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The emergent property of resilience is the ability of a system to return to an original
state after a disturbance. Resilience may be used as an early warning system for
significant or irreversible community transition; that is, a community with diminishing
or low resilience may be close to catastrophic shift in function or an irreversible collapse.
Typically, resilience is quantified using recovery time, which may be difficult or impossible
to directly measure in microbial systems. A recent study in the literature showed that
under certain conditions, a set of spatial-based metrics termed recovery length, can
be correlated to recovery time, and thus may be a reasonable alternative measure of
resilience. However, this spatial metric of resilience is limited to use for step-change
perturbations. Building upon the concept of recovery length, we propose a more
general form of the spatial metric of resilience that can be applied to any shape of
perturbation profiles (for example, either sharp or smooth gradients). We termed this
new spatial measure “perturbation-adjusted spatial metric of resilience” (PASMORE).
We demonstrate the applicability of the proposed metric using a mathematical model of
a microbial mat.
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INTRODUCTION

Complex networks of interacting components produce outcomes that cannot be easily predicted,
even when the state of the network components and the inputs to the network are known. These
difficult-to-determine outcomes have come to be known as emergent phenomena or higher-order
properties, which emerge from the functioning of the whole network, rather than as a simple sum
of the individual states of the parts (De La Fuente et al., 2008; Schubert, 2014). Emergent properties
arise in complex networks that impact our lives, such as in the communities of microbes and
higher organisms that compose ecosystems (Tilman et al., 2001), social networks (Lusseau, 2003;
Mitrovic and Tadic, 2010), military-political structures (Porter et al., 2005), commercial systems
(Carey and Carville, 2003; Cimellaro et al., 2010), and climate and weather systems (Higgins et al.,
2002; Easterling and Kok, 2003). Consequently, developing the ability to understand and predict
emergent properties from complex networks is of great importance.

Microorganisms are commonly found physically associated with one another in spatially
structured communities such as biofilms or microbial mats (Curtis and Sloan, 2004; Wagner
et al., 2006; Fuhrman, 2009; Robinson et al., 2010; Renslow et al., 2011). These communities
may range from monocultures to highly diverse assemblages of species; however, in either
case, individual members operate and interact in ways governed by their individual functional
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responses and local microenvironmental conditions (Schramm
et al., 1996; Hibiya et al., 2003; Bernstein et al., 2013, 2014).
Formation of a biofilm matrix composed of extracellular
polymeric substances confers significant fitness advantages on
the microbes it shelters, including physical protection, such as
from predation or shearing forces, reduction of environmental
stresses, such as from rapid changes in environmental conditions
or exposure to antibiotics, facilitation of beneficial interspecies
relationships, and rapid exchange of genetic material (Flemming
and Wingender, 2001; Laspidou and Rittmann, 2002; Czaczyk
and Myszka, 2007; Cao et al., 2011). It is likely that emergent
properties arise from the spatial organization of microbes,
forming microenvironments and promoting interconnectedness
of a multi-species metabolic network through resource exchange
and intercellular communication (Xavier and Foster, 2007;
Konopka, 2009; Wintermute and Silver, 2010).

Resilience is a higher-order property in microbial
communities, characterized by the ability to recover from
a perturbation or disturbance (Allison and Martiny, 2008;
Shade et al., 2012; Griffiths and Philippot, 2013; Hawkes and
Keitt, 2015). While resilience is not yet conclusively defined
in microbial communities, we use this term to imply the rate
of recovery of a given function in a community (or, more
generally, their functional relationship with environmental
variables) after perturbation. The concept of functional resilience
in both engineered and ecological microbial systems, and
the relationship between state and functional properties is
examined in detail in our companion paper (Song et al., 2015).
Attempts at quantifying resilience have primarily been done by
monitoring functional recovery over time, with resilience being
negatively correlated to recovery time (i.e., the time required
for function to recover a defined percent of original function),
or being correlated to recovery speed (i.e., the rate of recovery
of function with units of slope). Faster recovery of function is
therefore an indicator of higher resilience. These ideas have
been explored theoretically and experimentally (Wissel, 1984).
For example, recovery rate was monitored for cyanobacterial
cultures exposed to a dilution perturbation by flushing out
10% of the population volume; the recovery rate decreased as
the population lost resilience and approached a tipping point
where function became irrecoverable (Veraart et al., 2012).
In this experiment where the recovery over time was readily
observable over a relevant timescale, assessing the system’s
resilience is straightforward. Such quantification of recovery
time is important because it is known that systems nearing the
verge of collapse or those trending toward unstable dynamics
frequently exhibit reduced rates of recovery, or decreasing
resilience (van Nes and Scheffer, 2007). This is known as “critical
slowing down,” meaning that, as a system nears a tipping point,
recovery of function after a perturbation slackens (Scheffer
et al., 2009, 2012). Thus quantitative measures of resilience are
essential for early warning of impending system collapse, from
which function cannot be regained.

Although recovery rate provides a direct measurement of
resilience, in some systems it is not possible or practical
to measure recovery time on time scales relevant to the
perturbation. Additionally, some systems do not allow for

measurement of resilience because the experiments needed
for quantify recovery time are impossible, unethical (e.g.,
when imposing a perturbation and monitoring function would
endanger ecosystems or humans), or otherwise detrimental to
the function of neighboring systems. In such cases not amenable
to temporal analysis, resilience can alternatively be quantified
in terms of spatial recovery as a proxy for temporal recovery
(Dai et al., 2013). This means that resilience may still be
predicted by observing spatial, rather than temporal, features
of the system in cases where temporal and spatial recovery are
reasonably correlated. The ability to monitor microbial function
over relevant spatial scales has become increasingly possible due
to advances in imaging and sensor capabilities, enabling a link
between function, structure, and microbial identity (Behrens
et al., 2008; Li et al., 2008; Pett-Ridge and Weber, 2012; Babauta
et al., 2014; Vanwonterghem et al., 2014).

Recently, Dai et al. (2013) put forward recovery length as
a measure for resilience. Recovery length is characterized by
the distance required for function to recover from a spatial
perturbation, and it was initially based on the observation
that recovery length, which was correlated to recovery time,
increased when a yeast system was on the verge of collapse.
In their experiment, populations of Saccharomyces cerevisiae
were connected spatially along a one-dimensional array through
discrete dispersal events. Population stability was measured as
the dilution factor was increased, imposing a perturbation.
Recovery length was quantified by measuring the population
density across distance, which provided a warning signal of
imminent population collapse as the dilution factor approached
unsustainable levels. Furthermore, these indicators increased
with gradual increases in dilution factor, revealing deterioration
of resilience in the system in real time. The recovery
length concept proposed by Dai and coworkers faithfully
quantified resilience to perturbations with sharp boundaries
(such as step-change perturbations). As the authors pointed
out, however, the same may not be effective for more
realistic forms of perturbations that follow gradients or
which are blurred across the spatial dimension. In reality,
perturbation may come as gradients across both time and
space. For example, spatial perturbations that form gradients
include the intrusion of substrate or toxins into soil and
its subsequent removal (Cao et al., 2012; Moran et al.,
2014) or sunlight penetrating into a microbial mat (Bhaya
et al., 2001; Häder and Lebert, 2001; Lindemann et al.,
2013).

In this study we propose a perturbation-independent
resilience metric, termed perturbation-adjusted spatial metric of
resilience (PASMORE), to be applicable to perturbations that
may be either step-change or gradient-based, and thus extending
the recovery length work by Dai et al. (2013). To test this
new metric, we developed a simple model of a microbial mat
containing species with differing resilience. We discuss cases
where the previously proposed metric fails to faithfully measure
resilience under gradient perturbations, and then demonstrate
how PASMORE provides an appropriate assessment of resilience
for the same and other types of perturbation profiles. We also
explored the impact of limited knowledge about the shape of
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perturbation profiles on the effectiveness of PASMORE. Finally,
we investigated a test application of PASMORE to systems of two
interacting species, and observed how resilience is affected by
interspecies competition.

MODEL SYSTEM

We considered a simple mathematical model, which simulates
a microbial mat with populations of microbial species: one
with faster motility, and another with slower motility (see
Figure 1 for illustration). Each species responds to a perturbation
(e.g., light) with movement proportional and opposite to the
perturbation; during perturbation, both species move away from
the perturbation toward a region where the perturbation is not
present. The key aspect of this simulation is that the motility
allows the microbial species to recover their initial population
density after the perturbation occurs, with the more motile
species recovering more quickly, and thus displaying higher
resilience. While resilience is bestowed by motility rate in our
model system, there are many other properties of a microbial
species that can confer resilience beyond motility, and these
features may present themselves within spatial constructions
besides microbial mats. Furthermore, our proposed resilience
measure has been formulated to be agnostic to the type of
function being monitored. As discussed in Song et al. (2015),
it is the researcher’s job to identify the function of interest that
is measured in a spatially defined community. Function may
be defined as any trait or variable of interest, and resilience of
the chosen function must be relative to a specific perturbation
(Felix and Wagner, 2008). This is the cardinal “What to
What?” question discussed by Carpenter et al. (2001) and Lesne
(2008). For an in-depth discussion on the biological features
that contribute to microbial resilience see the review by Shade
et al. (2012). For the sake of evaluating our proposed resilience

FIGURE 1 | Schematic of model system. A microbial mat has a population
of species with differing resilience. In this system, resilience is conferred by
movement, with rapid movement (green) having higher resilience than slower
movement (red). Both cells respond to a perturbation, in this case light
penetration into the mat, by moving out of the zone affected by the
perturbation. After the perturbation concludes, the cells recover their initial cell
density by moving back into the previously affected region. The faster moving
cell has a higher resilience, i.e., the ability to recover population density more
quickly, as it is capable of returning more quickly to the previously vacated
space.

measure, motility suffices to provide a good working model, with
population density as the example function of interest (or as a
proxy for community functions that are closely linked to it).

The simulation was built using Comsol Multiphysics (v.
5.0.1.276) finite element analysis software with the chemical
reaction engineering module. The microbial mat model was
implemented using the diffusion application mode, with a one-
dimensional geometry, similar to models previously described by
our group (Renslow et al., 2013a,b,c).

THE CONCEPT OF THE RECOVERY
LENGTH AND PROPOSED EXTENSION

Dai et al. (2013) proposed the half-point recovery length
definition of spatial recovery, which increases in proportion to
the loss of resilience. The half-point recovery length is defined as
Lhalf in Equation 1:

f (Lhalf) =
1
2
[f (xb) + f (xeq)] (1)

where f is the function of interest, xb is the spatial distance at
the boundary of the perturbation, f(xeq) is the functional value
at the corresponding equilibrium (e.g., unperturbed) condition
(a diagram of these terms is provided in Dai et al. (2013)
supplementary information). For our simulation, we define
f(xeq) as the functional value when it has reached 99% of its
true equilibrium value, similar to how we calculate temporal
recovery, described below. The equilibrium condition may also
be considered to be f(xeq) where the function is fully perturbed,
especially in the case where recovery length is measured at a
boundary or where a full recovery profile (i.e., one that includes
both perturbed and unperturbed equilibrium regions) may not
be available (see Dai et al., Supplementary Figures 6 and 8 for
a more detailed discussion on this special case). In cases where
the perturbation boundary is not well defined or unknown,
such as during a gradient perturbation, we assign xb to be the
spatial distance at the start of the perturbation. This does not
alter the recovery length–resilience correlation for step-change
perturbations in our model, but simply allows for quantifying
Lhalf in gradient perturbation cases. Also note that, as described
in Dai et al., function profiles are normalized by f(xeq), and all
results are shown on normalized scales for clarity and ease of
comparison.

A new measure proposed in this work, PASMORE takes into
account the shape of the perturbation, whether it follows a sharp
step-change or a gradient. PASMORE is defined as a weighted
integral, where the perturbation profile is the weighting function:

PASMORE =

∫
s
p(x)f(x)dx (2)

where f is the function of interest, p is the perturbation profile,
and PASMORE is the integral of pf over the defined system space,
S. In our simulation, the defined system space is the microbial mat
where the perturbation has effect.
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COMPARISON OF RECOVERY LENGTH
AND PASMORE IN MICROBIAL MATS
WITH NON-INTERACTING SPECIES

In Figure 2, we demonstrate how a microbial population
responds to the application and removal of a perturbation. It
is possible to see the relationship between temporal recovery
and spatial recovery. Temporal recovery is defined as the time
required for the recovery of function, in this case population
density, to 99% of its original value. In cases where spatial
recovery is correlated to temporal recovery, such as in our
simulation (Pearson product-moment correlation coefficient, i.e.,
Pearson’s r, of 1.0), spatial recovery metrics may be used as a
proxy for quantifying resilience.

It is known that perturbations, whether occurring over time
or over spatial domains, will occur frequently across gradients
of varying sharpness. For example, using the example of light as
the source of perturbation, attenuation follows an exponential
decay profile. Even when the perturbation occurs across a
gradient, rapidly motile species exhibit high resilience, meaning
in this case that they recover population density more quickly
than species with slow motility. However, as discussed by Dai
et al. (2013), half-point recovery length may fail to accurately
quantify resilience under conditions of a blurred or gradient
perturbation. We tested step-change, linear, polynomial, and
exponential perturbation gradients (data shown only for the
exponential case) (Figure 3). The ability for spatial recovery
to correlate to temporal recovery decreases as the perturbation
profiles approaches an exponential function, where all correlation
is lost (Pearson’s r of 0.0). Figure 4 demonstrates that PASMORE
is able to accurately quantify spatial recovery and maintain the
correlation to temporal recovery (Pearson’s r of 1.0) regardless

of the perturbation profile. This was true for all perturbation
gradients that we tested. Resilience arises due to the motility of
the population, thus the metric should maintain its relationship
to motility regardless of the perturbation to which it is
exposed.

QUANTIFYING RESILIENCE WITH
LIMITED PERTURBATION INFORMATION

Properly quantifying resilience using spatial metrics requires
information about the perturbation’s shape. This is true whether
PASMORE or other metrics like half-point recovery length are
used. However, in experimental systems, it may not be possible
to obtain the entire profile of a perturbation gradient. Here
we wanted to quantify the effect of limited information about
the gradient. Therefore, we examined PASMORE for use when
the exact shape of the gradient imposed by a perturbation
was uncertain. As shown in Figure 5, we compared two cases
against the full-profile PASMORE: (1) a two-point dataset to
generate a linear approximation between the start and end of the
observed perturbation and (2) a three-point dataset to generate
two linear approximations between the start and middle and
between the middle and end of the observed perturbation. Note
that only the perturbation profile was approximated, not the
population density, since it is assumed that the function of
interest, for which resilience is to be evaluated, is quantifiable.
Using sensitive measurement instruments in real systems, it is
likely that more than two or three data points of the perturbation
profile could be obtained, for example by using microelectrodes
(Nguyen et al., 2012) or NMR imaging (Renslow et al., 2010).
However, as will be demonstrated, even using a three-point

FIGURE 2 | Recovery over time is associated with recovery through the simulated microbial mat. The top profile shows the bulk population response of a
species over time: before (A), during (B), and after (C,D) a step-change perturbation is applied. Bottom figures show the species spatial distribution at each time
point. Before the perturbation (A) the species has a homogenous population density. During the perturbation (B), with perturbation profile shown as dashed gray
line), the population density is lowest in the perturbed region. After the perturbation has been removed, the species begins to recover (C) until its population density
approaches the pre-perturbed profile (D).
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FIGURE 3 | Spatial population density profiles during a perturbation and recovery time – motility relationship for two different perturbation profiles:
step-change (A,B) and exponential (C,D). The faster species (green) recovers more quickly after a perturbation than the slow species (red). Regardless of the
shape of the perturbation profile, the recovery time decreases as motility increases, verifying that resilience is higher for the faster species.

approximation, the calculation of PASMORE quickly approaches
the full-profile PASMORE. Figure 5 shows that PASMORE is
able to maintain the correlation to temporal recovery with
a two-point approximation (Pearson’s r of 0.96), and this
correlation improved with a three-point dataset (Pearson’s r of
0.99).

ANALYSIS OF A MICROBIAL MAT WITH
INTERACTING SPECIES

We investigated how resilience as measured by PASMORE would
change if two species in the mat interacted with each other.
Therefore, we modified the model to simultaneously include
two motile species that exhibited a difference in their rate
of motility, but which was dependent on the consumption of
a substrate. The substrate diffused from the top of the mat
and consumption followed Monod-type kinetics, based on the
diffusion and reaction parameters and setup of a previous
model (Renslow et al., 2013b). Such a configuration broadly
approximates the structure of a cyanobacterial mat, where the

carbon fixation upon which heterotrophs depend is maximal
near the mat surface (Lindemann et al., 2013). The case where
both species competed for the same substrate was compared
to the case where the species consumed two independent
substrates noncompetitively. Figure 6 shows the percent change
of PASMORE comparing the non-interacting to competitive
interaction cases. Compared to the non-interacting case, the
interacting species displayed an increase in PASMORE, and thus
were found to have lower resilience. Furthermore, the species
with the faster motility exhibited a larger loss of resilience
compared to the slower species. This is due to the fact that, during
perturbation, the species with higher resilience occupy a lower
nutrient zone, while the species with lower resilience are closer to
the nutrient source and are thus less affected. As such, the model
illustrates a trade-off between resource availability and stress
avoidance in these motile species; we anticipate that similar trade-
offs will exist in many spatially organized communities where
local interactions lead to gains in fitness. Finally, this simple
simulation demonstrates how PASMORE can help quantify
resilience in a case where previous metrics would not have been
meaningful.
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FIGURE 4 | Recovery time – recovery length and recovery time – PASMORE relationships for two different perturbation profiles: step-change (A,B)
and exponential (C,D). For a step-change perturbation, recovery length correctly correlates with recovery time (A), however, it is unable to correctly correlate when
the perturbation profile is exponential (C). PASMORE correctly correlates to recovery time regardless of the perturbation profile (B,D).

FIGURE 5 | In some cases, a full perturbation profile, i.e., p(x), may not be known. However, it may be possible to make a few measurements and interpolate
the perturbation profile, for example at the start and end of the perturbation profile. (A) Three demonstration cases for a measured perturbation profile: Start and end
(s.e., linear approximation), start-middle-end (s.m.e., two linear lines approximation), and full profile (full, exponential). (B) Recovery Time – PASMORE correlation to
the three measured perturbation profiles. Even in the cases where only limited information about the true perturbation profile is known, PASMORE may still correlate
well with recovery time.
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FIGURE 6 | Schematic of the model system, which has been modified to force competition between two species (one with higher resilience and one
with lower resilience) by making motility dependent on consumption of a sole nutrient, which is supplied in the liquid above the microbial mat. During
a perturbation, the nutrient concentration far from the perturbation becomes limited. The right plot shows the percent change of PASMORE when a slower species
competes for the nutrient with a faster species, compared to a non-interacting case (i.e., when the species rely on differing nutrients). The competitive interaction led
an increase in PASMORE, i.e., lower resilience, for both the slow and fast species due to the competition between species. The faster species exhibited a greater
decrease in resilience compared to the slower species.

PASMORE IN THE BROADER CONTEXT
OF SPATIAL RESILIENCE MEASURES

The capability to monitor spatial patterns of microbial function
can help elucidate the resilience of a community in cases where
temporal measurements may not have previously been practical.
Spatial measures remove the need to monitor a given function
over time, and thus a snapshot of the present community stability
can be gauged. This type of analysis may have implications
beyond the microbial world, as there are many forms of complex
networks and communities that display properties of emergent
phenomena with spatially-relevant functions. For example, the
spatial effects of social dilemmas have been investigated for
several decades (Nowak and May, 1992; Hauert, 2006) and
the frequency of human cooperation and collaboration or
selfishness and exploitation across spatial dimensions impacts the
resilience of groups of peoples and their ability to maintain high
productivity (Alvard, 2004; Jimenez et al., 2008). Furthermore,
spatial patterns of human settlements and population densities
may be related to community stability in the face of perturbation
events such as loss of water, tillable soil, hunting ground, food,
energy and other resources, as well as the related incidents of
overpopulation and politico-military conflicts (Tir and Diehl,
1998; Vandam et al., 2013). In this context, densities of
refugee settlements across countries and subsequent patterns of
repopulation of cities after wars may reveal human community
and ethno-regional group stability properties in the face of
significant devastation. Other possible application areas for
spatial measures of resilience could include aquifer-groundwater
recharge rates (Guglielmi and Mudry, 1996; Katic and Grafton,
2011), soil and vegetation health (Seybold et al., 1999; van de
Koppel and Rietkerk, 2004; Alongi, 2008; Jiang et al., 2012),
permafrost vulnerability (Jorgenson et al., 2010), coral reef
habitats (Nystrom and Folke, 2001; Cheal et al., 2013), and
fishery management (Carpenter and Brock, 2004; Kerr et al.,
2010). Indeed, understanding the resilience of biological and
non-biological systems will be critical for determining the impact
of climate change and the necessary policy changes to alleviate

negative consequences (Bloetscher et al., 2010; Cumming, 2011).
Future experiments and observations will need to be done to
determine the extent to which spatial measures of resilience, such
as PASMORE, may be used to provide insight into stability of
complex systems beyond microbial communities. Furthermore,
the ability of PASMORE to measure resilience in highly
heterogeneous, discontinuous, or physically-restricted systems
will need to be tested. It is unclear how barriers that constrain
functional recovery, whether social, cultural, financial, political,
or physical (e.g., soil and minerals at the microbial scale), will
impact the capacity of PASMORE to measure resilience.

CONCLUSION

‘Perturbation-adjusted spatial metric of resilience’ (PASMORE)
is capable of accurately quantifying spatial recovery and
maintaining the correlation to temporal recovery regardless of
the perturbation profile. In many environmental and ecological
systems, the gradient shape of the perturbation may not be
quantifiable and even the identity or type of perturbation may not
be known. However, even with limited information, PASMORE
can be calculated with approximation of the perturbation
profile to reveal a close estimate of the system’s resilience.
We envision that establishing the concept of PASMORE as a
practically useful metric of resilience requires further studies,
including investigation of the limits of using spatial recovery
in lieu of temporal recovery to quantify resilience in real
natural and engineered microbial communities and relating these
measurements to predictions of when systems are on the verge
of collapse or nearing an irreversible transition across a tipping
point. The present work provides initial foundations along this
direction.
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