
1
K

(

1+ λ2
m7.qβ

qβ + m1

)

w(ξ, q)+GrΘ(ξ, q)+GmΦ(ξ, q),
(55) 

by solving the above equation using the Laplace and Fourier sine transforms to get the exact solutions. Using the same procedure for 
the solution of Eq. (55) and after applying the inverse Laplace and Fourier sine transform we get the following solution: 

w(ξ, τ)= 2
d
∑∞

N=1
(C(τ))sin

(
Nπξ

h

)

+
2
d
∑∞

N=1
[D(τ)*[GrΘ(ξ, τ)+GmΦ(ξ, τ)]]sin

(
Nπξ

h

)

. (56) 

The solution obtained in Eq. (56) is the limiting case in the absence of the couple stress effect. 

5.2. Solution of maxwell fluid velocity 

By putting the couple stress parameter η = 0 and λ2 = 0 our solutions of velocity profile reduced to Maxwell fluid. To find the 
solutions repeating the above mentioned process we get the solution of Maxwell fluid. 
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Re
(

1+ λ1
m7.qβ

qβ + m1

)
m7.qβ

qβ + m1
w(ξ, q)=

P
q
+

∂2w(ξ, q)
∂ξ2

− M
(

1+ λ1
m7.qβ

qβ + m1

)

w(ξ, q) −
1
K

w(ξ, q)+GrΘ(ξ, q)+GmΦ(ξ, q),
(57) 

using the same procedure as given in the solution of the momentum equation of the main problem. Applying both the Laplace and 
Fourier transforms to Eq. (57), the closed form solutions obtained: 

w(ξ, τ)= 2
d
∑∞

N=1
(E(τ))sin

(
Nπξ

h

)

+
2
d
∑∞

N=1
[F(τ)*[GrΘ(ξ, τ)+GmΦ(ξ, τ)]]sin

(
Nπξ

h

)

. (58) 

The Maxwell solution is given in Eq. (58). 

5.3. Solution of Newtonian viscous fluid velocity 

By taking the couple stress parameter η = 0, λ1 = 0 and λ2 = 0 our solutions of velocity profile reduced to Newtonian viscous fluid. 
To find the solutions repeating the above-mentioned process we get the solution of Newtonian viscous fluid. 

Re
m7.qβ

qβ + m1
w(ξ, q)=

P
q
+

∂2w(ξ, q)
∂ξ2 − Mw(ξ, q)

−
1
K

w(ξ, q)+GrΘ(ξ, q)+GmΦ(ξ, q),
(59) 

Applying Fourier transform to Eq. (59), we get: 

Re
m7.qβ

qβ + m1
wNs(N, q)=

P
q
− γ2

NwNs(N, q)+
γN

q
− MwNs(N, q)

−
1
K

wNs(N, q)+GrΘNs(N, q)+GmΦNs(N, q),
(60) 

after some calculi Eq. (60), can be expressed as: 

wNs(N, q)=
l15(qβ + m1)

l12.q(qβ + l14)
+

[
(qβ + m1)

l12.q(qβ + l14)

]

× [GrΘNs(N, q)+GmΦNs(N, q)], (61) 

Equation (61) is obtained form the simplification of Eq. (60). 

wNs(N, q)=Q(q)+R(q) × [GrΘNs(N, q)+GmΦNs(N, q)], (62) 

Applying the inverse Fourier and Laplace to Eq. (62), we get the following results: 

w(ξ, τ)= 2
d
∑∞

N=1
(Q(τ))sin

(
Nπξ

h

)

+
2
d
∑∞

N=1
[R(τ)*[GrΘ(ξ, τ)+GmΦ(ξ, τ)]]sin

(
Nπξ

h

)

. (63) 

Equation (63) shows the final solution of Newtonian viscous fluid. 

5.4. Classical solution 

In this subsection we highlight a special case of the present generalized model by taking β→1 then the present obtained solutions 
reduced to the solution obtained by Akhtar, S., & Shah, N. A [44] which is the special case of the present solutions. 

For the special case applying the property stated below: 

lim
β→1

ABDβ
τ u(ξ, τ)= lim

β→1
L− 1[L

{ABDβ
τ u(ξ, τ)

}]
=L− 1

{

lim
β→1

qβu(ξ, q) − u(ξ, 0)
(1 − β)qβ + β

}

= L− 1{qu(ξ, q) − u(ξ, 0)}=L− 1[L{u′(ξ, τ)}]= u′(ξ, τ).
(64) 

The results obtained in Eq. (64) shows the classical results of the present fractional solution. 

6. Liming case 

6.1. Solution of CSF velocity 

This section provides the limiting case of the present problem. Our solution can be reduced to already published work by putting 
λ1 = 0 and λ2 = 0 our solutions of velocity profile reduced to couple stress fluid CSF solutions obtained by Ali et al. [47] which verify 
our obtained solutions. 
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Re
m7.qβ

qβ + m1
w(ξ, q)=

P
q
+

∂2w(ξ, q)
∂ξ2 − η ∂4w(ξ, q)

∂ξ4 − Mw(ξ, q)

−
1
K

w(ξ, q)+GrΘ(ξ, q)+GmΦ(ξ, q),
(65) 

Applying the Fourier transform to Eq. (65), we get following transform result: 

Re
m7.qβ

qβ + m1
wNs(N, q)=

P
q
− γ2

NwNs(N, q)+
γN

q
− ηγ4

NwNs(N, q)+
γ3

N

q

− MwNs(N, q) −
1
K

wNs(N, q)+GrΘNs(N, q)+GmΦNs(N, q),
(66)  

after some calculi Eq. (66), can be expressed as given in Eq. (67): 

wNs(N, q)=
l11(qβ + m1)

l8.q(qβ + l10)
+

[
(qβ + m1)

l8.q(qβ + l10)

]

× [GrΘNs(N, q)+GmΦNs(N, q)] (67)  

wNs(N, q)=G(q)+H(q) × [GrΘNs(N, q)+GmΦNs(N, q)], (68) 

To inverst the results obtained using the inverse of the Laplace and Fourier transform to Eq. (68), the results obtained is given 
below: 

w(ξ, τ)= 2
d
∑∞

N=1
(G(τ))sin

(
Nπξ

h

)

+
2
d
∑∞

N=1
[H(τ)*[GrΘ(ξ, τ)+GmΦ(ξ, τ)]]sin

(
Nπξ

h

)

. (69) 

The solutions obtained in Eq. (69) is identical to the solutions obtained by Ali et al. [31] which validate our work. 
Where 

γN =

(
Nπ
d

)

,m0 =
b1

1 − β
,m1 =

β
1 − β

,m2 =
γN

m0 + γ2
N
,m3 =

γ2
N .m1

m0 + γ2
N
,m4 =

b2

1 − β
,m5 =

γN

m4 + γ2
N
,m6 =

γ2
N .m1

m4 + γ2
N
,m7 =

1
1 − β

,

m8 = 1+ λ1m7,m9 =Re.m8,m10 =
m1

1 + λ1m7
,m11 = 1+ λ2m7,m12 =

m1

1 + λ2m7
,m13 = γ2

N +
1
K
,m14 =Re.m7 + ηγ4

N +M,

m15 =
η.γ4

Nm1 + Mm1

m14
,m16 =P+ γN .m11 + η.γ3

N .m8,m17 =
P ·m1 + γN ·m11m12 + η · γ3

N ·m8 ·m10

m16
,

m18 =m8 ·m14,m19 =m11 ·m13,m20 =m17 +m1,m21 =m1m17,m22 =m18 +m19,m23 =m15m18 +m10m18 +m1m19 +m12m19,

m24 =m1m12m19 .

b1 =Re.m7 + M, b2 =
Mm1

b1
, b3 = P + γN .m11, b4 =

P ·m1 + γN ·m11m12

b3
, b5 = m8 · b1, b6 = m11 ·m13, b7 = b4 + m1, b8 = m1b4, b9

= b5 + b6, b10 = b2b5 + m10b5 + m1b6 + m12b6, b11 = m1m12b6 .

l1 =P + γN + η.γ3
N .m8, l2 =

P ·m1 + γN ·m1 + η · γ3
N ·m8 ·m10

l1
, l3 = l2 + m1, l4 = m1l2, l5 = m18 + m13, l6

= m15m18 + m10m18 + m1m13 + m1m13, l7 = m2
1m1,

l8 =Rem7 + γ2
N + η.γ4

N +M +
1
K
, l9 =m1.

(

γ2
N + η.γ4

N +M +
1
K

)

, l10 =
l9

l8
, l11 =P+ γN + ηγ3

N ,

l12 =Rem7 + γ2
N +M +

1
K
, l13 =m1.

(

γ2
N +M +

1
K

)

, l14 =
l13

l12
, l15 =P + γN .

7. Nusselt number, sherwood number and skin friction 

In this section we provide the engineering quantities for the present problem. The engineering quantities are the Nusselt number 
given in subsection 6.1, Sherwood number given 6.2 and the corresponding skin friction is given in 6.3. 

7.1. Evaluation of nusselt number 

The expression for the engineering values of Nusselt number for Oldroyd-B couple stress fluid can be expressed as: 

Nu= −
∂Θ
∂ξ

⃒
⃒
⃒
⃒

ξ=0
. (70)  
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7.2. Evaluation of sherwood number 

The expression of the corresponding Sherwood number for engineering quantities for Oldroyd-B couple stress fluid can be written 
as: 

Sh= −
∂Φ
∂ξ

⃒
⃒
⃒
⃒

ξ=0
. (71)  

7.3. Skin friction 

The Skin friction for the given fluid is given below: 

Sf (ξ, τ)= (1+ λ1)

(
∂w
∂ξ

− η ∂3w
∂ξ3

)

. (72) 

The skin friction for the left and right plate is calculated by using the following expressions: 

Sflp(0, τ)= (1+ λ1)

(
∂w
∂ξ

− η ∂3w
∂ξ3

)

ξ=0
, (73)  

where Sflp(.) represents the notation of skin friction at left plate. 

Sfrp(1, τ)= (1+ λ1)

(
∂w
∂ξ

− η ∂3w
∂ξ3

)

ξ=1
. (74)  

Where Sfrp(.) represents the notation of skin friction at right plate. 
The engineering quantities are mentioned in Eqs.70–74, which can be used in many engineering problems. 

8. Results and discussion 

This section provides the graphical analysis of unsteady MHD Oldroyd-B fluid with couple stress effect along with energy and 
concentration effect. The Oldroyd-B fluid is allowed to pass through channel with porosity effect. The aims of this portion to visualize 
the flow behavior of the parameters involved during the flow. The simple classical models were unable to explained the complex nature 
of non-Newtonian fluid model in order to highlight these complex models in the present study newly developed AB time fractional 
order derivative is applied on the classical model and we get the generalized model which highlight the sensitive memory effect on the 
fluid dynamics. The exact results obtained from the present study by applying the integral transforms (Laplace and Fourier). For clear 
understanding all the flow parameters are highlighted through graphs and discussed in detail. Graphically, the impact of these flow 
parameters have evaluated on the fluid flow. The involved flow parameters in the present analysis are Grashof and modified Grashof 
numbers are Gr and Gm respectively, M, Pr, Sc, Re, K, λ1, λ2, P, η and β, magnetic parameter, Prandtl number, Schmidt number, 
Reynolds number, porous media, relaxation, retardation parameter, pressure, couple stress parameter, and fractional parameter 
respectively. All these parameters are involved in the skin, friction, Nusselt and Sherwood number for engineering purposes and 
presented in tabular forms. Furthermore, the present solutions of the Oldroyd-B fluid model with couple stresses have been reduced to 
simple Oldroyd-B without couple stresses, Maxwell fluid, couple stress fluid and Newtonian viscous fluid as a special case. All the 
above-mentioned solutions have been compared in order to observe the flow analysis of the present model deeply. Finally, all the 
above solutions are plotted for classical and AB fractional derivatives and compared their results. 

The physical sketch can be visualized in Fig. 1 (a) and the solution methodology of the current research is depicted in Fig. 1(b). The 
fractional parameter β on MHD Oldroyd-B fluid with couple stresses is portrayed in Fig. 2. The present figure clearly elucidated, and we 
found that greater values of fractional parameter β shows multiple solutions of Oldroyd-B fluid with couple stresses which is referred as 
memory effect of fractional parameter on the fluid flow. In the case if an experimentalist wants to compare their obtained results with 
our theoretical results for the fluid motion, he can chose any arbitrary values of β for the required results. Furthermore, for β = 1 shows 
the classical solution of the present model. The impact time τ on the velocity of the fluid is portrayed in Fig. 3. The Oldroyd-B couple 
stress fluid is a type of non-Newtonian fluid that exhibits additional viscoelastic properties due to the presence of microstructures 
within the fluid. In a channel, the flow behavior of the Oldroyd-B couple stress fluid can be affected by several factors, including the 
velocity profile, the geometry of the channel, the presence of walls or obstacles. One important factor that can significantly impact the 
flow behavior of the Oldroyd-B couple stress fluid in a channel is time. Specifically, the way the fluid responds to changes in the flow 
conditions can vary depending on how long the fluid has been flowing. During the present analysis it has been noticed that higher the 
time the velocity of the fluid within the channel get high. 

Fig. 4 shows the influence of external pressure P on the fluid motion in channel. From the figure it can be notice clearly that by 
increasing the external pressure lead to an increase in the Oldroyd-B fluid motion in channel because the external pressure is 
responsible to accelerate the fluid motion. Physically, it is correct when a pressure gradient is applied to an Oldroyd-B couple stress 
fluid flowing in a channel, the velocity of the fluid is affected by both the viscosity and the elastic properties of the fluid. The increase in 
pressure gradient generates a shear stress on the fluid. This applied pressure on the velocity of the Oldroyd-B couple stress fluid in a 
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channel is thus affected by both the viscous forces and the elastic forces within the fluid. In our case as the pressure gradient increases, 
the viscous forces become weaker, and the elastic forces become stronger as a result it tend to push the fluid forward. Therefore higher 
the pressure will accelerate the velocity of the fluid in channel. The influence of M on the velocity of MHD Oldroyd-B couple stress fluid 
is portrayed in Fig. 5. This plot can easily described that when we choose higher numerical values of M as a result it produces some 
resistivity opposite in the fluid motion. These resistive forces become stronger for greater values of M which is called as the Lorentz 
forces. Therefore, for higher values of M the Lorentz forces become stronger which retard the fluid motion. In conclusion, when higher 

Fig. 2. The velocity of fluid versus different values of β.  

Fig. 3. The velocity of fluid versus different values of τ.  

Fig. 4. The velocity of fluid versus different values of P.  
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values of M is taken Lorentz forces become stronger and as a result fluid motion retard and hence velocity of the fluid decreases. 
Fig. 6 visualizes the presence of porous media K when the fluid is in motion in channel. This figure depicted that when the fluid 

passing through the region where porosity is higher shows low opposing forces in the fluid direction. Therefore, for the increasing the 
porosity K there is low resistance in the fluid flow and hence velocity of the fluid increases. This shows that as we increases the pores of 
the medium as a results the fluid passing through the porous media will have low resistive forces between the fluid and surface 

Fig. 5. The velocity of fluid versus different values of M.  

Fig. 6. The velocity of fluid versus different values of K.  

Fig. 7. The velocity of fluid versus different values of η.  
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consequently, the fluid will get higher magnitude. Physically it is correct because when a fluid flows through a porous medium, it 
experiences resistance due to the presence of small, interconnected pores in the medium. This resistance leads to a reduction in the 
fluid velocity compared to the same fluid flowing in a non-porous medium. Therefore, increasing the pores of the medium will ulti
mately reduced the resistance in the flow direction and hence the fluid velocity get higher in channel. The presence of couple stress 
parameter η on the fluid motion is portrayed in Fig. 7. Here an increase in the η means that where going to high the viscosity of the fluid 
as a result more viscosity the fluid have will low velocity. Therefore, during the graphical analysis one can noticed that increasing the 
couple stresses in the fluid the velocity of the Oldroyd-B fluid decreases because the couple stresses effects the fluid motion due to its 
couple shear stresses which are responsible to retard the fluid motion flowing in the channel. The physical reason behind it is that the 
Oldroyd-B couple stress fluid is a type of non-Newtonian fluid that exhibits unique properties due to the presence of a couple stress 
parameter. This parameter measures the effect of micro-scale rotations or internal angular momentum of fluid particles on the overall 
behavior of the fluid. When the couple stress parameter is increased, the velocity profile of the Oldroyd-B fluid in a channel changes 
significantly. Specifically, the presence of the couple stress parameter can lead to the development of secondary flows, such as vortices 
and eddies, within the channel. These secondary flows can significantly alter the overall velocity distribution of the fluid and result in 
complex fluid behavior. Therefore, increasing the CSF parameter develop complexity in the fluid due to which velocity of the fluid 
retards in channel. Furthermore, for η = 0 shows a special case of having no couple shear stresses on the fluid flow. Figs. 8 and 9 
portrayed the flow parameters thermal and mass Grashof number Gr and Gm respectively. The graphical representations of these 
buoyancy parameters visualizes its impact on the dynamics of fluid and it can be observed that higher the these values will get high the 
amplitude of velocity because these buoyancy forces are responsible to accelerate the fluid motion in the boundary layer region. From 
these figures one can noticed that buoyancy forces are dominant on viscous forces as a result the fluid velocity increase for higher 
values of these buoyancy forces. The thermal Grashof number and mass Grashof number are two important dimensionless parameters 
that are used to describe the behavior of fluids in various flow systems, including channels. In the case of Oldroyd-B couple stress fluid 
in a channel, these parameters can have a significant impact on the velocity distribution of the fluid. The increase in both the pa
rameters causes an acceleration in the velocityof the fluid. Physically, it is correct, because Gr is increased, the buoyancy forces become 

Fig. 8. The velocity of fluid versus different values of Gr.  

Fig. 9. The velocity of fluid versus different values of Gm.  
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more dominant, leading to the formation of thermal plumes and the development of convective flows. In the case of Oldroyd-B fluids, 
these convective flows can interact with the couple stress effects and result in complex velocity distributions. The presence of the 
couple stress parameter can also affect the onset of convection and the strength of the convective flow. Therefore, the over all impact of 
the thermal and mass Grashof numbers on the velocity distribution of Oldroyd-B couple stress fluids in channels have an increasing 
effect in the velocity. 

Fig. 10 Shows the trends of time relaxation parameter λ1 and its impact the motion of fluid in channel. This graphical sketch of the 
flow for λ1 depicts that when we choose the high numerical values of λ1 as a result there is an increase cam be noticed in the fluid 
velocity in channel. This increment in the velocity physically corrects because normally, relaxation time parameter in the Oldroyd-B 
model that characterizes the timescale over which the elastic stresses in the fluid relax. In particular, it measures the time required for 
the fluid to return to its undeformed state after a deformation has been applied. In a channel flow, the velocity profile of an Oldroyd-B 
fluid is influenced by the relaxation time parameter in a few different ways. In some case when there is a smaller relaxation times result 
in a more elastic fluid, which tends to resist deformation more strongly. This can lead to a reduction in the fluid velocity, particularly 
near the walls of the channel where the flow is most strongly affected by the fluid’s elastic properties. Similarly, when larger relaxation 
times, on the other hand, result in a more viscous fluid, which tends to flow more easily. This can lead to an increase in the fluid 
velocity, particularly in the center of the channel where the flow is less influenced by the fluid’s elastic properties. This is the reason 
that increasing λ1 lead to an increase in the fluid velocity. 

The trends in flow pattern are highlighted in the time retardation parameter λ2 and presented in Fig. 11 on the flow profile of the 
fluid. This figure visualized that higher magnitude of λ2 a decreasing behavior is noticed in the flow pattern. Physically, it is correct 
because in a channel flow of an Oldroyd-B fluid, the retardation time parameter affects the velocity profile of the fluid. When the values 
of λ2 is small, the fluid recovers its elastic properties quickly, and the velocity profile is more uniform. However, as λ2 increases, the 
fluid takes longer to recover its elastic properties, and the velocity profile becomes more complex, with regions of high and low ve
locities. Specifically, for a channel flow of an Oldroyd-B fluid, when the retardation time is small, the fluid behaves more like a 
Newtonian fluid, where the velocity profile is linear and the shear rate is proportional to the velocity gradient. As the retardation time 

Fig. 10. The velocity of fluid versus different values of λ1.  

Fig. 11. The velocity of fluid versus different values of λ2.  
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increases, the fluid becomes more viscoelastic, with a curved velocity profile and a non-linear relationship between the shear rate and 
the velocity gradient. This is the reason when λ2 is high the velocity decelerated in channel. Furthermore, it can be noticed that the time 
relaxation parameter λ1 and time retardation parameter λ2 have opposite behavior on the fluid velocity they have an inverse relation 
with velocity and it can be observed from the main momentum equation from the mathematical modeling and solution section. 

Fig. 12 depicts the presence of AB fractional parameter β on temperature distribution of the fluid. The diagram clearly visualized 

Fig. 12. The temperature of fluid versus different values of β.  

Fig. 13. The temperature of fluid versus different values of Pr.  

Fig. 14. The temperature of fluid versus different values of Re.  
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that choosing the high values of β make their temperature lower, this concluded that for different β we have variation in temperature. 
In some real-life system temperature cannot be examined correctly by applying simple classical derivative approach therefore, for 
better results of temperature fractional derivative is used to analyze temperature in different operating systems. 

The trends in temperature of the flow for various values of Pr presented in Fig. 13. The variation occur in temperature profile for 
choosing high values of Pr. This variation is noticed that keeping high Pr values the temperature get lower. This decrease occur in 

Fig. 15. The concentration of fluid versus different values of β.  

Fig. 16. The concentration of fluid versus different values of Re.  

Fig. 17. The concentration of fluid versus different values of Sc.  
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temperature it is because Pr represents here the ratios among momentum and thermal diffusivity. This means that high the Pr values 
will off course increase the thermal conductivity of the fluid as result fluid temperature decreases. The impact of Reynolds number Re 
on temperature of the flow visualizes in Fig. 14. This diagram depicted and one can observe that choosing maximum values of Re the 
temperature of the fluid get lowered. 

The AB fractional parameter β and its impact on concentration profile is presented in Fig. 15. This graphically, described that the 
positive change produces in β the concentration get lowered it is because varying β we have variation in concentration. In some real-life 
system concentration cannot be examined correctly by applying simple classical derivative approach therefore, for better results of 
concentration fractional derivative is used to analyze concentration of the fluid. Fig. 16 portrayed the presence of Re on the con
centration of the Oldroyd-B fluid. From this sketch it is clear that when considering the high values of Re result a decrement in the 

Fig. 18. The comparative graphical analysis of the solutions of fractional Oldroyd-B fluid velocity with Maxwell fluid, couple stress fluid and 
Newtonian viscous fluid velocity. 

Fig. 19. The comparative graphical analysis of the solutions of classical Oldroyd-B fluid velocity with Maxwell fluid, couple stress fluid and 
Newtonian viscous fluid velocity. 

Fig. 20. The comparative analysis of the present solutions with the solutions obtained by Ali et al. [47].  
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concentration. Fig. 17 visualizes the role of Schmidt number Sc on concentration distribution. This graph shows the presence of Sc on 
the fluid concentration and one can observed that Sc is responsible to reduce the concertation profile. 

Fig. 18 shows the comparison of the velocity of MHD Oldroyd-B couple stress fluid with the simple Oldroyd-B fluid without couple 
stresses, couple stress fluid, Maxwell fluid and Newtonian viscous fluid. From the comparison we can see that magnitude of Newtonian 
viscous fluid velocity is higher than all the other fluid velocities and Oldroyd-B couple stress fluid velocity have low velocity compared 
to all other fluid velocity. The aim of this comparison is that the present solution can be viewed deeply by comparing with the Maxwell 
fluid, couple stress fluid and simple Newtonian viscous fluid. Additionally, Figs. 18 and 19 shows the same comparison for classical and 
fractional approach respectively. The comparison of the present obtained solutions with the already published work by Ali et al. [47] is 
highlighted in Fig. 20. According to the figure the present solutions shows a strong agreement with the published work as a limiting 
case which validate our solutions. 

Table 1 
The skin friction variation against different parameters Oldroyd-B couple stress fluid at left plate.  

β λ1 λ2 τ Gr Gm Pr Sc M K η P Re Sfleft plate 

0.5 0.8 2 1.2 12 8 15 2.5 2.1 1.5 2.2 3 2.5 4.0631 
0.7 0.8 2 1.2 12 8 15 2.5 2.1 1.5 2.2 3 2.5 3.2375 
0.5 1.2 2 1.2 12 8 15 2.5 2.1 1.5 2.2 3 2.5 5.2402 
0.5 0.8 2.5 1.2 12 8 15 2.5 2.1 1.5 2.2 3 2.5 3.821 
0.5 0.8 2 1.5 12 8 15 2.5 2.1 1.5 2.2 3 2.5 6.0592 
0.5 0.8 2 1.2 15 8 15 2.5 2.1 1.5 2.2 3 2.5 5.8743 
0.5 0.8 2 1.2 12 10 15 2.5 2.1 1.5 2.2 3 2.5 5.2751 
0.5 0.8 2 1.2 12 8 20 2.5 2.1 1.5 2.2 3 2.5 3.9281 
0.5 0.8 2 1.2 12 8 15 3 2.1 1.5 2.2 3 2.5 3.0321 
0.5 0.8 2 1.2 12 8 15 2.5 2.5 1.5 2.2 3 2.5 3.0582 
0.5 0.8 2 1.2 12 8 15 2.5 2.1 2 2.2 3 2.5 5.8573 
0.5 0.8 2 1.2 12 8 15 2.5 2.1 1.5 2.5 3 2.5 3.0825 
0.5 0.8 2 1.2 12 8 15 2.5 2.1 1.5 2.2 4 3.5 5.7352 
0.5 0.8 2 1.2 12 8 15 2.5 2.1 1.5 2.2 3 4.5 3.7352  

Table 2 
The skin friction variation against different parameters Oldroyd-B couple stress fluid at right plate.  

β λ1 λ2 τ Gr Gm Pr Sc M K η P Re Sfright plate 

0.5 0.8 2 1.2 12 8 15 2.5 2.1 1.5 2.2 3 2.5 2.0631 
0.7 0.8 2 1.2 12 8 15 2.5 2.1 1.5 2.2 3 2.5 1.2375 
0.5 1.2 2 1.2 12 8 15 2.5 2.1 1.5 2.2 3 2.5 3.2402 
0.5 0.8 2.5 1.2 12 8 15 2.5 2.1 1.5 2.2 3 2.5 2.921 
0.5 0.8 2 1.5 12 8 15 2.5 2.1 1.5 2.2 3 2.5 3.592 
0.5 0.8 2 1.2 15 8 15 2.5 2.1 1.5 2.2 3 2.5 3.9743 
0.5 0.8 2 1.2 12 10 15 2.5 2.1 1.5 2.2 3 2.5 3.2751 
0.5 0.8 2 1.2 12 8 20 2.5 2.1 1.5 2.2 3 2.5 1.9281 
0.5 0.8 2 1.2 12 8 15 3 2.1 1.5 2.2 3 2.5 1.0321 
0.5 0.8 2 1.2 12 8 15 2.5 2.5 1.5 2.2 3 2.5 1.0582 
0.5 0.8 2 1.2 12 8 15 2.5 2.1 2 2.2 3 2.5 3.8573 
0.5 0.8 2 1.2 12 8 15 2.5 2.1 1.5 2.5 3 2.5 1.0825 
0.5 0.8 2 1.2 12 8 15 2.5 2.1 1.5 2.2 4 3.5 3.7352 
0.5 0.8 2 1.2 12 8 15 2.5 2.1 1.5 2.2 3 4.5 1.7352  

Table 3 
The impact of Nusselt number against different parameters.  

β τ Pr Re NuLeft Plate 

0.5 1 14 2.5 1.511 
0.7 1 14 2.5 1.061 
0.5 1.5 14 2.5 1.424 
0.5 1 16 2.5 1.848 
0.5 1 14 3 1.654  

Table 4 
The impact of Sherwood number against different parameters.  

β τ Sc Re ShLeft Plate 

0.5 1.2 0.8 2.2 0.9 
0.7 1.2 0.8 2.2 0.493 
0.5 1.5 0.8 2.2 0.894 
0.5 1.2 1.2 2.2 0.938 
0.5 1.2 0.8 3 0.925  
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Tables 1 and 2 shows the skin friction of left and right plate for the different values of all parameters which effect the fluid flow. 
From the tables we can see the bold values in each specific row, which shows the changes occur in the skin friction for that specific bold 
value. Similarly, the influence of different parameters on the Nusselt number are evaluated and presented in Table 3. Finally, Table 4 
shows the effect of parameters on the Sherwood number which are calculated and presented in tabular form. 

9. Conclusion 

The purpose of this study is to expand upon existing research by investigating a larger class of fluid, specifically the Oldroyd-B 
couple stress fluid. The study aims to develop a generalized form of this fluid with the inclusion of an extra couple stress effect in a 
channel. The study also considers the effect of heat and mass transfer on the fluid passing through the channel, as well as the external 
pressure effect on fluid flow. The classical model is adapted using the AB fractional operator, resulting in a fractional model system of 
equations. The study examines the impact of MHD and porosity on the system. Closed-form results for flow, temperature, and con
centration are obtained by utilizing integral transforms such as Laplace and Fourier transforms. Additionally, limiting cases are 
calculated and compared with the original solution to critically analyze the flow behavior of the presented study. The obtained limiting 
solutions are also compared using classical and AB fractional approaches. Moreover, the present results have been reduced to already 
published work which verify our obtained solutions. The impact of all flow parameters on flow, heat, and concentration are illustrated 
and presented in figures. Numerical results for engineering purposes, such as skin friction, Nusselt number, and Sherwood number, are 
obtained and presented in tables. The impact of all the parameters involved in these engineering quantities is calculated and listed in 
the tables. Some important findings from this study are extracted and presented.  

• The flow, heat and concentration profiles get lower for the increasing values of β and when the classical case β = 1 is considered the 
velocity, temperature and concertation profile is lowest.  

• The exact solutions have been obtained for the new class of fluid namely Oldroyd-B fluid with couple stresses.  
• The increasing values of time relaxation λ1 accelerate the fluid velocity while the time retardation parameter λ2 retards the fluid 

flow. The influence of λ1 and λ2 are opposite because they have inverse variation with the velocity of the fluid.  
• The velocity of the magnetohydrodynamics Oldroyd-B fluid with couple stresses in porous media decreases for the greater values of 

fractional parameter β, M, η and λ2.  
• The velocity of fluid get high with the increment of numeric values of P, K, Gr, Gm and λ1.  
• The temperature gets lower for high values of Pr, Re and β.  
• The concentration gets lower for higher values of Sc, Re and β.  
• A breif comparison between different fluid models have been done for classical and fractional derivatives 

10. Future direction 

The present analysis holds promise for future research in several ways. The main novelty of this study can be further explored and 
expanded upon by considering the following possibilities.  

• The current model can be extended by incorporating boundary conditions such as slip and no-slip conditions, mass flux, variable 
temperature and concentration at the boundary, among others.  

• The present model can extend by taking different initial and boundary conditions.  
• The present model can extend by considering the nanofluid and hybrid nanofluid model with different base fluid.  
• The present model can be highlighted in terms of a very new idea of tri-hybrid nanofluid and can be applied to different base fluids, 

such as water, engine oil, transformer oil, blood, kerosene oil, honey, etc., by considering the mixture of three different types of 
nanoparticles.  

• This model can extend by applying various fractional operator and highlight the impact of different fractional derivatives on the 
fluid flow.  

• While this research focuses on flow of Oldroyd-B fluid with couple stresses in a channel, the future studies can explore different 
types of non-Newtonian fluid flow models, such as Casson fluid, Maxwell fluid, and Jeffery fluid, etc.  

• Future research can also involve the use of different nanoparticles for different scientific purposes.  
• To expand the scope of this study, one can extend the present model by using stretching sheet, inclined plate, stretching cylinder, 

rotating frame and cavity problems, etc. 

Funding statement 

This research did not receive any specific grant or funding. 

Author contribution statement 

1) conceived and designed the experiments; 
2) performed the experiments; 
3) analyzed and interpreted the data; 

M. Arif et al.                                                                                                                                                                                                            



Heliyon 9 (2023) e17642

23

4) contributed reagents, materials, analysis tools or data; 
5) wrote the paper. 

Data availability statement 

Data included in article/supplementary material/referenced in article. 

Declaration of competing interest 

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to 
influence the work reported in this paper. 

Acknowledgment 

The authors acknowledge the financial support provided by the Center of Excellence in Theoretical and Computational Science 
(TaCS-CoE), KMUTT. Moreover, this research project is supported by Thailand Science Research and Innovation (TSRI) Basic Research 
Fund: Fiscal year 2022 (FF65). The first author Muhammad Arif appreciate the support provided by Petchra Pra Jom Klao Ph.D. 
Research Scholarship (Grant No. 14/2562 and Grant No. 25/2563). 

The authors acknowledge the financial support provided by the Center of Excellence in Theoretical and Computational Science 
(TaCS-CoE), KMUTT. This research was funded by National Science, Research and Innovation Fund (NSRF), King Mongkut’s University 
of Technology North Bangkok with Contract no. KMUTNB–FF–66-36. 

References 

[1] J.G. Oldroyd, On the formulation of rheological equations of state, Proc. R. Soc. London, A 200 (1063) (1950) 523–541, http://dx.doi.org/10.1098/ 
rspa.1950.0035. 

[2] R. Razzaq, U. Farooq, J. Cui, T. Muhammad, Non-similar solution for magnetized flow of Maxwell nanofluid over an exponentially stretching surface, Math. 
Probl Eng. (2021) 2021, http://dx.doi.org/10.1155/2021/5539542. 

[3] S. Prema, B.M. Shankar, K.N. Seetharamu, Convection heat transfer in a porous medium saturated with an Oldroyd B fluid-A Review, February) p. 012029), 
J. Phys. Conf. 1473 (No. 1) (2020), http://dx.doi.org/10.1088/1742-6596/1473/1/012029. IOP Publishing. 

[4] S.E.E. Hamza, MHD flow of an Oldroyd–B fluid through porous medium in a circular channel under the effect of time dependent pressure gradient, Am. J. Fluid 
Dynam. 7 (1) (2017) 1–11, http://dx.doi.org/10.5923/j.ajfd.20170701.01. 

[5] C. Fetecau, S.C. Prasad, K.R. Rajagopal, A note on the flow induced by a constantly accelerating plate in an Oldroyd-B fluid, Appl. Math. Model. 31 (4) (2007) 
647–654, http://dx.doi.org/10.1016/j.apm.2005.11.032. 

[6] C. Fetecau, T. Hayat, M. Khan, Unsteady flow of an Oldroyd-B fluid induced by the impulsive motion of a plate between two side walls perpendicular to the 
plate, Acta Mech. 198 (1) (2008) 21–33, http://dx.doi.org/10.1007/s00707-007-0522-0. 

[7] A. Elhanafy, A. Guaily, A. Elsaid, Numerical simulation of Oldroyd-B fluid with application to hemodynamics, Adv. Mech. Eng. 11 (5) (2019), 
1687814019852844, http://dx.doi.org/10.1177/1687814019852844. 

[8] M. Tahir, M.N. Naeem, M. Javaid, M. Younas, M. Imran, N. Sadiq, R. Safdar, Unsteady flow of fractional Oldroyd-B fluids through rotating annulus, Open Phys. 
16 (1) (2018) 193–200, http://dx.doi.org/10.1515/phys-2018-0028. 

[9] K. Mahmud, R. Mehmood, S. Rana, A. Al-Zubaidi, Flow of magnetic shear thinning nano fluid under zero mass flux and hall current, J. Mol. Liq. 352 (2022), 
118732, http://dx.doi.org/10.1016/j.molliq.2022.118732. 

[10] R. Mehmood, S. Rana, O. Anwar Bég, A. Kadir, Numerical study of chemical reaction effects in magnetohydrodynamic Oldroyd-B: oblique stagnation flow with a 
non-Fourier heat flux model, J. Braz. Soc. Mech. Sci. Eng. 40 (2018) 1–14, http://dx.doi.org/10.1007/s40430-018-1446-4. 

[11] V.K. Stokes, Couple stresses in fluids, in: Theories of Fluids with Microstructure, Springer, Berlin, Heidelberg, 1984, pp. 34–80. 
[12] V.K. Stokes, Theories of Fluids with Microstructure: an Introduction, Springer Science & Business Media, 2012. 
[13] M. Arif, F. Ali, I. Khan, K.S. Nisar, A time fractional model with non-singular kernel the generalized Couette flow of couple stress nanofluid, IEEE Access 8 (2020) 

77378–77395, http://dx.doi.org/10.1109/ACCESS.2020.2982028. 
[14] G.J. Reddy, M. Kumar, H.P. Rani, Study of entropy generation in transient hydromagnetic flow of couple stress fluid due to heat and mass transfer from a 

radiative vertical cylinder, Pramana 93 (2019) 1–14, http://dx.doi.org/10.1007/s12043-019-1861-9. 
[15] M. Kumar, G.J. Reddy, N.N. Kumar, O.A. Bég, Application of differential transform method to unsteady free convective heat transfer of a couple stress fluid over 

a stretching sheet, Heat Tran. Asian Res. 48 (2) (2019) 582–600, http://dx.doi.org/10.1002/htj.21396. 
[16] H. Basha, G.J. Reddy, N.V. Narayanan, O.A. Bég, Supercritical heat transfer characteristics of couple stress convection flow from a vertical cylinder using an 

equation of state approach, J. Mol. Liq. 277 (2019) 434–452, http://dx.doi.org/10.1016/j.molliq.2018.11.165. 
[17] A. Hiremath, G.J. Reddy, O.A. Bég, H. Holla, Numerical Investigation on Transient Third-Grade Magnetized Nanofluid Flow and Radiative Convection Heat 

Transfer from a Stationary/moving Cylinder: Nanomaterial and Nanoparticle Shape Effects, Waves in Random and Complex Media, 2022, pp. 1–30, http://dx. 
doi.org/10.1080/17455030.2021.2024300. 

[18] G.J. Reddy, A. Hiremath, M. Kumar, O.A. Bég, A. Kadir, Unsteady magnetohydrodynamic couple stress fluid flow from a shrinking porous sheet: variational 
iteration method study, Heat Transfer 51 (2) (2022) 2219–2236, http://dx.doi.org/10.1002/htj.22397. 

[19] R. Mehmood, M.K. Nayak, N.S. Akbar, O.D. Makinde, Effects of thermal-diffusion and diffusion-thermo on oblique stagnation point flow of couple stress Casson 
fluid over a stretched horizontal Riga plate with higher order chemical reaction, J. Nanofluids 8 (1) (2019) 94–102, http://dx.doi.org/10.1166/jon.2019.1560. 

[20] A. Atangana, D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model, arXiv preprint arXiv: 
1602 (2016), http://dx.doi.org/10.48550/arXiv.1602.03408. 03408. 

[21] M. Arif, F. Ali, N.A. Sheikh, I. Khan, K.S. Nisar, Fractional model of couple stress fluid for generalized Couette flow: a comparative analysis of Atangana–Baleanu 
and Caputo–Fabrizio fractional derivatives, IEEE Access 7 (2019) 88643–88655, http://dx.doi.org/10.1109/ACCESS.2019.2925699. 

[22] M. Arif, P. Kumam, W. Kumam, I. Khan, M. Ramzan, A fractional model of Casson fluid with ramped wall temperature: engineering applications of engine oil, 
Comput. Math. Methods (2021) e1162, http://dx.doi.org/10.1002/cmm4.1162. 

[23] D. Baleanu, R.P. Agarwal, Fractional calculus in the sky, Adv. Differ. Equ. (1) (2021) 1–9, http://dx.doi.org/10.1186/s13662-021-03454-1. 
[24] D. Baleanu, Generalized memory and fractional calculus: a point of view, in: 9th (Online) International Conference on Applied Analysis and Mathematical 

Modeling, ICAAMM21) June 11-13, Istanbul-Turkey, 2021, p. 92 (Conference Paper). 
[25] E. Bas, R. Ozarslan, Real world applications of fractional models by Atangana–Baleanu fractional derivative, Chaos, Solit. Fractals 116 (2018) 121–125, http:// 

dx.doi.org/10.1016/j.chaos.2018.09.019. 

M. Arif et al.                                                                                                                                                                                                            

http://dx.doi.org/10.1098/rspa.1950.0035
http://dx.doi.org/10.1098/rspa.1950.0035
http://dx.doi.org/10.1155/2021/5539542
http://dx.doi.org/10.1088/1742-6596/1473/1/012029
http://dx.doi.org/10.5923/j.ajfd.20170701.01
http://dx.doi.org/10.1016/j.apm.2005.11.032
http://dx.doi.org/10.1007/s00707-007-0522-0
http://dx.doi.org/10.1177/1687814019852844
http://dx.doi.org/10.1515/phys-2018-0028
http://dx.doi.org/10.1016/j.molliq.2022.118732
http://dx.doi.org/10.1007/s40430-018-1446-4
http://refhub.elsevier.com/S2405-8440(23)04850-8/sref11
http://refhub.elsevier.com/S2405-8440(23)04850-8/sref12
http://dx.doi.org/10.1109/ACCESS.2020.2982028
http://dx.doi.org/10.1007/s12043-019-1861-9
http://dx.doi.org/10.1002/htj.21396
http://dx.doi.org/10.1016/j.molliq.2018.11.165
http://dx.doi.org/10.1080/17455030.2021.2024300
http://dx.doi.org/10.1080/17455030.2021.2024300
http://dx.doi.org/10.1002/htj.22397
http://dx.doi.org/10.1166/jon.2019.1560
http://dx.doi.org/10.48550/arXiv.1602.03408
http://dx.doi.org/10.1109/ACCESS.2019.2925699
http://dx.doi.org/10.1002/cmm4.1162
http://dx.doi.org/10.1186/s13662-021-03454-1
http://refhub.elsevier.com/S2405-8440(23)04850-8/sref24
http://refhub.elsevier.com/S2405-8440(23)04850-8/sref24
http://dx.doi.org/10.1016/j.chaos.2018.09.019
http://dx.doi.org/10.1016/j.chaos.2018.09.019


Heliyon 9 (2023) e17642

24

[26] M.I. Syam, M. Al-Refai, Fractional differential equations with Atangana–Baleanu fractional derivative: analysis and applications, Chaos, Solit. Fractals X 2 
(2019), 100013, http://dx.doi.org/10.1016/j.csfx.2019.100013. 

[27] T.L. Bergman, F.P. Incropera, D.P. DeWitt, A.S. Lavine, Fundamentals of Heat and Mass Transfer, John Wiley & Sons, 2011 (Book Chapter). 
[28] M. Arif, F. Ali, F.N.A. Sheikh, I. Khan, Enhanced heat transfer in working fluids using nanoparticles with ramped wall temperature: applications in engine oil, 

Adv. Mech. Eng. 11 (11) (2019), 1687814019880987, http://dx.doi.org/10.1177/1687814019880987. 
[29] C.P. Kothandaraman, Heat And Mass Transfer Data Book. New Age International, 2004 (Book chapter). 
[30] S. Khan, M.M. Selim, A. Khan, A. Ullah, T. Abdeljawad, M. Ayaz, W.K. Mashwani, On the analysis of the non-Newtonian fluid flow past a stretching/shrinking 

permeable surface with heat and mass transfer, Coatings 11 (5) (2021) 566, http://dx.doi.org/10.3390/coatings11050566. 
[31] A. Fabich, High Power Proton Beam Shocks and Magnetohydrodynamics in a Mercury Jet Target for a Neutrino Factory (Doctoral Dissertation, Tech. U. Wienna), 2002 

(Thesis). 
[32] M. Asadullah, U. Khan, R. Manzoor, N. Ahmed, S.T. Mohyud-Din, MHD flow of a Jeffery fluid in converging and diverging channels, Int. J. Mod. Math. Sci 6 (2) 

(2013) 92–106 (Article in Modern Scientific press). 
[33] F. Ali, M. Arif, I. Khan, N.A. Sheikh, M. Saqib, Natural convection in polyethylene glycol based molybdenum disulfide nanofluid with thermal radiation, 

chemical reaction and ramped wall temperature, Int. J. Heat Technol. 36 (2) (2018) 619–631. http://hdl.handle.net/10453/133891. 
[34] L. Zheng, Y. Liu, X. Zhang, Slip effects on MHD flow of a generalized Oldroyd-B fluid with fractional derivative, Nonlinear Anal. R. World Appl. 13 (2) (2012) 

513–523, http://dx.doi.org/10.1016/j.nonrwa.2011.02.016. 
[35] F.M. Abbasi, M. Gul, I. Shanakhat, H.J. Anjum, S.A. Shehzad, Entropy generation analysis for magnetized peristaltic movement of nanofluid through a non- 

uniform asymmetric channel with variable thermal conductivity, Chin. J. Phys. 78 (2022) 111–131, http://dx.doi.org/10.1016/j.cjph.2022.05.006. 
[36] C.S. Sravanthi, F. Mabood, S.G. Nabi, S.A. Shehzad, Heterogeneous and homogeneous reactive flow of magnetite-water nanofluid over a magnetized moving 

plate, Propul. Power Res. 11 (2) (2022) 265–275, http://dx.doi.org/10.1016/j.jppr.2022.02.006. 
[37] F.M. Abbasi, S.A. Shehzad, Magnetized peristaltic transportation of boron-nitride and ethylene-glycol nanofluid through a curved channel, Chem. Phys. Lett. 

803 (2022), 139860, http://dx.doi.org/10.1016/j.cplett.2022.139860. 
[38] M. Rashid, S. Nadeem, Flow of EMHD nanofluid in curved channel through corrugated walls, Appl. Math.-A J. Chinese Univ. 37 (4) (2022) 513–529, http://dx. 

doi.org/10.1007/s11766-022-3899-6. 
[39] A. Riaz, S. Almutairi, S.E. Alhazmi, A. Saleem, S. Nadeem, A. Abdelrahman, Insight into the cilia motion of electrically conducting Cu-blood nanofluid through a 

uniform curved channel when entropy generation is significant, Alex. Eng. J. 61 (12) (2022) 10613–10630, http://dx.doi.org/10.1016/j.aej.2022.04.011. 
[40] S. Nadeem, M. Tumreen, B. Ishtiaq, N. Abbas, Three-dimensional Second-Grade Nanofluid Flow with MHD Effects through a Slandering Stretching Sheet: a 

Numerical Solution, Waves in Random and Complex Media, 2022, pp. 1–19, http://dx.doi.org/10.1080/17455030.2022.2143928. 
[41] N. Muhammad, S. Nadeem, F.D. Zaman, Transmission of thermal energy in a ferromagnetic nanofluid flow, Int. J. Mod. Phys. B 36 (32) (2022), 2250236, 

http://dx.doi.org/10.1142/S0217979222502368. 
[42] S. Nadeem, S. Ahmad, A. Issakhov, I.M. Alarifi, MHD stagnation point flow of nanofluid with SWCNT and MWCNT over a stretching surface driven by Arrhenius 

kinetics, Appl. Math.-A J. Chinese Univ. 37 (3) (2022) 366–382, http://dx.doi.org/10.1007/s11766-022-3966-z. 
[43] K.R. Rajagopal, M. Ruzicka, A.R. Srinivasa, On the Oberbeck-Boussinesq approximation, Math. Model Methods Appl. Sci. 6 (8) (1996) 1157–1167, http://dx. 

doi.org/10.1142/S0218202596000481. 
[44] Y.C. Fung, A First Course in Continuum Mechanics, (Book in Englewood Cliffs), Englewood Cliffs, 1977. 
[45] C. Truesdell, W. Noll, C. Truesdell, W. Noll, The Non-linear Field Theories of Mechanics, Springer Berlin Heidelberg, 2004, pp. 1–579, http://dx.doi.org/ 

10.1007/978-3-662-10388-3_1. 
[46] R.K. Lodhi, K. Ramesh, Comparative study on electroosmosis modulated flow of MHD viscoelastic fluid in the presence of modified Darcy’s law, Chin. J. Phys. 

68 (2020) 106–120, http://dx.doi.org/10.1016/j.cjph.2020.09.005. 
[47] F. Ali, Z. Ahmad, M. Arif, I. Khan, K.S. Nisar, A time fractional model of generalized Couette flow of couple stress nanofluid with heat and mass transfer: 

applications in engine oil, IEEE Access 8 (2020) 146944–146966, http://dx.doi.org/10.1109/ACCESS.2020.3013701. 
[48] R. Garrappa, M. Popolizio, Evaluation of generalized Mittag–Leffler functions on the real line, Adv. Comput. Math. 39 (1) (2013) 205–225, http://dx.doi.org/ 

10.1007/s10444-012-9274-z. 

M. Arif et al.                                                                                                                                                                                                            

http://dx.doi.org/10.1016/j.csfx.2019.100013
http://refhub.elsevier.com/S2405-8440(23)04850-8/sref27
http://dx.doi.org/10.1177/1687814019880987
http://refhub.elsevier.com/S2405-8440(23)04850-8/sref29
http://dx.doi.org/10.3390/coatings11050566
http://refhub.elsevier.com/S2405-8440(23)04850-8/sref31
http://refhub.elsevier.com/S2405-8440(23)04850-8/sref31
http://refhub.elsevier.com/S2405-8440(23)04850-8/sref32
http://refhub.elsevier.com/S2405-8440(23)04850-8/sref32
http://hdl.handle.net/10453/133891
http://dx.doi.org/10.1016/j.nonrwa.2011.02.016
http://dx.doi.org/10.1016/j.cjph.2022.05.006
http://dx.doi.org/10.1016/j.jppr.2022.02.006
http://dx.doi.org/10.1016/j.cplett.2022.139860
http://dx.doi.org/10.1007/s11766-022-3899-6
http://dx.doi.org/10.1007/s11766-022-3899-6
http://dx.doi.org/10.1016/j.aej.2022.04.011
http://dx.doi.org/10.1080/17455030.2022.2143928
http://dx.doi.org/10.1142/S0217979222502368
http://dx.doi.org/10.1007/s11766-022-3966-z
http://dx.doi.org/10.1142/S0218202596000481
http://dx.doi.org/10.1142/S0218202596000481
http://refhub.elsevier.com/S2405-8440(23)04850-8/sref44
http://dx.doi.org/10.1007/978-3-662-10388-3_1
http://dx.doi.org/10.1007/978-3-662-10388-3_1
http://dx.doi.org/10.1016/j.cjph.2020.09.005
http://dx.doi.org/10.1109/ACCESS.2020.3013701
http://dx.doi.org/10.1007/s10444-012-9274-z
http://dx.doi.org/10.1007/s10444-012-9274-z

	A fractional model of magnetohydrodynamics Oldroyd-B fluid with couple stresses, heat and mass transfer: A comparison among ...
	1 Introduction
	2 Mathematical modeling
	3 Formulation of the problem
	4 Atangana-Baleanu fractional model
	4.1 Exact solutions of energy equation
	4.2 Exact solutions of concentration equation
	4.3 Exact solutions of momentum equation

	5 Special cases
	5.1 Solution of Oldroyd-B fluid velocity
	5.2 Solution of maxwell fluid velocity
	5.3 Solution of Newtonian viscous fluid velocity
	5.4 Classical solution

	6 Liming case
	6.1 Solution of CSF velocity

	7 Nusselt number, sherwood number and skin friction
	7.1 Evaluation of nusselt number
	7.2 Evaluation of sherwood number
	7.3 Skin friction

	8 Results and discussion
	9 Conclusion
	10 Future direction
	Funding statement
	Author contribution statement
	Data availability statement
	Declaration of competing interest
	Acknowledgment
	References


