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The singing of juvenile songbirds is highly variable and not well stereotyped, a feature that makes it difficult to analyze with
existing computational techniques. We present here a method suitable for analyzing such vocalizations, windowed spectral pattern
recognition (WSPR). Rather than performing pairwise sample comparisons, WSPR measures the typicality of a sample against
a large sample set. We also illustrate how WSPR can be used to perform a variety of tasks, such as sample classification, song
ontogeny measurement, and song variability measurement. Finally, we present a novel measure, based on WSPR, for quantifying
the apparent complexity of a bird’s singing.

1. Introduction

A bird’s song can be a powerful marker of identity, used by
other birds—and humans—to identify the singer’s species
or even to identify a single individual. In many species this
song is innate, but for the Oscine songbirds, every bird must
acquire its own song [1, 2]. With one such bird, the zebra
finch (Taeniopygia guttata), it is the males that sing, and
juvenile males learn their song from nearby adults such as
their father [3]. The learning process has two overlapping but
distinct parts: in the first, the animal hears the songs of other
birds and somehow commits to memory a model of the song
it will sing; in the second, the animal learns how to produce
a version of this memorised song through practice [1].

As adults, zebra finches sing in bouts during which they
perform their single song motif a variable number of times.
The song motif of a zebra finch is on the order of one second
long and is composed of multiple syllables, elements sepa-
rated by silence or a sharp drop in amplitude. Syllables can
often be broken down further into notes, segments of distinct
sound quality. These notes may demonstrate pronounced
frequency modulation and complex harmonics. Adult zebra
finches typically exhibit a very high degree of stereotypy in
their song, with one performance of the song’s motif being

very similar to any other. Two typical examples are shown in
Figure 1.

In the early stages of a juvenile’s song production, vocal-
izations tend to sound very little like the song of an adult,
instead sounding more like a kind of babbling [4]. This
earliest stage is called “subsong” [1]. From this, the juvenile
progresses to a style of vocalization, “plastic song” [1], which
is low in stereotypy but in which the precursors of adult-
like sounds can be identified. Eventually, at approximately
80 days posthatch [5], the juvenile learns to produce its song
with a high degree of stereotypy and its song-learning process
is complete. For the zebra finch, this song will remain largely
unchanged for the rest of the animal’s life.

Another class of vocalization is the “call,” which can serve
multiple purposes [2]. Calls are typically short (200–500 ms)
continuous sounds that might be described as “honk-like.”
Zebra finches of both sexes, including juveniles, produce
calls. Examples of juvenile song and calls are shown in
Figure 2.

In the course of our research, we have at times wanted a
tool to identify and compare juvenile vocalizations, primarily
to assist in the sorting of large numbers of recorded samples.
Although a number of tools exist to compare the songs of
adult birds, we have found that, due to the low stereotypy of
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Figure 1: (a) Spectrogram of a bout of singing from an adult zebra
finch. Noted in the figure are the following song parts: introductory
notes, underlined in red; syllables, underlined in green; the silent
interval between syllables, underlined in yellow. The blue lines mark
the repetitions of the bird’s motif. Note that each performance of
the motif appears much like the others, except for the truncated
final motif. (b) Spectrogram of a bout of singing from a different
zebra finch. Although its song is also highly stereotyped, it is visibly
different from the song of the bird featured in (a). For convenience,
blue lines once again mark repetitions of the bird’s motif.

juvenile singing, these tools do not perform well on samples
from juveniles.

The simplest method of comparing song samples is to
calculate some measures of correlation between samples,
either on their waveforms or spectrograms. This method is
employed by several popular tools [6, 7] but works ade-
quately only if the sounds being compared are very similar
in timing, ordering, and tone. A related technique is
dynamic time warping (DTW) [8], which can compensate
for differences in timing but not ordering. DTW-based
analyses can be performed on spectrograms or spectrogram-
derived measures, such as cepstra [9]. Another strategy,
used by at least one popular tool [10], might be described
as heuristic feature analysis. A set of measures (e.g., peak
frequency, frequency modulation, and spectral entropy) is
used to characterise a sample, and these measures are used
to compare two samples according to some set of criteria.
Although these tools typically do not require the samples
being compared to be highly similar, it has been our
experience that, with juvenile vocalizations, these methods
can produce similarity scores that vary greatly between pairs
of samples that, to a human observer, appear more or less
equally similar.

The key feature that all these existing methods have in
common is that they are designed to compare one single
sample against another single sample. For highly stereotyped
adult birdsong, this approach makes perfect sense, but, for
juveniles, it may not be appropriate: the high variability of
juvenile song means that two samples from the same bird,
taken seconds apart, may not be “similar” in any reasonable
sense, and yet both are representative of that animal. With
a large enough sample set, however, we should be able to
identify all the characteristic sounds produced by a bird and
be able to describe new samples in terms of how typical they
are, even if the new sample does not seem particularly similar
to any other sample.
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Figure 2: (a) Spectrogram of a juvenile’s vocalizations produced
during the babbling phase, at approximately 36 days posthatch.
Note the general lack of stereotypy. (b) Spectrogram of a juvenile’s
vocalizations produced during the early plastic song phase, at
41 days posthatch. (c) Spectrogram of a juvenile’s vocalizations
produced during the plastic song phase, at 47 days posthatch.
Although the sounds are more adult-like in terms of spectral
profile, they still lack the stereotypy of adult birds. (d) Composite
spectrogram of a series of calls from a juvenile zebra finch (40 days
posthatch). By eye and by ear, these are easily differentiated from
adult song.

Other methods for song analysis exist, such as the
spectrotemporal modulation analysis used by Ranjard et al.
[11], the rhythm analysis of Saar and Mitra [12], or the PCA-
based feature analyses of Feher et al. [13]; however these
methods as presented are unaware of syllable sequencing [11]
or are very highly specialized [12] and are not suitable for
general-purpose use.

In this paper, we present a new method for comparing a
sample of juvenile birdsong against a model built from a set
of training samples. We call this method windowed spectral
pattern recognition (WSPR). This method provides a mea-
sure of typicality for comparing test samples to the training
samples. We show that WSPR is effective as a classifier and
may be better suited to this task than another popular tool.
We also show that WSPR is relatively robust to changes in
a key parameter. Lastly, we demonstrate that the models
produced by WSPR can be used to provide measures of song
ontogeny, stereotypy, and complexity

2. Methods

2.1. Housing and Care of Juvenile Zebra Finches. Audio
recordings from three juvenile male zebra finches provided
the data used in this paper. From hatching until 25 days
posthatch, the juveniles were housed with their mothers,
fathers, and clutch mates in a family setting. From 25 days to
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35 days, the juveniles were housed in small cohorts of 2–4
individuals along with an adult tutor. From 35 days to
between 50 and 60 days, the juveniles were housed singly in
auditory isolation chambers. At all times the juveniles were
given food and water ad libitum. The juveniles were cared
for in accordance with the standards set by the American
Association of Laboratory Animal Care and Rockefeller
University’s Animal Care and Use Committee.

2.2. Recording of Juvenile Birds and Manual Identification of
Samples. Continuous recordings were made of three isolated
juvenile male zebra finches from 35 days posthatch to 60
days posthatch with Behringer ECM-8000 measurement
microphones (Behringer International GmbH, Willich, Ger-
many) and Rolls MP13 preamplifiers (Rolls Corporation,
Murray, UT). A MCC PCI-DAS6013 digital acquisition card
(Measurement Computing Corporation, Norton, MA) was
used to digitise the audio inputs. Recordings were made at
44.1 kHz, 16 bits/sample, and stored as lossless FLAC [14]
files.

We examined recordings with Audacity sound editing
software [15] and manually identified vocalization bouts as
being calls, song, or neither. Vocalization bouts identified as
calls or song were eliminated if they contained excessive levels
of spurious noise—flapping of wings, footfalls on metal bars,
and the like—or if they were less than one second long.
2026 samples were taken from the three birds. Each bird’s
samples were assigned to one of four different sample sets:
song training, song testing, call training, and call testing.

2.3. Building a Model and Scoring Using WSPR. A test model
was built using the WSPR command-line tool from a com-
bination of both training sample sets, using the parameters
given in Table 1. During the clustering phase of the WSPR
algorithm, the set of spectra that was clustered as well as their
cluster assignments were extracted and silhouette statistics
[16] were computed using the “cluster” package [17] for the
R statistical computing environment [18]. For comparison,
a random dataset was also generated and clustered. A set of
7 500 vectors, each the same length as the WSPR spectra, was
produced, with every value in each vector being a randomly
generated number from a [0, 1] uniform distribution. This
random dataset was clustered using R’s “k means” function,
and silhouette statistics were computed as for the clustered
spectra.

2.4. Binary Classification of Juvenile Vocalization Samples.
For each bird, a binary classifier was constructed using the
WSPR algorithm for classifiers described in the appendix.
The classifier contained one model for song, built from the
song training samples, and one for calls, built from the call
training samples. The parameters used in the construction of
these models are found in Table 1.

All testing samples were presented to the classifier.
Samples were assigned to a group by the classifier, and the
Matthews correlation coefficient (MCC) [19] was used to
assess the accuracy of the assignments. The number of

Table 1: Parameters used in all examples, unless specified other-
wise.

Parameter Value

STFT window width 500 samples (11.6 msec)

STFT step size 100 samples (2.9 msec)

STFT bandpass cutoffs 500 Hz–7500 Hz

Model window width 11 symbols (34.0 msec)

Number of power spectra clustered 7 500

Number of prototypes generated 120

Silence cutoff level 0.01 (arbitrary units)

samples used as training and testing data for each bird, as
well as mean sample lengths, is given in Table 2.

For comparison, Sound Analysis Pro+ (SA+) [10] was
also used to classify samples from the first bird. From the
669 original samples, two hundred were randomly chosen,
with fifty from each of the four sample sets (song training,
song testing, call training, and call testing). The samples were
loaded into the SA+ software and run in a series of pairwise
comparisons using SA+’s “batch similarity” tool, so that
each test sample was compared against one training sample
from the “call” set and one training sample from the “song”
set. SA+’s volume threshold was reduced, but otherwise was
run with all settings at their default values. The calculated
similarity scores were then exported from SA+ for statistical
analysis.

When used as a classifier, the same classification method
described in the appendix (Classification Using Multiple
Models) was used on the SA+ scores, with the exception that
the SA+-generated scores were used in place of WSPR’s raw
scores.

2.5. Measuring Song Ontogeny and Stereotypy. Recordings
from the juveniles examined previously were taken, and, for
each bird, two models were made: an early model, consisting
of the earliest 100 song samples; a late model, consisting of
the latest 100 song samples. The remaining samples from
each bird were grouped by day and scored against the models.

For one juvenile, all samples were grouped into blocks
of five consecutive days each, and models were generated for
each group, and the standard error of the nonstandardized
scores samples used to build the model against the model was
calculated.

2.6. Testing the Effects of Parameter Selection on Score Dis-
tributions. Fifteen models were built with varying numbers
of prototypes: 10, 20, . . . , 150. All models were built using
the same set of song training data for the first bird as
described previously. Except as noted in the results, the
WSPR parameters are found in Table 1. Each sample from
the first bird’s song test data was scored against all 15 models.
Means and standard deviations were calculated for the scores
from each model.

2.7. Estimating the Stereotypy and Complexity of Sample Sets.
Additional recordings were made of an adult zebra finch,
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Table 2: Summary of sample set sizes used to build and test models.

Bird 1 Bird 2 Bird 3

Total samples 466 569 991

Manually classified as song 166 150 500

Manually classified as calls 300 419 491

Used as song training data 50 100 150

Used as call training data 100 150 150

Used as song testing data 116 50 350

Used as call testing data 200 269 341

Average sample length, song 4.5 seconds 1.1 seconds 0.4 seconds

Average sample length, call 1.8 seconds 1.1 seconds 0.8 seconds

over 100 days old, with equipment and conditions identical
to those used for the juvenile recordings, except that the DAQ
digitiser was bypassed and the computer’s built-in audio
input was used instead. One hundred samples of adult song
were manually identified and extracted from the recordings.
For each of the three juvenile birds, the WSPR algorithm was
used to generate separate models for song and calls on all
available samples, including both training and testing data
from the earlier experiments. For the adult bird, a model
was generated for its song on the 100 collected samples. For
all models, all samples were concatenated and the combined
samples were truncated to a length of exactly two million
audio samplings (approximately 45 seconds); each model
was built from its corresponding concatenated sample. All
samples were scored against the models they were used
to train, and the standard deviations of all scores against
each model were calculated. The models were generated
using the parameters found in Table 1, with the following
exceptions: STFT window width, 4096 samples; STFT step
size, 1024 samples; model prototypes, 50; model window
width, 25. The WSPR complexity of each model was also
calculated according to the algorithm found in the appendix
(Calculating the Complexity of a Model).

3. Results

3.1. Building a Model Using the WSPR Algorithm. Model
building is composed of two discrete steps: creating an
encoding and producing tables of observed frequencies of
patterns. To create an encoding, a set of 100 samples of
juvenile plastic song was taken from a single individual.
Samples were converted from digitized waveforms into a
frequency-versus-time representation (a spectrogram) using
a discrete-time Fourier transform (DTFT), as illustrated in
Figure 3(a).

From the set of all training samples’ spectrograms,
7 500 spectra were chosen without replacement. These were
clustered using a k-means clustering algorithm [20] into 120
clusters. The k-means clustering algorithm works to divide
the 7 500 spectra into k clusters, with all the items in each
cluster more similar to each other than to the members of any
other cluster. Each cluster represents a single kind of “sound”
that the bird makes: clusters may represent single notes,
harmonic stacks, staccato bursts, or other types of sound.

The members of each cluster were averaged to produce
a set of prototypical sounds, one prototype per cluster,
and each prototype was assigned a unique index number
(its “symbol”); these prototypes formed the basis for the
encoding. Sample prototypes can be found in Figure 3(b).

The silhouette statistic [16] was used to characterize
how well the clusters divided the underlying spectra. The
silhouette statistic is a unitless value between −1 and +1; a
silhouette value of 1 implies that an item is ideally clustered,
a value of −1 implies that an item should be assigned to
another cluster, and a value of 0 implies that an item could
just as easily be assigned to another cluster as to its current
cluster. For the clusters used to produce the prototypes,
the mean silhouette value was 0.264. In contrast, the mean
silhouette value for a randomized dataset was 0.0252. This
suggests that many clusters are only moderately separated
from their neighbors, which is reasonable given the large
number of clusters and the high variability of the underlying
bird vocalizations.

Sounds were encoded by first converting from waveform
to frequency-versus-time representation, as before. Each
discrete frequency spectrum was compared to the full set
of prototypes, and the spectrum was encoded as the index
number of the prototype it was most similar to (determined
by root mean square deviation). Each sample was thus
converted from a waveform, to sequence of frequency
spectra, to a sequence of symbols. With this, the encoding
step of building a model was completed. The average sample
was 2.42 seconds long; once encoded, the average sample was
1063 symbols long.

The second part of the model-building process is the one
in which patterns in the bird’s song are identified. A window
width (w) of 11 was set, and an anchor position (a) of 6
was calculated. An array of dimension 120 × 11 × 120 was
created; all values in the array were set to zero. A count was
tallied of the number of times symbol y was seen at position
z, given that symbol x was seen at position a, for all x, y, and z,
by scanning each sample and tallying the observed symbols.

3.2. Scoring a Sample. A single test sample was first encoded
using the same encoding method described for model
building. After encoding, the sample was scanned over in a
manner very similar to how the frequency array was built;
however, instead of modifying the array, the values in the
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Figure 3: (a) Using a discrete Fourier transform, sounds are converted from waveform (top pane) to a sequence of frequency spectra (bottom
pane)—in essence, a spectrogram. Note that each discrete frequency spectrum accounts for a period of time much larger than the sampling
rate; the effect is exaggerated here to make this clear. (b) Examples of possible prototypes. In the WSPR algorithm, every segment of sound
will be matched to a similar prototype and coded as the prototype’s index number (1, 2, 3, 4, etc.)

array were incorporated into a score, so that more common
sequences of symbols will score higher than less common
ones. The exact formula used is described in the appendix.
Once the nonnormalized (raw) score was generated, it was
standardized (as a z-score) in order to make the scores easier
to interpret. The standardization procedure is also described
in the appendix. A single arbitrary sample produced a raw
score of 0.34, a z-score of 0.45, and a P value of 0.32, implying
that the sample was fairly typical of the model’s training data,
which in this case was to be expected, as the test sample was
identified by the authors as being qualitatively “of a kind”
with the training data.

3.3. Binary Classification. The motivation for developing this
method was to quickly classify very large sets of recorded
samples, so it seemed fitting to examine its fitness for this
purpose.

In the authors’ recording setup, juveniles were recorded
continuously, twenty-four hours a day. It was not possible
to listen to all of this audio—indeed, for months, recordings
were being accumulated much faster than a single person
could listen to, even if that person listened to them every
minute of every day.

A simple amplitude threshold check was able to eliminate
most of the recordings; however, this still left tens of
thousands of audio events—samples—that needed to be
examined. One of the primary goals in developing the WSPR
tool was to create a reasonably robust tool that could sort
through such large sample sets in minutes or hours, rather

than days, and further reduce the amount of work that would
need to be done manually.

A timing test was able to show that the WSPR algorithm
was indeed suitable for use with such large datasets. A model
was built from 200 samples; on a reasonably fast machine
(Intel Core i7, 2.67 GHz clock speed), the model-building
process took 12.1 seconds. Scoring 200 samples against that
model took only 1.6 seconds. Assuming those 200 samples
are representative of a larger set, it would take about 15
minutes to score 100 000 samples. By contrast, 200 pairwise
comparisons were done using the SA+ program with the
same sample set. These 200 comparisons took 593 minutes
to complete on the same machine. Scaling up, compar-
ing 100 000 sample pairs would take about 200 days to
complete.

While speed is important, it is of little use if the results
are inaccurate. To test WSPR’s accuracy, a WSPR classifier
was built comprised of two models, one of “call” samples,
and one of “song” samples. Figure 4 shows the raw scores
against both “call” and “song” models for the test data in
scatter plots. The MCCs for the classifications of each bird’s
samples were 0.93, 0.75, and 0.65, with a cumulative MCC of
0.78.

It is also worth comparing the accuracy of WSPR
classifications to SA+ scores. Figure 5 shows the raw scores
produced by the SA+ program. The MCC for the SA+-
based classifier was 0.57, somewhat less than that for the
WSPR classifier. On this task, WSPR made about 1/3 as many
classification errors as SA+, although both produced fairly
good results.
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Figure 4: Performance on a classification task using standardized z-scores. Each test sample was scored against both “song” and “call”
models. Gray points were manually assigned to the “call” class, while black points were manually assigned to the “song” class. For all birds,
the two classes of sounds are well separated.
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Figure 5: SA+ scores, performance on a classification task. Black
points were manually assigned to the “song” class, and gray points
were manually assigned to the “call” class.

3.4. Song Ontogeny. In addition to its use as a classifier, the
WSPR tool may also be useful for more analytical tasks. To
that end, a test was devised in which WSPR was used to track
the ontological development of three juvenile zebra finches.

To do this, once again two models were created for
each finch, one from a set of early samples, near day 35,
and one from a set of later samples, near day 50. Sets of
intermediate samples were then taken, organized by day,
and scored against each model. The difference between these
two scores, specifically the late-model score minus the early-
model score, indicates the extent to which the test sample was
more typical of the late model than the early model.

Figure 6 shows that the bird’s songs do progress over time
towards similarity with each bird’s late model. According to
the scores, the birds’ songs develop unevenly at times and at
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Figure 6: Measuring progress in song development. Each colour
represents a different bird. For each bird, an early model and late
model were built of the first and last 100 samples available; all other
samples were compared against both models and their difference
calculated, so that negative scores suggest a sample was more typical
of the early model, and positive scores suggest a sample was more
typical of the late model. Each point is the mean of all samples for
that day, and error bars indicate standard error. All birds progress
from being essentially early-like to being late-like, but unevenly and
at different rates.

different rates, an observation in accord with the authors’
personal experiences.

WSPR might also be used to measure stereotypy, a task
it seems well suited for given its emphasis on large sample
sets. One simple and intuitive measure of stereotypy using
WSPR would be the standard deviation or standard error of
a sample set against a model; this is the measure used here.
This measure is essentially one of variability: the lower the
standard error, the greater the stereotypy.

The samples from one bird were grouped into five-day
periods, and a model was built for each period. The samples
were then scored against their models, and the standard error
of the scores was used as a measure of apparent stereotypy.
Figure 7 shows the change in standard error for scores as
a bird’s song develops. As one would expect, variability
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Figure 7: Nonstandardized score standard error as a bird develops
its song. As the bird matures, the variability in its singing decreases.

decreases and stereotypy increases as the bird ages. There is
a noticeable decrease in the rate at which variability declines
around day 50.

3.5. Effect of Parameter Selection on Scores. It is important
to know how sensitive the WSPR algorithm is to changes
in parameters. There is a possibility that small changes in
parameters might lead to large changes in scoring accuracy, a
situation that would pose a practical problem for the use of
the algorithm. There are three key parameters in the model
that can be manipulated: the width of the STFT window, the
number of prototypes, and the width of the model window.

Two of these parameters, the width of the STFT window
and the width of the model window, are determined by the
data being analyzed: for the width of the STFT window,
the expected maximum length of time over which a sound
would be approximately constant; for the width of the model
window, the expected length over which patterns would be
identifiable. As such, one would expect the scores to vary
considerably as these parameters are changed; furthermore,
the structure of the data should suggest ranges for these
parameters.

There is therefore only one major parameter remaining
that must be set in an ad hoc fashion: the number of
prototypes. There are potential problems with having either
too few or too many prototypes. If there are too few pro-
totypes, sounds with qualitatively different spectral profiles
will be assigned to the same prototype, the specificity of the
encodings will fall, and the model may produce additional
false positives. If there are too many prototypes, sounds
that are qualitatively similar will be assigned to different
prototypes and the number of false negatives produced will
rise.

Figure 8 shows how the mean score and standard
deviation of scores change in relation to the number of
prototypes used to build the model. It can be seen that
both the score means, and to a lesser extent, the standard
deviations, level off when more than roughly 100 prototypes
are used. This suggests that the method is insensitive to this
parameter as long as sufficiently large set of prototypes is
used.
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Figure 8: Scores and standard deviations as a function of the num-
ber of prototypes used (N). Scores were raw (nonstandardized).
Neither scores nor standard deviations change abruptly in the face
of small changes to the number of prototypes.

3.6. Stereotypy and Complexity. Finally, there is the possibil-
ity of using the WSPR algorithm as a basis for measuring the
complexity of a bird’s song. Exactly what is meant by
“complexity” in the context of birdsong is open to debate,
but most researchers would probably agree it involves the
number of distinct sounds an animal makes, as well as the
patterns of those sounds. For many years, people have used
informal measures of song complexity, such as the number
of distinct notes or syllables in a song [21]. In addition to a
high degree of subjectivity, these measures can be difficult to
apply to birds with variable songs, such as juveniles or species
that improvise when singing. As an alternative, WSPR can
be used to generate a measure of complexity based on ideas
from statistical complexity theory and information theory.

A WSPR model contains a considerable amount of
information about the sounds in a bird’s repertoire and the
likely sequences of sound it will produce—exactly the kind
of information needed to measure complexity. Our method
mines a WSPR model to produce a measure of the model’s
complexity, which is in turn a reflection of the complexity of
the sample set used to build the model (see the appendix).
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Figure 9: Complexity measured for early juvenile, late juvenile, and
adult. As birds age, the apparent complexity of their song increases.

This method was tested against vocalizations from a single
bird as it learned to produce its song.

Figure 9 shows complexity scores for models built on
early juvenile, late juvenile, and adult models. There is a
marked rise in complexity as the bird’s song develops, which
coincides with intuitive expectations.

4. Discussion

4.1. About the Method. The WSPR algorithm attempts to
identify recurring patterns in the vocalization samples sub-
mitted as training data. It does not need a high degree of top-
level similarity, nor does it look for any particular features. At
its heart, the algorithm is built upon a simple expression of
conditional probability: given that at this moment the sample
sounds like x, what are the probabilities of the sounds heard
in the preceding and following moments?

WSPR breaks the sample into short segments and, using
spectral analysis techniques, identifies the significant fre-
quency components of each segment. It then estimates how
probable such a frequency profile might be and how probable
its neighbouring profiles are. The probability estimates are
based on the distributions observed in the training data.

4.2. On the Use of k-Means Clustering to Divide Data. How
well does k-means clustering divide the data? The mean
silhouette statistic calculated for our initial model was 0.264,
suggesting that the underlying data clusters only moderately
well. The motivation however for using k-means clustering
here was not to identify clusters but to discretize the data in
a reasonably natural way, to the extent that natural partitions
may exist within the data. If natural partitions do not exist,
the data will simply be divided into neighboring discrete
regions. Other partitioning strategies could be employed: a
simple partition of the data range into a large number of
evenly sized hypercubes, for example, could also be used to
discretize the data, although it runs the risk of having most or
all of the data fall into a single hypercube. In practice, we have
found k-means clustering to produce a reliable discretization
of the data sets we have used.

4.3. On the Meaning of Scores. Scores are best thought of as
a quantitative measure of how typical each segment of the
sample is and how typical its surrounding segments are as
compared to the training data. Raw scores exist on a scale
that is unique to the model that produces them, and so raw
scores cannot be compared across models. As a result, it will
generally be preferable to use standardized z-scores. These
are standardized against the distribution of scores from the
training data: a z-score of 0.0 means that a sample scored
as highly as the average sample from the training data; a
z-score of 1.0 means that a sample scored one standard
deviation higher than the average sample from the training
data; a z-score of −1.0 means that a sample scored one
standard deviation lower than the average sample from the
training data. It is important to note that, although scores
are related to probabilities, they are not and cannot be used
as expressions of probability. Estimated P values, however,
can also be calculated. These P values estimates are for the
two-sided hypothesis that a random score for a sample from
a pool like the training data would be more extreme than
the current score, assuming a normal distribution of scores:
users should verify that the scores produced by a model are
approximately normally distributed before accepting the P
values estimates.

4.4. Performance of WSPR Compared to SA+ as a Classifier.
On the data sets used in this paper, the algorithm categorises
samples as song or call correctly about 92% of the time.
Compared to SA+, the algorithm makes about 1/3 as many
assignment errors, a substantial improvement.

There are some caveats in the use of SA+ as a classifier,
and some details that must be discussed regarding how
it was used in this paper. SA+ was used to compare one
single test sample against two single training samples, one
from each category. In contrast, the algorithm described
here compares a test sample against a digest of dozens or
hundreds of training samples. A fairer comparison would
involve using SA+ to compare a test sample against a large set
of training samples and then using some averaging function
to generate a score against each category. This is not typically
how SA+ is used however, and SA+’s computationally intense
method makes this infeasible: on a fast computer (2.6 GHz),
comparing a one-second sample against 100 would take
about 40 minutes. To classify a large group of samples in this
manner, say 10 000, would take an unreasonable amount of
time; hence we consider that the way in which SA+ was used
here as a classifier is a fair reflection of how it would be used
in practice.

4.5. Using Models to Estimate Stereotypy and Complexity.
Aside from classification and general scoring tasks, the
models produced by the WSPR algorithm can also be used to
provide two measurements about the training data that may
be of interest: stereotypy and complexity.

We propose that stereotypy can be thought of as a low
degree of variance between samples. A low standard devia-
tion of the scores of a sample set against a model provides
the most direct measure based on this idea.
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Figure 10: Hypothetical spectrograms for three birds. Bird number
1 has a song with a single note, bird number 2 has five notes but
no pattern, and bird number 3 has five notes and a clear recurrent
pattern

We can also define a measure of song repertoire com-
plexity, by looking to the field of statistical complexity for
inspiration. Measures of statistical complexity attempt to
quantify the “structuredness” of a system or process. There is
no consensus as to what exactly this means or how it could be
best measured, but most proposals generally consider the
number of parts in a system as well as the relationships
between those parts.

Let us consider this idea of complexity using several
examples involving birdsong, illustrated with artificial exam-
ples in Figure 10. Bird number 1 has a one-note repertoire,
and his song consists of repetitions of this note. He has a
highly regular song, but it is very simple. His “system” has
only a single “part” and we would suggest that his song is not
complex.

Bird number 2 has a five-note repertoire; he sings
randomly and each note is sung about 20% of the time.
Although the song of bird number 2 has many parts, there
are no relationships between these parts—each part is inde-
pendent of the others, and no patterns emerge from his song
beyond the individual notes. We would argue that, although
the five notes make this bird’s song more complex than bird
number 1, he also has a fundamentally simple song structure.

Bird number 3 also has a five-note repertoire, but he sings
with sequences of notes that appear regularly. Here, there are
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Figure 11: An illustration of why mutual information may not
adequately capture intuitive notions of song complexity. Although
the authors believe most people would agree that bird number 4 has
a more complex song than bird number 5, the songs of both birds
can have equal mutual information.

meaningful relationships between parts: some notes follow
others at rates much higher than random chance. We would
argue that this bird has what most observers would agree to
be a more complex song structure.

Is there an existing measure that could be used for the
purpose of measuring song complexity? Several measures
of statistical complexity exist, for various problem domains
[22–24], but the one that seems most relevant to birdsong
is the measure of predictive information described by Bialek
et al. [25]. To paraphrase, predictive information is how
much more you know about the future states of a system
upon learning about its past states. If combined with a
measure of the number of different states (to prevent bird
number 1 from receiving a high complexity score due to the
high predictability of his song), predictive information is in
accord with our intuitive ideas about birdsong complexity,
wherein birds with regular patterns of notes make it possible
to predict the note sequence, and the more extensive the
patterns are, the more that can be predicted. This measure
would also be in accordance with our intuitive notions about
the complexity of the songs of the three birds discussed
above.

While predictive information seems like a good fit, Bialek
et al. [25] use mutual information [26] as their underlying
measure, and, under some circumstances, this may lead to
counterintuitive results. For example, mutual information
would consider a bird with five songs, each containing a
different order of five different notes (bird number 4 in
Figure 11), just as simple as a bird with five songs of one
different note each (bird number 5 in Figure 11): both are
equally predictable. For birdsong, a more appropriate under-
lying measure might be the Kullback-Leibler divergence [27],
a measure of the difference between two probability distri-
butions. The Kullback-Leibler divergence (KL divergence)
would identify the former bird’s repertoire as being more
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complex than the latter’s. By using the KL divergence, we
are subtly exchanging the idea of predictive information for
a related but different one: the extent to which the past
predicts changes in the future. It is our opinion that, of all the
measures considered, the KL divergence most closely reflects
intuitive ideas about song complexity. The measure we
propose uses the data about sound distributions contained in
the WSPR models to estimate the structural complexity of a
sample set. It is essentially a mean of multiple KL divergences
of distributions at different time intervals in the model. The
exact formula can be found in the appendix.

An important consideration is that, for any measure, tim-
ing and the rate at which song features change are crucially
important. On very short timescales, such as microseconds, a
bird’s song does not change much at all, and the correlation
between past and present is total. On very long timescales,
such as hours, the correlation between past and present
singing behaviour is essentially zero. In between these
extremes is a narrow range of timescales that optimally reveal
the structure of the bird’s song. We have not devised a satis-
factory method for automatically identifying these optimal
timescales and so can only recommend that care be taken
in choosing timing parameters when attempting to measure
song complexity using the method we propose.

4.6. Known Issues and Future Directions. One consideration
when using WSPR is that background noise in recordings
can be problematic: the algorithm does not distinguish
background noise from vocalizations or any other noise of
interest, and the background noise profile becomes built into
the model. In the worst case, models built from samples
with significant background noise may assign low scores
to test samples simply because the background noise is
different. To avoid this problem, noisy recordings should be
denoised before either building a model or scoring against an
existing model, or recording conditions should be managed
to ensure a consistent level of background noise between
training samples and test samples. With a sufficiently low
level of background noise, WSPR models built from one
dataset should be useable with datasets made in different
recording environments, enabling the sharing of WSPR
models between laboratories.

There are several important points to consider when
using the measure of complexity we have provided. The
measure is highly sensitive to the size of the sample set, so
to make scores comparable across models, we recommend
using exactly the same total length of sound to build
each model. The measure can also be misled by extended
periods of silence, especially if these frequently appear at the
beginning or end of samples. To avoid this, we recommend
trimming silent intervals from the ends of all samples. The
model will also add implicit silence to the beginnings and
endings of samples as necessary to make them at least as
long as the window size of the model, so we recommend
concatenating all samples that are less than twice as long as
the window size before building a model.

WSPR bases its analysis on sound spectrograms, in part
because this seems the most “natural” interpretation of the

data, although many other song analysis tools have found
success using higher-order measurements derived from
the spectrograms [9–11]. One interesting extension to the
work presented here would be to incorporate these higher-
order measurements into the WSPR algorithm instead of
or in addition to the spectrograms to see if scoring and
classification accuracy could be improved further still.

5. Conclusions

In this paper, we have presented a novel method for com-
paring samples of birdsong against a larger set of samples,
WSPR. WSPR is designed to cope with sample sets with low
levels of stereotypy, an application that we feel no existing
tool adequately addresses. We then extended this method to
demonstrate a number of applications: classification prob-
lems, the original motivation behind the method’s develop-
ment; tracking song ontogeny; measuring song variability
and complexity. We believe that the measure of birdsong
complexity presented here represents the first effort of its
kind.

Although the methods described in this paper are useable
as they are, it is our hope that they may also serve as starting
points for further discussion: in general, discussions about
analyzing animal vocalizations and algorithms for doing so;
in particular, discussions about what complexity means in
the context of animal vocalization and how best to measure
it.

Appendix

Details of the WSPR Algorithm

The preliminary step in building a model is to produce an
encoding scheme for the sounds to be considered by the
model. This is a form of vector quantization [28], in which
the infinite variety of sounds is reduced to a finite set, or
codebook, of representative sounds.

To generate a codebook of size n from a sample set of
sounds:

(i) Convert each sample into power spectra via short-
time Fourier transform.

(ii) Take 100n random samples of power spectrum from
all spectrograms.

(iii) Cluster into n groups using k-means clustering.

(iv) For each group:

(a) Find the geometric mean of each frequency
band across all samples in the cluster.

(b) Normalise so that the mean spectra has a total
power of 1.

(c) The result is the prototypical spectral profile for
the group.

(d) Prepend a “null” spectrum of zeros to the be-
ginning of the prototypes.
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All samples must be transformed into a frequency-
versus-time representation (a spectrogram) using a discrete-
time short-time Fourier transform (STFT) [29]. Variations
on the classical STFT are also acceptable; a STFT using
a Gaussian window is used in our implementation of the
algorithm. Phase information is discarded, as well as parts of
the spectra outside a specific band of interest, that is, below
500 Hz or above 7500 Hz.

In cases where one wants to build two or more models
from the same underlying encoding, the samples used to
generate the codebook should be taken from the joint sample
set of the two models.

Encoding Samples. Having constructed a codebook, all sam-
ples must now be encoded. To encode a sample:

(i) Convert via STFT to power spectra.

(ii) For each power spectrum s in the spectrogram:

(a) If the total power in s is below the cutoff thresh-
old, emit a zero (the null spectrum).

(b) Otherwise, examine the codebook, P, to find
the spectrum, p, where the root mean square
deviation between s and p is minimized.

(c) Emit the index number of p, that is, if p is the
3rd spectrum in the codebook, then emit a 3.

(d) The sequence of emitted numbers is the encod-
ing of the sound.

Constructing the Model. Perform the following steps to
construct a model using the encoded samples:

(i) Choose a sliding window length, w. Define a as the
middle (anchor) position of the window.

a =
⌊
w + 1

2

⌋
. (A.1)

(ii) Create an array M of dimension n×w×n and a vector
T of length n. Initialise all values in M and T to 0. For
every encoded sample e, create a set R of all possible
subsequences of e of length w.

(iii) For each r in R, perform the following:

Tra ←− Tra + 1,

Mra, j,r j ←−Mra, j,r j + 1 ∀ j ∈ {1, . . . ,w},
(A.2)

where ra is the symbol at the anchor position in r.

(iv) Create an array M∗, same size as M; vector T∗, same
size as T .

(v) For i in 1, . . . ,n, perform the following computation:

T∗i =
Ti∑n
j=1 Tj

. (A.3)

(vi) For j in 1, . . . ,w, k in 1, . . . ,n, perform the following
computation:

M∗
i, j,k =

Mi, j,k∑n
l=1 Mi, j,l

. (A.4)

The tuple of W = (P,T∗,M∗) constitutes the constructed
model, where ra is the symbol at the anchor position in r.

Scoring a Sample against the Model. Finally, we must be able
to compute a score of a test sample against a model. Perform
the following steps to score a test sample against a model W :

(i) Convert the sample to a spectrogram via STFT.

(ii) Encode the sample as described previously, creating
encoding e.

(iii) Create a set Q, containing every subsequence of e of
length w.

(iv) For each q in Q, calculate the following:

ζ
(
q,M∗) = Tqa

⎛
⎜⎝
⎛
⎝ w∏

j=1

M∗
qa, j,qj

⎞
⎠

1/w
⎞
⎟⎠. (A.5)

(i) The score of the sample is

Z(Q;W) = ln

⎛
⎜⎝
⎛
⎝

length(Q)∏
i=1

ζ
(
qi,M∗)

⎞
⎠

1/length(Q)
⎞
⎟⎠. (A.6)

Z(Q;W) is the non-standardized (“raw”) score of Q against
the model W .

Standardization of Scores and Estimation of P-Values. After
the model is built, every sample in the training set is scored
against the model. The mean (μ) and standard deviation (σ)
of these raw scores are calculated and stored along with the
model. When a test sample is scored against the model, its
normalised z-score can be computed as

Z∗(Q;W) = μ− Z(Q;W)
σ

. (A.7)

To calculate an estimated P value, the CDF of a normal
distribution with mean μ and standard deviation σ is used
to determine the proportion of the distribution that is more
extreme than the test score.

Classification Using Multiple Models. Suppose we have x
known classes (1, 2, 3, . . .) to which we wish to assign samples
and training data sets {S1, S2, . . . , Sx}. We begin by building
a joint set of prototypes for all samples from {S1, S2, . . . , Sx}
as described previously. Then, for each set of samples Si, we
build a model Wi using the algorithm described previously.

We calculate the means and standard deviations for each
sample set against each model, producing a x × x table for
each statistic:

μi, j = mean
(
Z
(
s;Wj

))
,

σi, j = sd
(
Z
(
s;Wj

))
,

∀s ∈ Si, j ∈ {1, . . . , x}. (A.8)

The tuple (P, {W1,W2, . . .},μ, σ) constitutes the classifier.
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When a sample Q is submitted for classification, we cal-
culate the raw score Z(Q;Wj) for all Wj . Then, we calculate
the typicality of Z(Q;Wj) relative to each training set Si:

Y
(
Q, i, j

) = Z
(
Q;Wj

)
− μi, j

σi, j
∀ j ∈ {1, . . . , x}. (A.9)

Finally, we calculate the “atypicality” (or deviation of typi-
cality) for each class as

A
(
Q, j

) =
√√√√√

x∑
j=1

Y
(
Q, i, j

)2
. (A.10)

The i for which A(Q, i) is lowest is the class to which Q is
assigned. This method works not by assigning a sample to the
model for which it is most typical but by assigning a sample
to the class of samples whose scores are most similar across all
the models; in practice this seems to provide an improvement
in accuracy.

Calculating the Complexity of a Model. Take T∗ and M∗

from a model W . Recall that T∗ is of length n and M∗ is of
dimension n×w × n. Then,

Γ(T∗,M∗, k)

=
{
T∗i M

∗
i, j,k

}

= {γ1, γ2, . . . , γn×n
} ∀i ∈ {1, . . . ,n}, j ∈ {1, . . . ,n}.

(A.11)

That is, if M∗
i, j,k is the probability of seeing symbol j at po-

sition k given that symbol i is at the anchor position, then
Γ(T∗,M∗, k) for each k is the set of all elements M∗

i, j,k for
that value of k, each multiplied by the probability of seeing
symbol i.

Given the definition of the Kullback-Leibler divergence as

DKL(P,Q) =
∑
i

P(i)log2
P(i)
Q(i)

, (A.12)

then our measure of song complexity is calculated as follows:

Csong
(
T∗,M∗, x, y

)

= 1
y − x + 1

y∑
i=x

DKL(Γ(T∗,M∗, a+1),Γ(T∗,M∗, a+ i+1)),

(A.13)

where M∗ and T∗ are the components of a model W , a is
the anchor position of that model, and x and y are the start
and end of a range of positions in the model forward of the
anchor position for which the complexity is to be calculated.

Availability of Tools Implementing
the WSPR Algorithm

Implementations of the WSPR algorithm in C++ and Mathe-
matica are available for download; a web-based front end has
also been developed to facilitate easy access to the WSPR tool.
These can all be found at http://wspr.rockefeller.edu/wspr/.
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