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Micro- and nano-manufacturing technologies have been developed in research and
industrial environments to support product miniaturization and the integration of new
functionalities. The technological development of new materials and processing methods
has been supported by developing predictive models, which can simulate the interactions
between materials, process states, and product properties. Compared with the conventional
manufacturing scale, micro- and nano-scale technologies require different mechanical,
thermal, and fluid dynamics phenomena to be studied and modeled. To fully realize the
micro- and nano-scale potential, several challenges still need to be overcome. Among
them are understanding the material processing behavior at a reduced scale, developing
design criteria, validating process control and monitoring strategies, and defining quality
control procedures.

This Special Issue showcases 12 state-of-the-art examples of modeling and simulation
in micro- and nano-manufacturing processes. The papers that are published in this Special
Issue explore the following micro- and nano-manufacturing processes: laser texturing [1,2],
3D printing [3,4], grinding [5,6], turning [7,8], and electrochemical machining [9,10]. The
remaining papers cover lithography-based manufacturing [11], and micro- and nano-scale
design aspects [12].

Laser texturing technologies exploit electromagnetic energy, to melt and vaporize the
material on the surface, creating a texture. Ultrafast texturing is a recent development in
laser technologies, which has many peculiarities and allows the machining of different
textures. Ultrafast lasers are pulsed lasers that are characterized by a duration of a few
nanoseconds, and a frequency ranging between one and several hundreds of kHz. Ultrafast
laser systems are characterized by low-power characteristics (i.e., units of Watts); however,
the use of high-power light pulses allows for high values of energy to be focused on the
workpiece surface. Kažukauskas et al. used a femtosecond laser to polish the surface of
a transparent biocompatible polymer for body implants [1]. The results showed that the
polishing process depends on the thermal heat flux, which initiates thermos-dynamical
phenomena that change the surface roughness of the sample. Piccolo et al. used a femtosec-
ond laser to create a submicron texture on a metallic mold, which was then replicated by
microinjection molding [2]. The texture replication resulted in the functionalization of a
plastic surface, which showed different static wetting behavior, as a function of the texture
replication attained with the molding process.

Recent innovations in 3D printing technologies allow the direct manufacturing of
micro- and nano-scale products, such as microfluidics, and the generation of fine details on
manufacturing tools. Dempsey et al. used a digital light processing (DLP)-based inverted
stereolithography process, to produce thermoset polymer-based tooling for micro injection
molding [3]. The results show that the resistance of the soft tool is related to its dynamic
temperature distribution during the process, and its ability to dissipate the heat that is
convected by the hot polymer melt. Chen et al. developed a sample library of standardized
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components and connectors, manufactured using a multi-jet modeling technology, using a
print head that jets the photopolymer and the waxy support material [4]. Their modular
microfluidic system offers potential for realizing mass-production complexes and multiplex
systems for the commercialization of microfluidic platforms.

Grinding, at the nano-scale level, can be efficiently employed to create surfaces with
ultrahigh precision, by removing a few atomic layers from the substrate. Manea et al.
developed an arithmetical model to calculate the nano-scale grinding force required to ma-
chine optical glass, and analyzed how processing parameters can be controlled to achieve
high surface and subsurface quality [5]. Karkalos et al. focused on molecular dynamics
modeling with multiple abrasive grains, to study the effect of spacing between the adjacent
rows of abrasive grains and the effect of the rake angle of the abrasive grains [6]. They
evaluated the grinding forces and temperatures, ground surface quality, chip formation,
and subsurface damage of the substrate.

Skrzyniarz studied the minimum chip thickness formation during the longitudinal
turning of steel [7]. The analysis of the machined workpiece showed that the depth of
cut and the feed rate affects the minimum chip thickness. Elastic-plastic deformation and
ploughing were observed when the feed rate was lower than the cutting edge radius. You
et al. carried out an experimental investigation, focusing on laser-assisted turning by
the in-process heating of tungsten carbide, for precision glass molding [8]. The process
guides the laser beam passes through the transparent tool, to heat the material locally,
thereby decreasing the ultra-high tungsten carbide hardness and altering the fracture
toughness as soon as the tool interacts with the material. Through an experimental study,
the technology was shown to improve machinability, making the ductile turning of hard
and brittle materials possible, and has been confirmed as a viable solution for hard and
brittle material ultra-precision machining.

Electrochemical machining uses energy (i.e., chemical, electrical, thermal) to remove
material from the workpiece’s surface, without physical contact. He et al. studied radial
ultrasonic rolling electrochemical micromachining, which is a process that is characterized
by the feeding of small and rotating electrodes, aided by ultrasonic rolling, to create an
array of pits [9]. Fan et al. analyzed a method of electrochemical machining, using a
conductive masked porous cathode and jet electrolyte supply, to generate micro-grooves
with high machining localization [10].

A lithography process involves transferring a geometric pattern from a mask to
a photoresist-coated semiconductor wafer surface. Geng et al. used a high-precision
lithography simulation model for thick SU-8 photoresist, based on the waveguide method,
to calculate light intensity in the photoresist and predict the profiles of developed SU-8
structures [11].

Langford et al. developed a methodology to calculate the forces acting upon the
intraosseous transcutaneous amputation prosthesis, which was designed for use in a
quarter amputated femur [12]. The design approach focused on a failure feature, shaped
similarly to a safety notch, which would stop excessive stress permeating the bone, causing
damage to the user. The topology analysis identified critical materials and local maximum
stresses when modeling the applied loads.
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