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ABSTRACT Biomolecular simulations are intrinsically high dimensional and generate noisy data sets of ever-increasing size.
Extracting important features from the data is crucial for understanding the biophysical properties of molecular processes, but
remains a big challenge. Machine learning (ML) provides powerful dimensionality reduction tools. However, such methods are
often criticized as resembling black boxes with limited human-interpretable insight. We use methods from supervised and un-
supervised ML to efficiently create interpretable maps of important features from molecular simulations. We benchmark the per-
formance of several methods, including neural networks, random forests, and principal component analysis, using a toy model
with properties reminiscent of macromolecular behavior. We then analyze three diverse biological processes: conformational
changes within the soluble protein calmodulin, ligand binding to a G protein-coupled receptor, and activation of an ion channel
voltage-sensor domain, unraveling features critical for signal transduction, ligand binding, and voltage sensing. This work dem-
onstrates the usefulness of ML in understanding biomolecular states and demystifying complex simulations.
SIGNIFICANCE Understanding how biomolecules function requires resolving the ensemble of structures they visit.
Molecular dynamics simulations compute these ensembles and generate large amounts of data that can be noisy and
need to be condensed for human interpretation. Machine learning methods are designed to process large amounts of data
but are often criticized for their black-box nature and have historically been modestly used in the analysis of biomolecular
systems. We demonstrate how machine learning tools can provide an interpretable overview of important features in a
simulation data set. We develop a protocol to quickly perform data-driven analysis of molecular simulations. This protocol
is applied to identify the molecular basis of ligand binding to a receptor and of voltage sensitivity of an ion channel.
INTRODUCTION

Molecular dynamics (MD) simulations of biological sys-
tems provide a unique atomistic insight into many important
biological processes, such as a protein’s conformational
change between functional states, the folding of a soluble
protein, or the effect of ligand binding to a receptor. These
systems can be extremely high dimensional, with pairwise
interactions between tens to hundreds of thousands of atoms
at every snapshot in time. As system sizes, as well as the
reachable timescales of simulations, have increased signifi-
cantly over the last decade, a conventional simulation can
now generate terabytes of raw data that need to be
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condensed for human interpretation. Data-driven methods
reduce the risk for researchers to overlook important proper-
ties in a simulation or even misinterpret the computational
experiment and introduce human bias in the analysis.

A system of N particles has 3N spatial degrees of
freedom. Fortunately, restraints in the system because of,
for example, the force field and steric hindrance restrict
biomolecules to only adopt a subset of all possible atomic
rearrangements. Thus, the system typically moves on a
manifold of much lower dimensionality than its actual num-
ber of degrees of freedom. Finding this manifold is not easy,
and even when it is found, it can still be difficult to interpret
it. Researchers often seek reaction coordinates or collective
variables (CVs) to describe important features of this
manifold. An optimal set of CVs should help answering a
specific question. For example, if the aim is to enhance sam-
pling of transitions from one functional state to another, we
typically seek the CVs that best describe the slowest motion
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of the system. In other situations, we might seek answers to
biophysically relevant questions by chasing subtle differ-
ences on the molecular level between slightly perturbed
states. Examples include establishing the molecular signa-
tures of a protein when bound to different ligands,
comparing structural changes associated with different pro-
tonation states or evaluating the effect of a point mutation.
Regardless of the biological problem at hand, analysis typi-
cally involves processing a large set of high-dimensional
data in search of important features. This type of dimension-
ality reduction problem may be addressed with machine
learning (ML) methods.

The increasing amounts of data, as well as limited time and
resources for processing and analysis, are not only a chal-
lenge in the field of biomolecular simulations. ML methods
have gained enormous interest in recent years and are now
applied in a wide range of research areas within biology,
medicine, and health care (1–3) such as genomics (4),
network biology (5), drug discovery (6), and medical imaging
(7,8). In molecular simulations, such methods have, for
example, eminently been used to enhance sampling by iden-
tifying CVs or the intrinsic dimensionality of biomolecular
system in a data-driven manner (9–30), as an interpolation
or exploratory tool for generating new protein conformations
(23,31,32), as well as providing a framework for learning bio-
molecular states and kinetics (11,33,34). However, many
tools borrowed from ML, most notably nonlinear models
such as neural networks (NNs), are criticized for their resem-
blance to a black box, which obstructs human-interpretable
insights (1–3,5). Therefore, making this opaque black box
transparent is an active area of research (35,36).

In this study, we have demonstrated how to learn
ensemble properties from molecular simulations and pro-
vide easily interpretable metrics of important features with
prominent ML methods of varying complexity, including
principal component analysis (PCA), random forests
(RFs), and three types of neural networks (NNs): autoen-
coders (AEs), restricted Boltzmann machines (RBMs), and
multilayer perceptrons (MLPs). For different types of data
sets, we considered supervised methods, in which each
simulation frame belongs to a known class, as well as unsu-
pervised methods, in which information is extracted from
unlabeled data. To show how the methods perform under
various circumstances, we first evaluated them on a toy
model designed to mimic real macromolecular behavior,
in which functional states were defined by state-dependent
random displacement of atoms. This approach enabled us
to understand and illustrate the different methods’ properties
and shortcomings in a quantitative manner. In particular, we
find that all methods perform equally well on the toy
model’s simple setup, in which optimal inverse interatomic
distances are used as an input. However, although super-
vised methods are still able to identify important features
for a more complex input such as Cartesian coordinates,
unsupervised methods fail to do so.
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We further applied our protocol for identifying key features
of three biologically interesting processes that involve systems
sampled using extensive conventional MD or enhanced sam-
pling techniques: the conformational rearrangements occur-
ring within the C-terminal domain of the Ca2þ-bound
soluble protein calmodulin, the effect of ligand binding to a
G protein-coupled receptor (GPCR), and the response of an
ion channel voltage-sensor domain (VSD) to a change in the
transmembrane potential. In all three cases, the ML methods
pinpointed molecular features that are known to be important
for the function of these proteins. In general, our results
demonstrate the ability of ML methods to reveal valuable in-
sights into biomolecular systems. We anticipate that this
straightforward, yet powerful, approach can become useful
formany researcherswhendemystifyingcomplex simulations.
METHODS

PCA

PCA converts a set of input features, X, to a set of orthogonal linearly un-

correlated variables (Fig. 1 A), T, corresponding to the eigenvectors of XTX

with normalized eigenvalues l (37). The eigenvector with the highest eigen-

value covers the largest variance possible in the data set and is called the

first principal component (PC), and the second PC covers the largest vari-

ance in the orthogonal space of the first component etc. The feature impor-

tance, R, was taken to be the projection of the first PCs and eigenvalues onto

the original input features up to a certain threshold in accumulated variance

(Fig. 1 A): Ri ¼ Pj < jmax

j¼1

��ljTij �� , where i is the index of the input features, and
j is the index of the PCs. jmax was determined by three different approaches:

1) to a fixed number of PCs, 2) so that the sum
Pj < jmax

j¼1

lj was below a certain

threshold, or 3) set to the first lj that fulfilled the condition lj � 1/lj R 10.

Finally, the importance was normalized between 0 and 1.
RBM

An RBM (38) is a generative stochastic NN trained to maximize the

likelihood of the data using a graphical model with a layer of hidden nodes

connected to the input nodes (Fig. 1 B). We used an implementation from

scikit-learn of a Bernoulli RBM. Training was performed with stochastic

maximum likelihood. To find important features, layer-wise relevance prop-

agation (LRP; explained in the following section) was performed from the

output of the hidden layer to the input layer.

Note that in all computations, the input features were scaled between

values of 0 and 1. The RBM used in this study assumes a probabilistic

interpretation of the input features with values between 0 and 1, in which

the upper limit indicates that a specific input node is activated. When

feeding inverse distances to the RBM, and when larger input values corre-

spond to residues in contact with each other, this model makes physical

sense as long as the values are scaled properly. Cartesian coordinates,

even after scaling, do not fulfill the assumptions made about the input fea-

tures and have been taken into consideration only for the sake of

consistency.
LRP or deep Taylor decomposition

LRP, or deep Taylor decomposition when applied to networks with recti-

fier activation (ReLU) (39), is a method originally developed for image
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FIGURE 1 Machine learning (ML) models used

in this study. (A) Principal component analysis

(PCA) converts the input features to an orthogonal

set of linearly uncorrelated variables called prin-

cipal components (PCs) through an orthogonal

transformation. The first component covers the

largest variance possible. The feature importance

is taken to be the components’ coefficients of a

feature times the variance covered by (i.e., the ei-

genvalues) the components. (B) Restricted Boltz-

mann machine (RBM) is a generative stochastic

NN trained to maximize the likelihood of the

data using a graphical model with a layer of hidden

nodes connected to the input nodes. Important fea-

tures can be derived using layer-wise relevance

propagation (LRP), an algorithm originally devel-

oped for image classification problems (39). (C)

Autoencoder (AE) is a NN trained to reconstruct

the input features through a set of hidden layers

of lower dimensionality. Important features can

be derived using LRP. (D) Kullback-Leibler (KL)

divergence (also called relative entropy): this

metric computes the difference between two distri-

butions P(x) and Q(x) along every individual

feature. We compute the KL divergence between

one class and all other classes as an indication of the importance of a specific feature. (E) Random forest (RF) classifier: a prediction is taken as an ensemble

average over many decision trees. Average relevance per feature is computed as the mean decrease impurity (44). (F) A Multilayer perceptron (MLP) is a

feedforward artificial NN with fully connected layers. Important features can be derived using LRP. To see this figure in color, go online.
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classification problems with the aim to produce a decomposition (an

explanation) of a prediction that can be visualized in the same way as

the input data. Given a trained NN, it is possible to perform a backward

pass through the network (Fig. 1 F), keeping track of which nodes

contributed to a certain classification decision. More specifically, for a

prediction with input features X, true labels T, and a network output

T0, the relevance vector, R, is initialized as Ri ¼ TiT
0
i. The relevance is

iteratively propagated from nodes in one layer (index k) to the nodes

in a previous layer (index j) with the following iterative rule:

Rj ¼
P

k

r ajwjkð Þ
εþ
P

j
r ajwjkð ÞRk . Here, aj is the activation of the current node, ε

is a small increment set to 10�9, wjk are the weights connecting the

two layers, and r is a function that transforms the weights. For

layers of bounded values, such as the input layer if X is scaled between

fixed values, r ¼ ajwjk � ljmax(0, wjk) � hjmin(0, wjk) where lj and

hj are the layer’s lower and upper bounds. For unbounded values, r ¼
ajmax(0, wjk). The importance of a feature was derived by computing

the average relevance over all input samples in the training set and

normalizing the importance for all features and frames to have an upper

bound of 1. Unlike other methods in this study, it is possible to compute

the importance of a feature for a specific simulation frame in this way.
AE

An AE is a generative NN trained to reconstruct the input through a set

of hidden layers of lower dimensionality (Fig. 1 C; (40)). In short, the

model can be broken down into two parts: encoding and decoding. In

the encoding part, the layers decrease in size, causing the network to

ignore noise during training. In the decoding part, the layers increase

in size up to the output layer, which consists of reconstructed input

features.

The AE was implemented by training a scikit-learn MLP regressor

(41) with the same data as input and output. The encoding layers and

the decoding layers were always set to be of the same shape. To find

important features, LRP was performed from the reconstructed output

to the actual input.
Kullback-Leibler divergence

Kullback-Leibler (KL) divergence (Fig. 1 D; (42)), also called

relative entropy, is a measure of the difference between two distributions

P(x) and Q(x) along a feature X:
P

x˛XPðxÞlog PðxÞ
QðxÞ. The importance of a

feature was set to be a symmetric version of the KL divergence, ð1 =2ÞPðxÞ
logðPðxÞ =QðxÞÞþ ð1 =2ÞQðxÞlogðQðxÞ =PðxÞÞ, between one state and all

other states along that feature. All importance scores were normalized be-

tween 0 and 1.
RF classifier

AnRFclassifier (Fig. 1E; (43)) is anMLmodel inwhich a prediction is taken

as an ensemble average over many decision trees, each tree fitted to subsam-

ples of the data set. Important features were identified by computing the for-

est’s normalized mean decrease impurity (44), using scikit-learn’s (41)

implementation. Mean decrease impurity is essentially a measure of how

often a feature is used to split nodes in the underlying decision trees. It

is computed by identifying all nodes split by that feature and averaging

the metric rDi over all trees in the forest, where r is the fraction of samples

reaching the node and Di is the decrease in impurity by the split (45). In

this study, we used the Gini impurity, computed for a data set with N classes

as 1�PN
j¼1

p2j , where pj is the probability of a sample in class j reaching that

node. To compute the feature importance for a specific state, theRFwas alter-

natively used as a one-versus-the-rest binary classifier trained to distinguish

one state from all the others.
MLP classifier

An MLP classifier (Fig. 1 F) is a feedforward artificial NN with fully con-

nected layers (42). An implementation from scikit-learn (41) of anMLP clas-

sifier was used throughout this study, trained with the Adam solver (46). To

find important features, LRPwas performed from the output to the input layer.
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Toy model

To construct model systems, atoms were randomly placed in a box to set up

an initial configuration. To define states, a set of atoms unique to every state

were labeled as important and displaced relative to the initial configuration.

The toy model equivalents of simulation frames in a trajectory were generated

by displacing every labeled atom’s position with uniform noise and randomly

rotating the entire system around the origin. In silico systems are typically

rotation invariant, but aligning different configurations is often not trivial.

In addition to the number of atoms and frames in the generated trajectory,

the number of states, the number of important atoms per state, and the

strength of the noise were all configurable parameters of the toy model.

Moreover, we constructed two kinds of displacements: a linear displace-

ment of atoms from their original position (Fig. 2 A) as well as a nonlinear

displacement method (Fig. S1 and Supporting Materials and Methods). In

the linear method, the magnitude and direction of the displacement were

the same for all atoms. In the nonlinear method, one atom per state was dis-

placed from its equilibrium position, with the size and the direction of the

displacement depending on the state index. Subsequent atoms were rotated

around the position of the previous atom in the same state (see Supporting

Materials and Methods). From a biomolecular perspective, this can be seen

as a model of how inter-residue contacts are broken in a linear (for example,

with the displacement of one subdomain away from another) or nonlinear

manner (for example, with the twist of a helix).

The magnitude of the displacement was 0.1, and the strength of the noise

was 0.01, except for Fig. S2, where it was increased to 0.05. 1200 frames
Noise
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Random rotation

Original atom 
positions

A

C D

SUPERVISEDUNSUPERVISED UNSUPERVISED

Internal cCartesian coordinates

FIGURE 2 (A) Toy model used to benchmark different ML approaches to extra

generated, and a subset of the atoms, unique to every state, are displaced linearly fr

noise to all atoms’ positions. Because only the relative and not the absolute positio

randomly around the origin. (B) Importance per atom for single instances of the to

vertical lines, coinciding with all peaks in importance in the case of an MLP and

methods using either Cartesian coordinates (C), the full set of inverse interatomic d

input features sampled over different instances of the toy model with linear displac

every displaced atom has been identified as important and that other atoms have lo

displaced atoms, although not necessarily all of them, have been marked importan

after benchmarking every method (Figs. S4–S9) have been used. RAND stands for

interquartile range (box), the upper and lower whiskers (vertical lines), as well as
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were generated for each state. To obtain statistics, we generated 10 toy

models with 100 atoms in a box with a side length stretching from �1 to

1, with the exception of Fig. S3, for which we evaluated systems of varying

size. In total, there were three states with 10 displaced atoms per state. For

every ML method, we computed the performance for different combina-

tions of hyperparameters (Figs. S4–S9). For every instance of the toy

model, the feature importance was computed 10 times. The parameters

that gave the best performance were included in Figs. 2, S1, and S2.

When using inverse distances as features, the relevance per atom was

computed by summing the average importance of all distances involving

an atom and normalizing the values between 0 and 1. To take into account

the smallest number of input features possible without losing information

regarding the positions of the atoms, we also constructed a reduced set of

internal coordinates. We did so by including the distances from atom i to

atoms i þ 1, i þ 2, i þ 3, and i þ 4 only; this is akin to triangulation

and suffices to reconstruct the coordinates of the entire system. Cartesian

coordinates generated 3N input features. To compute the importance per

atom, the importance of every triplet of xyz coordinates was summed and

normalized.
Accuracy quantification

We used two scores to estimate a method’s performance on the toy

model. Given a measured distribution of importance f
�

and a true

distribution j
�
, we computed the accuracy at finding all important residues
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the outliers (circles). To see this figure in color, go online.
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. This mean squared error-based metric

gave high scores to methods that identified all displaced atoms in the toy

model and could tolerate some noise. The ignoring irrelevant accuracy

score, designed to give high scores to methods that only identified truly

important atoms without necessarily identifying all of them, was defined

as f�$j�=
���f�
���. To illustrate these scoring methods, the accuracy scores

of various distributions are highlighted in Fig. S10.
Calmodulin analysis

The data set consisted of six calmodulin (CaM) C-terminal states

extracted with spectral clustering from a mix of regular MD (3600 ns)

and temperature-enhanced simulations (570 ns replica-exchange MD

and 460 ns replica-exchange solute tempering) (47). We used inverse

Cɑ distances between C-terminal domain residues and a total of 7600

frames, yielding a data set size of 7600 � 2145. The data were first

shuffled in blocks of 100 frames and filtered before feature extraction.

Only residue pairs with Cɑ distance less than 1.0 nm in at least one frame

and more than 1.0 nm in another were kept. This cutoff filtering decreased

the number of features to 688. All features were normalized with scikit-

learn’s (41) min-max scaler. To pick the number of components in

PCA, a variance cutoff of 75% was used. The AE and MLP both had hid-

den layers of 120 and 100 nodes, respectively. Both were trained with an

Adam optimizer and used ReLU activation functions. The RF classifier

used 500 estimators and was trained with a one-versus-the-rest approach

to obtain important features for every individual state. We used threefold

cross validation and averaged the residue profile over five independent

iterations.
TABLE 1 Resources—Data and Software

Source Identifier

Deposited Data

Calmodulin

trajectory

(47) https://doi.org/10.1371/

journal.pcbi.1006072
GPCR analysis

The data set contained the output coordinates from every 10th short 10 ps

trajectory initiated from points along the most probable transition path

between b2 adrenergic receptor (b2AR)’s active and inactive state.

Trajectories from every 10th of the 200–300 iterations of a string-of-

swarms simulation (10) were used. Inverse Cɑ distances between all 284

protein residues were normalized with scikit-learn’s min-max scaler and

were chosen as input features.

All PCs until the corresponding eigenvalue differed by at least an order of

magnitude compared to the next eigenvalue were used to perform PCA. An

RF classifier with 1000 estimators was trained to discriminate between

ligand-bound and unbound frames. In total, 2674 frames were used in

training with fourfold cross validation. The final importance profiles were

averaged over 30 independent iterations.
b2 trajectory (10) https://doi.org/10.1101/627026

VSD trajectory (49) https://doi.org/10.1073/pnas.1416959112

Extracted data

for this

work

this work https://drive.google.com/open?

id¼19V1mXz7Yu0V_2JZ

Q8wtgt7aZusAKs2Bb

Software

Demystifying this work https://github.com/delemottelab/

demystifying

VMD (84) http://www.ks.uiuc.edu/Research/vmd/

Python 2.7 open source

software

https://www.python.org/

scikit-learn (41) https://scikit-learn.org/

MDTraj (85) http://mdtraj.org/

Numpy open source

software

http://www.numpy.org/

BioPandas (86) http://rasbt.github.io/biopandas/
VSD analysis

Snapshots corresponding to configurations making up five metastable

states were extracted from a metadynamics trajectory taken from our

previous study (48,49). The five states were previously identified using

the network of salt bridges between the S4 positive residues and their

negative counterparts as a collective variable (50). The overall length

of the trajectory was 12,175 frames with 1087, 1900, 2281, 4359, and

2548 frames corresponding to E, D, G, B, and A states, respectively.

Inverse heavy-atoms distances between all VSD residues were used as

input features (13,041 in total). Distances larger than 0.7 nm or smaller

than 0.5 nm throughout the entire trajectory were filtered out, yielding a

final number of 3077 input features. To identify important residues, an

RF classifier was trained with 100 estimators and threefold cross valida-

tion. The final residue importance profile was averaged over five inde-

pendent iterations.
Software availability

The software used in this study is available for download in Delemottelab’s

GitHub repository (https://github.com/delemottelab/demystifying; Table 1).
RESULTS AND DISCUSSION

Benchmarking with a toy model provides
quantitative measures of ML methods’
performance and guidance for analysis of real
systems

Biomolecular systems consist of a large number of atoms or
molecules. At each functional state, these fluctuate around
their equilibrium positions because of thermal motion. As
time progresses, a typical biomolecule transitions between
a number of metastable states, either spontaneously or
because of changes in its environment. For real systems,
identifying important features of such metastable states is
desirable, and ML offers data-driven methods for this
purpose.

To evaluate the performance of a certain method, one
needs to truly know how the states are defined. We have de-
signed and used a toy model that mimics a biomolecular
system and for which we are able to control the parameters
describing states (Fig. 2 A). In short, the atoms were first
randomly placed within a box at their equilibrium positions.
To define new states, certain atoms were displaced from
their original positions (Fig. 2 A) in either a linear (Fig. 2,
C and D) or nonlinear manner (Fig. S1, Methods, and
Supporting Materials and Methods, Section S1). Artificial
simulation frames were then generated by adding noise to
the atomic coordinates. The accuracy of a method at finding
all displaced (relevant) atoms was evaluated using a metric
based on the mean squared error between the estimated and
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the true feature importance profiles. In addition to this, we
measured the ability of a method to ignore irrelevant atoms
(i.e., minimizing false positives; Methods). The way these
scoring methods describe known distributions is shown in
Fig. S10. In this way, the toy model allowed us to test and
quantify how successfully a method identified true positives.
We completed this analysis by evaluating the performance
of the different methods when considering Cartesian or in-
ternal coordinates as input features in a full or reduced set
(Fig. 2, C–E) and at different noise levels (Fig. S2).

Given a trajectory consisting of many atoms and frames,
with no or very little prior knowledge of the system, a wide-
spread first approach in the biomolecular simulation commu-
nity would be to apply PCA (Fig. 1 A) to all atomic
coordinates and evaluate the ability of the first PCs to identify
the features that contributed most to the variance in the data.
Figs. 2 C and S1 illustrate some major drawbacks of this un-
supervised approach. Because PCA intrinsically performs a
linear mapping of input features to a low-dimensional repre-
sentation (37), the performance of the method is highly
dependent on the choice of input coordinates (13). For
example, PCA failed to detect the important features of the
toy system and even performed worse than random guessing
when using raw, unaligned Cartesian coordinates as input
(Figs. 2 C and S1 A). To remedy this, we performed PCA
on internal coordinates (Fig. 2D), namely inverse interatomic
distances, using either the full set of all pairwise distances or
a reduced set (Fig. 2 E) only connecting an atom to the four
atoms before and after it in the sequence (Methods). The
interatomic displacement that was performed to construct
the states is easily described by such input coordinates, and
PCA was able to successfully identify all the correct atoms
for this simpler setup of the toy model (Fig. 2 D).

In addition to PCA, two alternative unsupervised learning
methods were evaluated: a Bernoulli RBM (Fig. 1 B; (38))
and an AE (Fig. 1 C; (40)). For every set of input features
and labels, important features for a single classification de-
cision were derived using LRP (Fig. 1 F and Methods; (39)).
RBM and AE were both poor at distinguishing important
features from irrelevant ones using Cartesian coordinates
(Fig. 2 C). They were able, however, to perform with higher
accuracy for linear as well as nonlinear toy model displace-
ments using internal coordinates (Figs. 2 D and S1 B).
Although AE is suggested to be a promising unsupervised
method for data sets that require nonlinear transformation,
our results showed that it had a performance similar to or,
at best, marginally better than PCA for Cartesian coordi-
nates and a reduced set of internal coordinates, as well as
for systems of smaller size (Figs. 2 and S3). For the full
set of internal coordinates from larger systems, PCA per-
forms better (Figs. 2 and S3). This outcome indicates that
AE is difficult to train on data sets of high dimensionality
such as biomolecular simulation trajectories and that to
use this method successfully, one should reduce the number
of input features to a minimum.
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The main limitation of PCA and other unsupervised
learning techniques is that when the conformational states
are known and each frame is labeled according to the state
it belongs to, they fall short in utilizing this information.
Supervised learning techniques, on the other hand, are de-
signed for this purpose. In principle, supervised ML should
be able to identify even the most subtle differences between
states. We have applied three methods of different character
and complexity (Figs. 2, C–E, S1, and S2) that take known
class labels into account. As a simple first step, we
computed the KL (Fig. 1 D) divergence (42) between one
state and all other states for every individual input feature.
A high KL divergence indicates that the feature is good at
differentiating between states and hence important. Next,
we trained an RF (Fig. 1 E) classifier (43) to discriminate
between states and computed feature importance using
mean decrease impurity (44). The third method we
evaluated was an MLP classifier (Fig. 1 F), a prototypical
NN (42), in combination with LRP (39).

Computing the KL divergence between atomic coordi-
nates does not transform the features in any way and there-
fore failed to identify important atoms from the raw
Cartesian coordinates (Fig. 2 C), especially when the noise
in the toy model was strong (Fig. S2 A). On the other hand, it
did not inaccurately score irrelevant atoms. RF also
performed well for only one of the two accuracy metrics,
specifically to ignore irrelevant atoms and map out some
important ones, albeit not all of them (Figs. 2, B and C
and S1 A). This means that the classifier successfully
learned to predict states without taking all relevant features
into account. In many situations, this is an appealing charac-
teristic; RF and KL provide quick overviews with a close-to-
minimal set of features to describe the system and give high-
ly interpretable importance profiles. This, however, comes
at the risk of ignoring other significant features in the
data. MLP, which has the ability to approximate nonlinear
classification functions because of its multilayer architec-
ture and use of activation functions, successfully identified
the majority of the important features from unaligned
Cartesian coordinates (Figs. 2, B and C and S1 A). Its
performance, compared to the other methods, was found
to be superior when states were defined by nonlinear instead
of linear displacement between atoms (Fig. S1 A) or after
increasing the strength of the noise in the toy model
(Fig. S2). On the other hand, it was not as good at ignoring
irrelevant features because it inaccurately scores some non-
displaced atoms as relatively important by mapping out
overfitted nonlinearities.

All three supervised methods were excellent at identi-
fying important features using the optimal distance-based
features (Figs. 2, D and E and S1 B). RF and KL often out-
performed MLP, although all three supervised methods were
close to perfect at identifying the important features for this
setup. Note that to find good discriminators between states,
one should use a classifier such as MLP or RF instead of KL
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divergence. However, seeing that a high KL divergence
correlates with a proper choice of input coordinates suggests
that it can be used as a separation score to describe how
good a few selected features are at separating states.

For every method, we chose a set of hyperparameters to
tune using cross validation (Figs. S4–S9; Tables S1–S6)
and included the results for the parameter set with best
average performance in Figs. 2, S1, and S2. For PCA, we
varied the number of components to consider in the aggre-
gated importance per feature (Fig. S4; Table S1) and found
that it is better to include all the PCs with corresponding ei-
genvalues (i.e., variance covered) within the same order of
magnitude than to only include the first PC. For all three
neural-network-based methods (RBM, AE, and MLP), we
evaluated different shapes of the hidden layers (Figs. S5–
S7; Tables S2–S4) and found that increasing the number
of hidden nodes or layers does not necessarily increase per-
formance in general. For the MLP and AE, we considered
the regularization parameter, and for the RBM, we evaluated
the performance for different values of the learning rate. For
the AE, we also varied the number of epochs used in
training, the learning rate and the batch size. Neither had
a critical impact on the overall performance in this case,
with the exception of having a too-high learning rate
equal to one for the RBM. We also computed the KL diver-
gence with different discretization parameters (Fig. S8;
Table S5) and trained RF classifiers as either a set of binary
or multiclass classifiers with varying the number of estima-
tors, the maximal tree depth, and the minimum number of
samples to be a leaf (Fig. S9; Table S6). A proper discreti-
zation size for KL seemed to be �1% of the range of values
covered in the data. Tuning the number of minimum
samples to be a leaf and the number of estimators in RF
classifiers tended to increase the accuracy to some extent.
Otherwise, both of these methods were moderately sensitive
to the choice of hyperparameters, although a set of binary
RF classifiers were, unsurprisingly, considerably better at
identifying important atoms of a specific state compared
to a multiclass classifier, which was only able to select the
important atoms for the entire ensemble. In general, we
found that a small change in a method’s hyperparameter
value for this application typically resulted in a small
change in the importance profile and that even a signifi-
cantly different set of hyperparameter values performed
with comparable accuracy.

We note that it is unlikely that the best-performing set of
parameters in this study is optimal for all biological prob-
lems. In fact, it is unlikely that the optimal set of hyperpara-
meters has been found even for the toy model. Moreover,
although important atoms in the toy model were success-
fully identified with distance-based features, it is not
sufficient to assume inter-residue distances to form an
adequate set of input features for all biological problems.
For example, it is possible that backbone dihedral angles
are better indicators of certain types of conformational
changes or that local root mean square deviation to experi-
mentally resolved structures better describes how computa-
tionally sampled states agree with the experiments. To have
a toolbox of methods that are not as sensitive to the choice of
input coordinates in combination with metrics such as a
separation score makes it straightforward to compare
different sets of features and methods hyperparameters
and avoid making poor choices. Based on the learnings
from the toy model benchmarks, we outlined our protocol
in the form of a checklist (Box 1) that we followed as we
transitioned into biological applications.
Supervised and unsupervised learning pinpoint
conserved residues and frequent target-protein
binders of calmodulin

Calmodulin is a ubiquitous messenger protein activated by
calcium ions (51). The Ca2þ-bound state typically resem-
bles a dumbbell with the N-terminal and C-terminal
domains that are separated by a fully helical linker (Fig. 3
A). When activated, clefts of hydrophobic residues are
exposed in the two domains. The exposed hydrophobic sur-
faces enable binding to a large number of target proteins.
Through regulation of these target proteins, CaM plays an
important part in many physiologically vital pathways (52).

We made a qualitative comparison between different
methods (extractors) applied to a data set obtained with
spectral clustering enhanced sampling trajectories of
Ca2þ-bound (holo) CaM. The data set contains the six states
of the C-terminal domain of CaM (47). We intended to
use unsupervised and supervised methods to identify the
biological descriptors underpinning the different states
that were identified in a data-driven manner.

Fig. 3, B and C show the average estimated feature impor-
tance obtained from the CaM data set with six states, using
internal coordinates as input. The peaks obtained from the
different extractors are shown as sticks on the molecular
structure (Fig. 3 A) and highlighted with vertical dashed lines
in the importance profiles (Fig. 3 B). Notably, the supervised
methods agree well, whereas the unsupervised methods pro-
vide noisy profiles. Moreover, the residues that were found
important are either highly conserved across phylogenetic
groups (53), involved in binding target proteins (54), or
known to cause severe cardiac diseases upon mutation (55).
M109, M124, and M144-145, for example, are highly
conserved (53) and recognized to play important roles for
target-protein binding through various packings (56).
Another example is F141, a well-studied mutation linked to
long QT syndrome and decrease in Ca2þ affinity (55,57).
We note that two peculiar peaks appeared in the AE profile
of the CaM data set: A102 and V121. The implications of
these peaks and their dependence on AE architecture are dis-
cussed in Supporting Materials and Methods, Section S2.

To monitor the dependency of the average importance pro-
files on the chosen number of states, a qualitative comparison
Biophysical Journal 118, 765–780, February 4, 2020 771



Box 1 Checklist for interpreting molecular simulations with ML

1) Identify the problem to investigate.
2) Decide whether you should use supervised or unsupervised ML (or both).

a) The best choice depends on what data are available and the problem at hand.
b) If you chose unsupervised learning, consider also clustering the simulation frames to label them and perform

supervised learning.
3) Select a set of features and scale them.

a) For many processes, protein internal coordinates are adequate. To reduce the number of features, consider filtering
distances with a cutoff.

b) Consider other features that can be expressed as a function of internal coordinates that you suspect to be important
for the process of interest (dihedral angles, cavity or pore hydration, ion or ligand binding, etc.).

4) Chose a set of ML methods to derive feature importance.
a) To quickly get a clear importance profile with little noise, consider RF or KL for supervised learning. RF may

perform better for noisy data.
b) For unsupervised learning, consider PCA, which is fast and relatively robust when conducted on internal coordinates.
c) To find all important features, including those requiring nonlinear transformations of input features, also use neural-

network-based approaches such as MLP. This may come at the cost of more peaks in the importance distribution.
d) Decide whether you seek the average importance across the entire data set (all methods), the importance per state

(KL, a set of binary RF classifiers, or MLP), or the importance per single configuration (MLP, RBM, AE).
e) Chose a set of hyperparameters that give a reasonable tradeoff between performance and model prediction accuracy.

5) Ensure that the selected methods and hyperparameter choice perform well under cross validation.
6) Average the importance per feature over many iterations.
7) Check that the distribution of importance has distinguishable peaks.
8) To select low-dimensional, interpretable CVs for plotting and enhanced sampling, inspect the top-ranked features.
9) For a holistic view, average the importance per residue or atom and visualize the projection on the three-dimensional

system.
10) If necessary, iterate over steps 3–9 with different features, ML methods, and hyperparameters.
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between the RF importance profiles using five to eight states
was carried out (Fig. S11). Evidently, the profiles obtained
from six or more states overlap. In the five-state data set,
however, an extra peak appears at residue V121 (Fig. S11
B). This residue was specifically identified as important for
states 2 and 4 in the five-state data set, whereas it was only
important for state 6 in the six-state data set (Fig. S12,
A–C). Hence, it is assigned a large peak in the averaged
profile of the five-cluster data set and a smaller peak in the
six-state data set. We further note that both states 2 and 4
in the five-cluster data set are poorly populated and merged
into state 6 in the six-state data set (Fig. S12, D–F).
Therefore, the profiles with a smaller peak at V121, which
was obtained with the six-or-more-state data sets, appears
more reasonable than that of the five-state data set.

Comparing the unsupervised and supervised profiles re-
veals two residues specifically identified by the supervised
methods: V108 and A128. These two residues are not
typical target-protein binders. However, both residues are
well conserved (53) and thus likely play stabilizing roles
for exposing binding surfaces. In fact, the packing and
repacking of V108 between F89 and F92 is linked to the
transition between apo and holo-like C-terminal states
(56). A third surprising peak is that of V136, which is not
highly conserved (53) and only participates in binding to
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some extent (54). This residue is, however, part of the
C-terminal domain b-sheet that was shown to be disrupted
in an extra-open state of the analyzed data set (47). Thus,
by contrasting the output of the different methods, it is
evident that the supervised methods show more distinguish-
able peaks, and the ensemble of methods successfully un-
covers important residues of the CaM C-terminal domain.
Supervised learning of the b2AR identifies ligand
interaction sites and reveals allosteric coupling,
whereas unsupervised methods learn the main
characteristics of GPCR activation

GPCRs form a large family of receptors in the human genome
and act as an important class of modern drug targets (58). The
b2AR (Fig. 4A) is a classAGPCRoften used as a prototype in
studies of GPCR activation. In its native state without any
binding partner, the intracellular part of the b2AR undergoes
interconversion between an inactive and an active state, allow-
ing a G-protein to bind to the intracellular region, a process
called basal activity. Agonist ligands interact with residues
in the orthosteric site and shift the equilibrium between states
to make the active state more energetically favorable.

We analyzed the conformational ensemble of short tra-
jectories from a string-of-swarms simulation of b2AR
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FIGURE 3 Important residues in the calmodulin C-terminal domain according to the feature extractors. (A) A molecular structure of Ca2þ-bound CaM.

The helices of the C-terminal domain are represented by colored ribbons, and Ca2þ ions are shown as black spheres. The residues identified as important in
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(blue pentagon). (C) Molecular structures of the CaM C-terminal domain with important residues identified by the six extractors highlighted in blue are

shown. To see this figure in color, go online.
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activation in the presence and absence of an agonist ligand
(10). Unsupervised learning with PCA on the entire inter-
nal coordinate data set revealed known hallmarks of activa-
tion (Fig. 4, B and C), including significant rearrangements
of helices around the G-protein binding site, especially the
twist of the conserved NPxxY motif at the bottom of TM7
(59,60). Another protruding hallmark of GPCR activation
identified by unsupervised learning is the displacement of
the intracellular part of TM6, including E268, which is
the residue that undergoes the largest conformational
change upon activation (61), as well as residues L272,
L275, and M279 on TM6, whose side chains are rotated
upon activation (62). The third most important region con-
sisted of residues just below the extracellular N-terminus, a
disordered region consistently changing its orientation
throughout the simulation. Its large variance in interactions
with other residues makes it prone to be identified as
important by these methods, even though its movement is
not considered a typical characteristic of GPCR activation.
Finally, L144 at intracellular loop 2 was shown as impor-
tant, and it is known to be implicated in b2AR/Gs coupling
(63,64).

Following the guidelines in our checklist (Box 1), we
trained an RF classifier to discriminate between the
ligand-bound and ligand-unbound simulation frames within
the same data set. After training, the most important resi-
dues were identified close to the ligand binding site
(Fig. 4, B and D), most of which are well known to interact
with agonist ligands (65). Other parts of the receptor inter-
acting directly with these residues were also identified as
important, especially residues along transmembrane helix
4 (TM4). T164, for example, interacts with ligand-bind-
ing-site residues S203, S207, and V114. In general, residues
further away from the orthosteric site were considered less
important (Fig. 4 D). One exception is the local peak at
the D79 residue on TM2, the most conserved residue in
all class A GPCRs. This residue is also thought to
change protonation state during activation (Fig. 4 D; (10)).
Remarkably, important residues were further identified
around the G-protein binding site: L144 and E268 at the bot-
tom of TM6, which sample both larger as well as smaller
values of displacement in the apo trajectories (10). This
result is indicative of allosteric coupling between the two
sites and shows that the classifier is able to detect subtle
local changes in the G-protein binding site that are induced
by agonist binding. It suggests that ligand binding not only
shifts the energy of the active state but forces the G-protein
binding site to adopt alternative conformations. The intra-
cellular end of TM6 and the NPxxY motif do not appear
as important, on the other hand, presumably because they
are observed in similar conformations both in the ligand-
bound and the ligand-unbound ensemble.

In Fig. 4, B–D, it can clearly be seen that RF gives a more
easily interpretable profile compared to PCA, in which the
Biophysical Journal 118, 765–780, February 4, 2020 773
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peaks are distinct, and the average importance is low. This is
not merely a result of the chosen methods; it is also due to
the kind of insights they provide. GPCR activation involves
conformational change throughout the protein, whereas
ligand binding and allosteric signaling are more local
effects. To conclude, unsupervised ML was useful on this
data set to study the general large-scale activation mecha-
nism, whereas supervised ML successfully showed the
effect of agonist binding throughout the conformational
ensemble.
Supervised learning reveals state-dependent
residues allosterically coupled to the gating
charge

The VSD is a common module of voltage-gated ion chan-
nels responsible for reacting to changes in the membrane
potential (66). It is usually composed of four transmembrane
segments named S1–S4 and a short surface C-terminal
helix, the S4–S5 linker (Fig. 5 A; (67–69)). A few positively
charged residues on the S4 segment confer voltage
sensitivity to the VSD function (Fig. 5 A). Because they
are located in a low dielectric medium, these residues are
specifically sensitive to an externally applied electric field
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and thus adapt their positions according to the field direction
and strength (50,70,71). For instance, when the membrane is
depolarized, they move toward the extracellular solution.
This motion engages the entire S4 segment, which promotes
the voltage-sensor activation: the S4 transition from the
resting (inward-facing) to the activated (outward-facing)
state (72–76). To ensure the stability of the positive charges
inside the low dielectric medium, they are paired with nega-
tive charges of the three remaining segments. During activa-
tion, the positive charges switch negatively charged
counterparts so that a network of salt bridges between S4
and S1–S3 is maintained in every conformational state of
the VSD (72).

In a previous study, we reported five conformational
states of the Kv1.2 VSD called E (resting), A (activated),
and D, G, and B (intermediate states) (49,50). Here, we fol-
lowed the provided checklist (Box 1) and trained an RF clas-
sifier to compare these states and elucidate their defining
structural elements using more than 12,000 frames from
an enhanced sampling trajectory (see Methods). The simu-
lation frames were extracted from basins in the free-energy
landscape constructed by metadynamics. Thus, even
though the trajectory was not sampled from a Boltzmann
distribution, the derived simulations snapshots represent
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FIGURE 5 Identifying key residues for Kv1.2 voltage-sensor function. (A) A cartoon representation of the Kv1.2 voltage sensor is given. The four mem-
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dashed zone. To see this figure in color, go online.
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conformations one would expect to see in an unbiased MD
trajectory. Fig. 5 B shows the per-residue importance
obtained using RF classifiers averaged over all five states.
The first top-ranked residues (R1–R4) are four out of six
positive charges of the S4 segment (R1, R2, R3, R4, K5,
and R6). Thus, in agreement with the classical view, the
positively charged residues are suggested to be crucial in
delineating the five conformational states of the Kv1.2
VSD. Analysis of the per-residue importance of each state
(Fig. 5 C) reveals that although the top-ranked charges are
indeed state specific (R4 in A, R3 and R4 in B, R2 and
R3 in G, R1 and R2 in D, and R1 in E), their localization
is state independent: all of them are placed near the so-
called hydrophobic plug, the central part of the VSD where
the response to the external electric field is the largest
(50,77,78). Other highly ranked residues are located along
transmembrane segments and facing the protein lumen.
LRP performed on the MLP classifier further offers the
possibility to attribute feature importance to each individual
trajectory frame. Video S1 specifically shows per-frame
feature importance profiles and provide comparable insight
regarding the localization of important residues around the
hydrophobic plug. Taken together, our data suggest that
the interaction with the hydrophobic plug is a key aspect
to distinguish between the metastable activation states in
the Kv1.2 VSD.
Supervised and unsupervised learning play
different roles in identifying important features

Supervised and unsupervised methods are designed for
different purposes, and the optimal choice of analysis method
is case dependent. Sometimes the labels are inherent to the
computational experiment, such as in the example of
comparing ligand-bound and ligand-unbound simulations of
b2AR or when comparing the conformational ensemble of
a wild-type protein with a specific mutant. For such cases, su-
pervised learning techniques may reveal subtle differences
invisible to unsupervised techniques. The performance eval-
uated with the toy model also shows that supervised learning
generally outperforms unsupervised learning on labeled
data sets.

Standalone unsupervised learning becomes more attrac-
tive when simulation data cannot be labeled directly. To
use supervised learning for such cases, one would need to
preprocess the data—for example, by manual labeling or
Biophysical Journal 118, 765–780, February 4, 2020 775
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with a clustering method—to assign each frame to a state.
Given adequate states, supervised learning will provide use-
ful insights about the data, as was done for calmodulin and
the Kv1.2 VSD in this study. However, to arrive at biologi-
cally relevant insights requires the states themselves to
contain useful information, and it is important to bear this
limitation in mind for practical applications. Unsupervised
learning techniques can also be used as prior feature extrac-
tors to supervised classifiers or provide a projection onto a
low-dimensional space where it is straightforward to cluster
structures into states. A strength of having different tools for
computing the importance per feature within the same
framework is that it becomes straightforward to combine
supervised and unsupervised learning to give a coherent
view of what features are important in a system. It is simple
to extend this framework to include more methods as long as
there is an algorithm to derive the importance per input
feature.

For practical applications, the best choice of method
depends on the type of data available. Regardless, the results
should be averaged over many runs and cross validated to
reduce the variance induced by stochastic solvers, as well
as the risk of introducing inaccuracies due to overfitting.
However, unless a good set of input features is known or
can be validated, nonlinear ML methods such as NNs will
be more reliable than linear methods in general.

We also note that the protocol presented in this study is in
itself not restricted to study data sampled from a Boltzmann
distribution, as illustrated by the VSD application case. The
biophysical conclusions one can draw from the analysis, on
the other hand, will depend on the nature of the data set. If
one were to look for important features for an entire
ensemble in a data set containing highly biased samples,
then taking the Boltzmann weight into account might aid
interpretation. In general, this can be achieved by balancing
the data set according to the weight of the samples, and
some models such as the RF classifier used in this study
even support weighting samples during training out of
the box.
Feature selection and model parameter choice
can enhance performance but are not obstacles
for interpretability

We used inverse interatomic distances as features for the
biological systems, which puts more emphasis on local
changes than mere distances, and normalized the values to
enable the different MLmethods to perform well (Methods).
The choice of internal coordinates may seem straightfor-
ward, following the results obtained from the toy model.
For large systems, however, it may be computationally
intractable to consider all internal coordinates as features
and, in the case of limited amount of simulation frames,
can also increase the chance of overfitting the feature extrac-
tors. In addition to performing cross validation to overcome
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this problem, distances that did not reach below a certain
cutoff in the trajectory were prefiltered in the case of CaM
and the VSD (Methods). This also has a physical signifi-
cance because atoms close to each other have a stronger
interaction energy. Long-range allosteric effects may still
be discovered and propagated through nonlinear methods.

In principle, any intuitively interesting reaction coordi-
nate can be included in the set of input features. In protein
folding, dihedral angles are often reported as important
and should thus be included. Other CVs such as hydration,
ion binding, etc. may be considered as part of the input
feature data set. We note here too that we have only taken
structural (and not dynamic) information into account,
following the nature of the data set we had at hand. To ac-
count for dynamics, for example, a time-lagged AE (11)
could be used on continuous MD simulation trajectories
such that a NN is trained to reconstruct features using fea-
tures from previous times as input and derive the resulting
importance profiles from the trained model. In general,
given a Markov state model with a number of connected
Markov states (32,33,79,80), our approach provides the
means to make a data-driven interpretation on a molecular
basis of the dynamics behind these states.

For supervised learning, one should be aware of the dif-
ference between choosing a multiclass RF or MLP in
contrast to using KL or RF with a one-versus-the-rest split-
ting of the data. One-versus-the-rest splitting in learning en-
ables identifying important features for specific states as
opposed to only reporting the important features across
the entire ensemble (Figs. S7–S9). Furthermore, the differ-
ence between multiclass and one versus the rest may have
a major effect when dealing with unbalanced data sets. In
this regard, algorithms such as LRP are powerful because
they allow us to compute the feature importance for every
individual frame (Video S1) and thereby enhance interpret-
ability at a very fine-grained level.

Figs. S4–S9 demonstrate that the performance of the
methods are affected by choosing different hyperpara-
meters, such as the regularization constraints for a NN,
the size of the discretization parameters to compute the
KL divergence, or the minimum number of samples to be
a leaf in a RF classifier. To include too many parameters
in a model by adding an unnecessarily large number of hid-
den nodes in an MLP or to neglect parts of the data set by
considering too few PCs are both examples of what may
reduce performance. We found it particularly challenging
to obtain high accuracy with the AE, and it is possible
that additional effort in parameter tuning may improve its
performance. Seeing that they are both unsupervised neu-
ral-network-based methods, it seems reasonable for the
AE to obtain a performance comparable to the RBM, even
though the AE used in this study—unlike the RBM or, for
example, a variational AE (81)—does not make any strong
assumptions about the distribution of input or hidden-layer
latent variables. Incidentally, an optimally trained AE with
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sigmoid activation and a single hidden layer is strongly
related to PCA (82,83). For smaller sets of input features,
we do indeed observe a similar performance between PCA
and the AE (Fig. S3). Thus, from a practical point of
view, it is probably a more rewarding effort to reduce the
number of input features (for example, by using a dis-
tance-based cutoff) than to expand the hyperparameter
search space. In general, NN models have many tunable
hyperparameters as well as a large number of weights that
need to be fitted, whereas simpler methods such as PCA
and KL have fewer parameters. This drawback of the
complicated models needs to be taken into account for
practical applications.

Putting some effort into crude parameter tuning should be
a rewarding effort, whereas excessive fine tuning may not
reveal any new insights. Moreover, even though it is most
likely possible to further improve the performance of these
methods with extended efforts of parameter tuning, the
optimal set of hyperparameters for a certain classifier likely
depends on the choice of input features and the biological
system. From a practical point of view, it seems instead to
be more useful to follow the guidelines presented here using
an adequate configuration of every ML method, ensure that
it is robust to cross validation, and apply it to investigate the
performance of different input features. Our checklist
(Box 1), which covers the most important aspects of inter-
preting molecular simulations with ML (Methods), makes
this process easier.

The fact that many models will yield the same conclusion
irrespective of hyperparameter setup increases the credi-
bility of these methods for practical purposes. For neural-
network-based models, changing the network architecture
leads to trained models with completely different underly-
ing weight matrices. As shown in this study, networks of
different shape and regularization constraints nevertheless
identify the same important features in a simulation system.
Although similar arguments hold for other methods, this is a
particularly important result because of the enormous inter-
est and skepticism toward deep learning. This contradicts
any criticism of the black-box nature of such methods:
the biological properties propagated from the input to the
output are clearly consistent and traceable, as well as
interpretable.
CONCLUSIONS

In this study, we have applied various ML methods to iden-
tify important features from molecular simulations. We con-
structed a toy model that mimics real macromolecular
behavior to perform a quantitative comparison between
the methods and derive insights regarding their applicability
for practical purposes.

When optimizing the performance of different ML
methods, we found that the choice of proper input features
had larger effect than scrupulous hyperparameter tuning.
Specifically, a great performance increase was observed
when switching from raw Cartesian to internal distance-
based features (potentially with a cutoff). Supervised
learning methods, in particular, outperform unsupervised
methods on a suboptimal Cartesian data set. Furthermore,
an MLP classifier was shown to be significantly better at
identifying all important features of a system compared to
an RF or computing the KL divergence. This indicates
that a NN is able to learn the transformation of input data
to an optimal representation and that more complex deep
learning approaches are robust analysis tools when little,
or even no, prior knowledge is available to guide the choice
of input features. However, MLP’s output was arguably
more difficult to interpret than that of the other supervised
methods. For unsupervised learning on an optimal set of
internal coordinates, all methods (PCA, RBM, and AE)
identified important residues with similar accuracies on
smaller data sets. On larger data sets, however, PCA outper-
formed both RBMs and AEs with regards to accuracy as
well as computational efficiency.

Finally, we successfully applied this protocol to derive
key insights into three distinct types of biomolecular pro-
cesses: the conformational rearrangements of the soluble
protein calmodulin, the effect of ligand binding to a
GPCR, and the allosteric coupling of an ion channel VSD
to a transmembrane potential. Rather than trying to identify
one optimal method for all practical applications, we
condensed our learnings into a protocol in the form of a
checklist. In short, the ML methods were designed for
different purposes, and the best choice of analysis methods
depends on the question at hand. Supervised learning should
be used when applicable, for example, for studying the
small allosteric switches induced by ligand binding to a
receptor or comparing distinct metastable states, whereas
unsupervised methods can derive ensemble features of
unlabeled data, thus capturing the major conformational
change of a protein.

This work sheds, to our knowledge, new light on ML as a
pillar in interpretation of biomolecular systems. The
possible applications of our approach spans from interpret-
ing large amounts of simulation or experimental ensemble
data to selecting CVs for enhanced sampling simulations.
Compared to the computationally expensive MD simula-
tions, these insights are cheap: all results in this study
were computed on commodity hardware using software
published in the public repository ‘‘demystifying’’ on
GitHub (Table 1).

Humans did not evolve to interpret large sets of high-
dimensional data by mere visual inspection. ML methods
were, on the contrary, specifically designed to process big
data sets. Nevertheless, despite the increasing interest and
faith put into ML, current state-of-the-art methods are not
at a stage at which computers are able to set up, run, and
analyze simulations autonomously. Instead, we have shown
how statistical models and algorithms commonly used to
Biophysical Journal 118, 765–780, February 4, 2020 777
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solveML problems provide a powerful toolbox to efficiently
make data-driven interpretations of biomolecular systems.
As the timescales accessible by simulations increase, and
the popularity of ML tools continue to thrive across many
scientific areas, we anticipate that our approach can be
useful to aid many researchers in demystifying complex
simulations.
SUPPORTING MATERIAL

Supporting Material can be found online at https://doi.org/10.1016/j.bpj.
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