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A B S T R A C T   

Deep learning based medical image segmentation is an important step within diagnosis, which relies strongly on 
capturing sufficient spatial context without requiring too complex models that are hard to train with limited 
labelled data. Training data is in particular scarce for segmenting infection regions of CT images of COVID-19 
patients. Attention models help gather contextual information within deep networks and benefit semantic seg
mentation tasks. The recent criss-cross-attention module aims to approximate global self-attention while 
remaining memory and time efficient by separating horizontal and vertical self-similarity computations. How
ever, capturing attention from all non-local locations can adversely impact the accuracy of semantic segmen
tation networks. We propose a new Dynamic Deformable Attention Network (DDANet) that enables a more 
accurate contextual information computation in a similarly efficient way. Our novel technique is based on a 
deformable criss-cross attention block that learns both attention coefficients and attention offsets in a continuous 
way. A deep U-Net (Schlemper et al., 2019) segmentation network that employs this attention mechanism is able 
to capture attention from pertinent non-local locations and also improves the performance on semantic seg
mentation tasks compared to criss-cross attention within a U-Net on a challenging COVID-19 lesion segmentation 
task. Our validation experiments show that the performance gain of the recursively applied dynamic deformable 
attention blocks comes from their ability to capture dynamic and precise attention context. Our DDANet achieves 
Dice scores of 73.4% and 61.3% for Ground-glass opacity and consolidation lesions for COVID-19 segmentation 
and improves the accuracy by 4.9% points compared to a baseline U-Net and 24.4% points compared to current 
state of art methods (Fan et al., 2020).   

1. Introduction 

The coronavirus COVID-19 pandemic is having a global impact 
affecting 213 countries so far. The cases world wide as reported on 
Worldometers [3] is about 154,998,238 as of early May 2021. Many of 
the countries have steadily flattened the curve by stringent social 
distancing measures. In the last several months of managing this 
pandemic globally, several screening options have become main stream 
from Nucleic Acid Amplification Tests (NAAT) assay tests, serological 
tests, and radiological imaging (X-rays, CT). Recent studies have also 
demonstrated that lack of taste and smell is a new indicator for this virus 
[4]. 

The gold-standard for COVID-19 diagnosis is currently using reverse- 

transcription polymerase chain reaction (RT-PCR) testing [5]. It has 
been observed that RT-PCR also has several vital limitations. The most 
pertinent of this limitation is that the test is not universally available. To 
further compound the drawbacks, the turnaround times for this test is 
currently lengthy and the sensitivities vary. Some studies have even 
pointed out that the sensitivity of this test is largely insufficient [5]. To 
mitigate some of the challenges in rapid screening given the large 
incidence rate of this virus and limited testing facility, radiological im
aging complements and supports immensely stratify therapy options for 
more severe cases of COVID-19. 

Radiological imaging equipment, such as X-ray, are more easily 
accessible to clinicians and also provide huge assistance for diagnosis of 
COVID-19. CT imaging and Chest radiographs (CXR) are two of the 
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currently used radiological imaging modalities for COVID-19 screening. 
Lung CT can detect certain characteristic manifestations associated with 
COVID-19. Several studies [6] [5] have demonstrated that CT is more 
sensitive to detect COVID-19, with 97–98%, compared to 71% for RT- 
PCR [5]. CXR might have lesser scope in the first stages of the disease 
as the changes are not evident on CXR. Studies have shown [7,8] that 
CXR may even present normal in early or mild disease, as demonstrated 
in Fig. 1 [9]. CT is hence preferred for early stage screening and is also 
generally better than X-rays as it enables three dimensional views of the 
lung. 

The typical signs of COVID-19 infection observed in CT slices are 
Ground-glass opacities (GGO), which occur in the early stages and 
pulmonary consolidation, which occur in later stages. Detection of these 
regions in CT slices gives vital information to the clinicians and helps in 
combating COVID-19. Manual detection is laborious, highly time 
consuming, tedious and error prone. It has to be pointed out that COVID- 
19 associated abnormalities, such as Ground-glass opacities and con
solidations, are not characteristic for only COVID-19 but can occur in 
other forms of pneumonia. 

Deep Learning plays a vital role in processing these medical images 
and correctly diagnosing patients with COVID-19. In regular clinical 
workflow, while assessing the risks for progression or worsening, the 
images need to be segmented and quantified. 

For the diagnosis of lung diseases, CT scans have been the preferred 
modality, and this has therefore been actively utilized in managing 
COVID-19 [11] [12] [13]. AI in medical imaging has largely aided in 
automating the diagnosis of COVID-19 from medical images [14] [15]. A 
detailed review of AI in Diagnosis of COVID-19 has been presented by 
Shi et al. [11]. They broadly group AI based automated assistance for 
image acquisition, accurate segmentation of organs and infections and 
for clinical decision making. Under the segmentation approaches they 
have comprehensively covered nearly all the research that has happened 
so far in the automated segmentation of lung regions and lesion regions 
in CT and X-ray images. 

Fan et al. [2] have reported a list of at this time available public 
COVID-19 imaging datasets. As mentioned in their paper, there is only 
one dataset which provides segmentation labels [16]. From this public 
database [16], we have combined the first dataset of 100 sparsely 
selected axial CT slices from over 40 patients with a dense set of slices 
from 9 patient’s CT scans and use this larger datasets for our studies. A 
few exemplary slices are demonstrated below to get a visual impression 
of how the Ground-glass opacity lesions and consolidation lesions 
manifests itself in Fig. 2. 

In this paper, we propose Dynamic Deformable Attention Network 
(DDANet), a novel deep network for COVID-19 infection segmentation 
in 2D CT slices. Our inspiration for this network is the recent success of 
self attention mechanisms and sparse deformable convolutions [17]. As 
attention blocks do not have to be regularly structured, this opens the 

novel research area that motivates our investigation of spatially- 
adaptive attention filters. In this work we generalize criss-cross atten
tion [18] for semantic segmentation tasks. We enhance the criss-cross 
attention and propose a novel deformable attention module in which 
both the attention filter offsets and coefficients are learnt in a contin
uous, differentiable space. We carried out extensive experiments of our 
novel algorithm on a large publicly available COVID-19 dataset. Our 
proposed DDANet achieves very good lesion segmentation and out
performs most cutting-edge segmentation models reported so far on 
Ground-glass opacity and consolidation lesions. The proposed solution 
greatly enhances the performance of the baseline U-Net architecture 
[19]. The baseline U-Net we have employed in our work is from Oktay 
et al. [19], which has a well-proven semantic segmentation perfor
mance. Our novel adaptation of the criss-cross attention module is 
generic and can also be easily plugged into any state-of-art segmentation 
architecture. These results demonstrate that our proposed DDANet can 
be effectively used in image segmentation in general and COVID-19 
automated image analysis in particular and can greatly aid in clinical 
workflow handling of these images. 

In summary, our main contributions in our work are:  

• We propose a novel deformable attention module in which sparse 
attention filter offsets are learnt in a continous differentiable space 
and can capture contextual information in an efficient way  

• We demonstrate that employing this new deformable attention 
mechanism within the U-Net architecture [19] [1] achieves superior 
performance of lung infection segmentation compared to conven
tional U-Nets or U-Nets with criss-cross attention [18]  

• Our DDANet reaches state-of-the-art segmentation performance of 
73.4% and 61.3% dice scores for Ground-glass opacity and consoli
dation lesions, on a large publicly available CT COVID-19 infection 
dataset in a fivefold cross validation on GGO and consolidation la
bels. It improves the accuracy by 4.9% points compared to a baseline 
U-Net and 24.4% points compared to current state of art methods [2] 

The rest of the paper is organized as follows. In Section II we present the 
works related to our current research. We start with a brief background 
to the recent approaches to Semantic Segmentation and then delve into 
Attention mechanism. Then we follow this with details about Criss-Cross 
attention. Section III describes the methods including our proposed 
Network architecture and details of our proposed differentiable atten
tion sampling. We then present the experimental setup and share the 
results in Section IV. Finally we conclude the paper with a section on 
Discussion (Section V) and a few potential extension and ideas for future 
work in the Conclusion section (Section VI) 

Fig. 1. Comparison of chest radiograph (A) and CT thorax coronal image (B). 
The Ground-glass opacities in the right lower lobe periphery on the CT (red 
arrows) are not visible on the chest radiograph, which was taken 1 h apart from 
the first study. Image courtesy - Ming-Yen et al. [10]. (For interpretation of the 
references to color in this figure legend, the reader is referred to the web 
version of this article.) 

Fig. 2. Sample slice from one of the dataset and the corresponding Ground- 
glass opacity lesion (GGO) marking in first row and GGO and consolidation 
lesion marking in second row. Dataset from website [16]. 

K.T. Rajamani et al.                                                                                                                                                                                                                            



Journal of Biomedical Informatics 119 (2021) 103816

3

2. Related work 

We discuss the areas of research that are related to our work - se
mantic segmentation and attention mechanisms as well as deep learning 
based methods for processing of COVID-19 images. 

2.1. Semantic segmentation and attention mechanisms 

Deep learning based algorithms are able to automatically segment 
images when trained on manually segmented lesion labels. Semantic 
segmentation has steadily progressed in the last few years evolving from 
Fully Convolutional Network (FCN) [20], to the use of dilated convo
lutions [21] and extensive adaptation of encoder decoder architectures - 
U-Net [22], Attention U-Net [19] [1], nnU-Net [23], DeepLabv3+ [24], 
Semantic Prediction Guidance (SPGNet) [25], Discriminative Feature 
Network (DFN) [26], RefineNet [27] and Multi- Scale Context Inter
twining (MSCI) [28]. 

To detect objects within images of various scale, the convolution 
operator has been enhanced using Deformable Convolution [29] [1] and 
Scale adaptive convolutions [30]. Graphical models have also been 
employed effectively for the task of semantic segmentation [31] [21]. 

Attention models initially gathered a lot of traction after the suc
cessful introduction of transformer models in Natural Language Pro
cessing (NLP) domain [32]. It has been demonstrated that NLP models 
perform better when the encoder and decoder are connected through 
attention blocks. 

Attention mechanism have subsequently been utilized in computer 
vision tasks to capture long-range dependencies. The earlier approaches 
have tried to augment convolutional models with content-based in
teractions [24] [33] [1]. The seminal work in attention mechanisms was 
non-local means [34], which was then followed by self-attention [33]. 
These have helped achieve better performance on computer vision tasks 
like image classification and semantic segmentation. Attention-gates 
have also shown promising results when incorporated into U-Nets for 
3D medical segmentation [1]. There have also been successful experi
ments of building pure self-attention vision models [35]. 

Non-Local Networks [34] enable full-image context information by 
utilizing self-attention which helps reference features from any position 
to perceive the features of all other positions. The drawback of Non- 
Local network is the large time and space complexity (O (H× W)×

(H× W)) to measure every pixel-pair relation, and also requiring large 
GPU memory to train such models. 

CCNet [18] elegantly solves the complexity issue by using consecu
tive sparse attention. With two criss-cross attention modules, CCNet 
captures contextual information from all pixels with far less time and 
space complexity. Criss-cross attentiom (CCNet) [18] was shown to 
enable improvements in computer vision semantic segmentation tasks 
on Cityscapes, ADE20K datasets. Tang et al. [36] have successfully 
employed criss cross attention in medical organ segmentation (lung 
segmentation). In their XLSor paper [36] they used a pretrained 
ResNet101 replacing the last two down-sampling layers with dilated 
convolution operation. 

2.2. Deep learning based processing of COVID-19 images 

Several researchers have already established the efficacy of deep 
learning based algorithms for processing of COVID-19 images. 

For classifying COVID-19 from healthy, a variant of inception 
network was proposed by Wang [15]. An U-Net++ architecture [37] has 
been effectively put to use for COVID-19 diagnosis, which worked better 
than expert radiologists. Mahmud et al. [38] use a large database con
taining X-rays from normal and other non-COVID pneumonia patients 
for transfer learning and are able to distinguish between normal, COVID- 
19, viral, and bacterial pneumonias. Their proposed CovXNet includes 
depthwise convolution with varying dilation rates for efficiently 
extracting diversified features from chest X-rays. 

The COVID-19-20 MICCAI challenge [39] currently evaluates many 
different methods for the segmentation and quantification of lung le
sions caused by COVID-19 from CT images. The challenge winners are 
not announced yet, but based on the leaderboard, it is possible to infer 
many successful methods. One of the early works for semantic seg
mentation on COVID-19 images was DenseUNet proposed by Chaganti 
et al. [40] to segment the lesions, lungs and lobes in 3D. They compute 
percentage of opacity and lung severity scores and report this on entire 
lung and lobe-wise. The algorithm was trained on 613 manually delin
eated CT scans (160 COVID-19, 172 viral pneumonia, and 296 ILD). 
They report Pearson Correlation coefficients between prediction and 
ground truth above 0.95 for all the four categories. In CovidENet [41] a 
combination of a 2D slice-based and 3D patch-based ensemble archi
tectures is proposed, trained on 23423 slices. Their finding was that 
CovidENet performed equally well as trained radiologists, with a Dice 
coefficient of 0.7. In the realm of segmentation based methods, [42,43] 
use VB-net [44] to segment of lung and infection regions in CT images. 
In [45], the focus is on speed-up of segmentation while maintaining 
comparable accuracy to state-of-the-art models using a three-stage 
framework called KISEG for multi-level accelerating semantic segmen
tation of image series of CT. 

Gao et al. [46] introduced a dual-branch segmentation-classification 
framework that simultaneously performs COVID-19 diagnosis and the 
segmentation of lesions based on chest CT images. They proposed a 
lesion attention module to utilize the intermediate results of both seg
mentation and classification branches to improve the classification 
performance. 

3. Methods 

In this section we explain the details of the proposed network ar
chitecture. We also capture the major differences between the existing 
work and our proposed approach. Our basic idea is integrating an 
attention module within the U-Net architecture [1] as an extension of 
the U-Net’s bottleneck in order to capture contextual information from 
only the necessary and meaningful non-local contextual information in 
smart and efficient way. Our models utilize the approach of the criss- 
cross attention module proposed by [18] and modify it to enhance the 
segmentation performance on COVID-19 datasets. The aim of our work 
is twofold. First, we evaluate whether criss-cross attention can be 
employed within a U-Net [1] to improve medical image lesion seg
mentation for labelled data which is relatively small, a common scenario 
currently for COVID-19. Second, we incorporate our novel adaptation of 
this attention model and extend it with a dynamic deformable attention 
mechanism where the attention filter offsets are learnt in a continuous 
differentiable space. We strongly believe that the deformable attention 
module that automatically adapt their layout is an important step to get 
better insight into the computation mechanism of attention modules. We 
have discovered in our work that capturing attention from all non-local 
locations does negatively impact the accuracy of semantic segmentation 
networks. Capturing only the necessary and essential non-local contex
tual information in a smart and data driven way yields far more prom
ising segmentation results. We also demonstrate that having the 
attention offsets learnable enables the network to smartly decide on its 
own the locations where to obtain non-local attention from for improved 
results. 

3.1. Criss-cross attention module 

The criss-cross attention module (CCA) proposed by Huang et al. 
[18] aggregates contextual information in horizontal and vertical di
rections for each pixel. The input image X is passed through convolu
tional neural network (CNN) to generate the feature maps H of reduced 
dimension. The CCA module comprises of three convolutional layers 
applied on H ∈ RC×H×W with 1 × 1 as kernel size. 
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First, the local representation feature maps H are fed into two con
volutional layers in order to obtain two feature maps - query Q and key 
K with the same reduced number of feature channels C′ . By extracting 
feature vectors at each position u from Q, a vector Qu ∈ RC′ is generated. 
From K feature vectors in the same row and column as u are collected in 

Ωu ∈ R(H+W− 1)×C′

with elements Ωi,u ∈ RC′ . 
Attention maps A ∈ R(H+W− 1)×H×W are obtained by applying the af

finity operation di,u = QuΩT
u with di,u ∈ D being the degree of correlation 

between feature Qu and Ωi,u, i = [1,…, |Ωu|],D ∈ R(H+W− 1)×H×W followed 
by a softmax layer on D over the channel dimension. 

The third convolutional layer applied on H generates value V ∈

RC×H×W for feature adaption. Therefore, a feature vector Vu ∈ RC and a 
set Φu ∈ R(H+W− 1)×C are extracted at each position u in the spatial 
dimension of V. 

The contextual information is aggregated by 

H′

u =
∑

i∈|Φu |

Ai,uΦi,u +Hu (1)  

with H′

u being a feature vector in the module’s output feature maps H′

∈

RC×H×W at position u and Ai,u being a scalar value at channel i and 
position u in A. Finally, the contextual information is weighted with a 
learnable scalar γ and added to the feature map H. 

3.2. Network architecture 

The architecture of our model combines the concepts of U-Net [22] 
and CCNet [18]. A block diagram of the proposed Deformable Attention 
Net (DDANet) is shown in Fig. 3. 

We use a U-Net structure from Oktay et al. [19] [1], adapting it 
slightly by reducing one downsampling (and corresponding upsampling 
path), to best process our image dimension (256*256). It consists of 
three blocks in the downsampling path and three blocks in the upsam
pling block. Each block consists of 2× (Batch Normalization - 2D 
Convolution (kernel size 3× 3, stride 1, padding 1) - ReLU). The last 
block consists of a 2D convolution with kernel size 1× 1. For down
sampling, max pooling is applied in the downsampling path to halve the 
spatial dimension of the feature maps after each block. In the upsam
pling path ConvTranspose2d is used to double the size of the spatial 
dimension of the concatenated feature maps. The number of feature 
channels is increased 1 − 64 − 128 − 256 − 512 in the downsampling path 
and decreased again accordingly in the upsampling path. The U-Net’s 
last layer outputs a number of feature channels matching the number of 
label classes for semantic segmentation. 

The local representation feature maps H being output from the U- 
Net’s last block within the downsampling path serve as input of reduced 
dimension to the criss-cross module. The attention module is inserted in 
the bottleneck, as the feature maps are of reduced dimension, and hence 

the attention maps have smaller, more manageable time and space 
complexity. In the orginial CCNet [18], the following attention module 
gathers contextual information in the criss-cross path of each pixel 
leading to feature maps H′ . 

The major difference of our approach to the existing approaches of 
using criss-cross attention [18,36] is the efficient and effective meth
odology to capture non-local interactions. Earlier criss-cross attention 
approaches [18,36] capture attention from all non-local locations, 
which negatively impact the accuracy of semantic segmentation net
works. Our approach captures only the necessary and essential non-local 
contextual information in a smart and data driven way using differen
tiable attention sampling introduced later in this section, which yields 
superior segmentation results. Our experiments validate our hypothesis 
that having the attention offsets learnable enables the network to 
sparsely and smartly decide on its own the locations where to obtain 
non-local attention from thereby yielding improved results. 

In our proposed novel DDANet, the pattern is dynamic and learnable, 
and hence a dynamic deformable criss-cross path is used to obtain the 
attention feature maps DH′ . These feature maps are again passed 
through the dynamic deformable attention module again which results 
in feature maps DH′′ capturing attention information from the most 
relavant locations from the whole-image at each of its positions. The 
contextual features DH′′ obtained after passing R = 2 loops through the 
attention module are concatenated with the feature maps X and merged 
by a convolutional layer. The resulting feature maps are then passed 
through the U-Net’s upsampling path. 

We implement the following modifications of the criss-cross atten
tion module: Deformable CCA module with R = 2 loops, X + γDH′′. 

Differentiable attention sampling: Consider a classical criss-cross 
attention operation which gathers non-local information on a feature 
map of Height H and width W. The initial shape of the criss-cross pattern 
is a cross as the orginial CCNet [18] which aggregates contextual in
formation for each pixel in its criss-cross path. We have realized the 
baseline criss-cross attention by first initializing statically defined lo
cations in a 2D flow field (sampling grid) of size H× W. The attention 
filter offsets for the vertical direction are defined as the locations where 
the x coordinates match a tensor of length H of equally spaced points 
between − 1 and 1. Similarly, the attention filter offsets for the hori
zontal direction are defined as the locations where the y coordinates 
match a tensor of length W of equally spaced points between − 1 and 1. 
These vertical and horizontal offsets help to compute the attention along 
a cross pattern at H+W non-local locations. 

To make the attention map differentiable, we compute the dis
placements for the horizontal and vertical offsets. For computing the 
displacement for each of the horizontal and vertical locations we use 
H + W random locations sampled from a standard normal distribution. 
We distribute these displacement locations smoothly by convolving 
them three times with a Gaussian kernel with a kernel size 5. We then 
use a spatial transformer network to sample the attention values from 
the offset locations coupled with the displacements. To obtain the 
attention output for inputs on a discrete grid, we use differentiable 
bilinear interpolation. This makes our attention sampling differentiable 
and the attention locations are dynamic and deformable. 

We realized our dynamic deformable attention mechanism by the 
differentiable attention sampling described above which deforms the 
criss-cross pattern. In our deformable attention implementation, we 
have included H+W learnable attention offset parameters in our deep 
neural network definition. These are the learnt displacements for each of 
the criss-cross locations. The learnt displacement vector (x and y 
displacement) for each of the criss-cross locations is used to displace the 
horizontal and veritcal offsets, while sampling the attention maps. For 
the second recurrence, a second set of different H+W learnable atten
tion parameters is used for determining the displacements. 

We use differentiable bilinear interpolation to differentiably sample 
the attention values for the query, key and value feature maps from the 

Fig. 3. A block diagram of the proposed Deformable Attention Net (DDANet). 
Input image is progressively filtered and downsampled by factor 2 at each scale 
in the encoding part. The deformable criss-cross attention is inserted as an 
extension of the U-Net’s bottleneck in order to capture contextual information 
from only the necessary and meaningful non-local contextual information in 
smart and efficient way. 
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deformed and dynamically learnt positions of criss-cross offset locations. 
Hence the attention filter offsets for each of the original criss-cross 
pattern are learnt in continuous differentiable space. The proposed 
deformable criss-cross attention is depicted in the CCA-Module in Fig. 4. 
As depicted in the figure, the criss-cross pattern is learnt and dynami
cally deformed to best capture the most relevant non-local information. 
(See 5). 

The infection class in COVID-19 data is generally under represented 
as compared to the background class, especially in early stages of the 
disease. This leads to a large class imbalance problem. As found in 
several studies, Ground-glass opacities generally precede consolidations 
lesions. This progression of the lesion development in COVID-19 leads to 
the another scenario of class-imbalance. In some patients only one of the 
lesions is largely present and the second lesion is highly under- 
represented (less than 10% of the total infection labels). This also 
leads to a second category of class-imbalance. To address all of these 
class-imbalance issues, especially present in COVID-19 lesion segmen
tation scenarios, we propose to use the inverse class-weighted cross- 
entropy loss. The weights are computed to be inversely proportional to 
the square root of class frequency. Given a sample with class label y, this 
inverse class-weighted cross-entropy loss can be expressed as 

CE(z, y) = wy

(

− log

(
exp(zy)

∑C
j=1exp(zj)

))

(2)  

with C being the total number of classes and z the output from the model 
for all classes. The weighting factor 

wy =

̅̅̅
1
zy

√

1
C

∑C

j=1

̅̅̅
1
zj

√ (3)  

is determined with help of the inverse square root of the number of 
samples in each label class to address the problem of training from 
imbalanced data. The training and validation sets also have different 
distributions, hence we have computed the inverse weighting separately 
for the train and validation sets. We have also used learning rate finder 
[47] to find the optimal learning rate, and a 1cycle learning rate policy 
scheduler, where the maximum learning rate was also determined using 
the learning rate finder. 

4. Experimental setup and results 

We have used the publicly available COVID-19 CT segmentation 
dataset [16]. We have taken the 100 axial CT images from different 
COVID-19 patients. This first collection of data is from the Italian Society 
of Medical and Interventional Radiology. We have also utilized the 

second dataset of axial volumetric CTs of nine patients from Radiopaedia 
[16]. This second dataset with whole volumes includes slices which have 
COVID-19 lesions (373 positive slices) and slices without COVID-19 le
sions (455 negative slices). We perform experiments with a 5-fold cross 
validation on this combined dataset consisting of 471 two-dimensional 
axial lung CT images with segmentations for Ground-glass opacities 
(GGO) and consolidation lesions. Each fold comprises data acquired 
from multiple patients plus one third of images from the 100 slice CT 
stack taken from more than 40 different patients. The CT images are 
cropped and rescaled to a size of 256× 256. During training, we perform 
random affine deformations for data augmentation. 

Training is performed for 500 epochs using the Adam optimizer and 
an initial learning rate of 0.002. We further use a cyclic learning rate 
with an upper boundary of 0.005 and a class-weighted cross-entropy loss 
to address the problem of training from imbalanced data. 

For the infection region experiments and multi-class labeling we 
compared our model with two cutting-edge models: U-Net [19] and 
Criss-Cross Attention [18]. The number of trainable parameters for the 
U-Net [19] is 611 K. For the U-Net incorporated with the criss cross 
attention the parameter count is 847 K. Our proposed variant of modi
fied CCNet has slightly more parameters at 849 K. We have used four 
widely adopted metrics, i.e., Dice similarity coefficient, Sensitivity 
(Sen.), Specificity (Spec.) and Mean Absolute Error (MAE). If we denote 
the final prediction as Fp and the object-level segmentation ground-truth 
as G, then the Mean Absolute Error which measures the pixel-wise error 
between final prediction and ground truth is defined as 

MAE =
1

w × h

∑w

x

∑h

y
|Fp(x, y) − G(x, y))| (4) 

We have adopted a similar approach to Fan et al. [2] and present first 
the results of our proposed DDANet on detecting lung infections. Our 
network is trained on multi-class lung infection (GGO and consolidation) 
and during evaluation we combine these multiple classes into one 
infection label. We present our 5-fold cross-validation studies results in 
Table 1 which is averaged over multiple runs that we have conducted. 
We have also included the results from Fan et al. [2] in each of our 
experiments. It has to be noted that Inf-Net was only trained with the 
first dataset which is smaller (100 axial slices) and Semi-Inf-Net was 
trained with pseudo labels from unlabelled CT images. As captured in 
the Table 1, our proposed DDANet achieves the best Dice scores in each 
of the folds. The best Dice score obtained is 0.849 and least mean ab
solute error (MAE) is 0.0163. We have also captured the average 
infection segmentation performance of our network in the same Table 1. 
Our proposed DDANet has the best infection segmentation performance 
in average with the average Dice score of 0.781). In terms of Dice, our 
proposed DDANet out-performs the cutting-edge U-Net model [19] by 
1.56% on average infection segmentation. 

We have also included the infection segmentation performance of 
our DDANet on each of the patients in the supplementary materials. For 
each of the patients, our proposed DDANet had the best Dice score and 
the minimum MAE. The average across all the patients is captured in 
Table 2. In terms of Dice, our DDANet method achieves the best 
competitive performance of 0.7789 averaged across all the patients. It 
outperforms the baseline best U-Net model Dice by 3.658% on infection 
segmentation. 

The fold-wise performance of our DDANet on multi-class labeling is 
included in the supplement section. We have captured the average 
multi-label segmentation performance of our network in Table 3. We 
have also compared our results with the results from Inf-Net by Fan et al. 
[2]. Our baseline U-Net [19] and proposed DDANet has far less trainable 
parameters at (611K) and (849K) as compared to 33M in Inf-Net [2]. Our 
proposed DDANet has the best multi-label segmentation performance 
also in average with the best Dice score of 0.734) for GGO lesions and 
best Dice score of 0.613) for consolidation lesions. Our proposed 
DDANet has average best dice score of 0.673 for detecting COVID-19 

Fig. 4. A block diagram of the proposed deformable criss-cross attention 
module. In our deformable criss-cross, we have the H+W − 1 learnable atten
tion offset parameters for each of the criss-cross locations. Differentiable 
bilinear interpolation is used to sample the attention values for the query, key 
and value feature maps from the learnt positions of deformed criss-cross 
offset locations. 
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lesions. In terms of Dice, our proposed DDANet out-performs the cutting- 
edge U-Net model [19] by 4.90% on average multi-label segmentation. 
We have increased the trainable parameters in our proposed DDANet 
only by a negligible amount of 2450 (or 0.3%) in comparison to the 
original model with criss-cross attention. 

We have also captured the multi-label segmentation performance of 
our DDANet on each of the Patients in the supplementary materials. In 
terms of Dice, our DDANet method achieves the best competitive per
formance of 0.702 for GGO lesion and 0.681 for consolidation lesion 
averaged across all the patients. In average the proposed DDANet out
performs the baseline best U-Net model Dice by 2.86% on GGO, 4.73% 
on consolidation and in average 3.52% on multi-label segmentation. 
The distribution of the GGO and consolidation lesions are not even 
among the different patient scans. Some patients had predominantly 
only GGO (Patient-8) while other patients had predominantly consoli
dation (Patient-3). This skew in distribution impacts the segmentation 
dice scores significantly, when the lesions are minimally represented in 
the patients. 

5. Discussion 

COVID-19 lesion segmentation is a very challenging problem. One of 
the major challenge is the regional manifestation of lesions especially in 
the early stages of the disease, and it can be very hard to get good seg
mentation in those high class-imbalance scenarios. A similar challenge 

arises when one of the lesion classes is majorly represented and the other 
class is highly under-represented which makes it very difficult. This also 
is a challenging scenario of skewed class-imbalance and gets very hard 
to get good segmentation in this context as well. The third challenge is 
the very limited availability of large public datasets, which has been the 
case until recently. Slowly a number of COVID-19 datasets are made 
publicly available and this scenario could change quite dramatically in 
the future. This would then enable further research into more compel
ling algorithms to address this challenging problem. 

Our proposed deformable attention is only one of the potential ways 
to realize learnable attention mechanisms that are smarter, more 
elegant, and have better performance than earlier proposed criss-cross 
attention or non-local methods. There are lots of research possibilities 
to make this even better. There is no requirement or limitation to gather 
attention from H+W locations as we are currently computing. We have 
currently computed it that way to make it comparable to criss-cross 
attention. The attention could be gathered from lesser or more loca
tions. One of the next research problems could be to explore what could 
be the optimal or minimal number of non-local attention locations that 
needs to be gathered to get the best results. It would also be interesting 
to establish theoretical upper and lower bounds for number of locations 
to get non-local attention and its impact on performance. Our work 
opens up all these and more possible research directions and can be the 
trigger for more fundamental work on learnable attention mechanisms. 

Input Image GT UNET CCNET DDANET

Fig. 5. Visual comparison of multi-class lung segmentation results, where the red and green labels indicate the GGO and Consolidation, respectively. (For inter
pretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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6. Conclusion 

In this paper, we have proposed a novel adaptation to the criss-cross 
attention module with deformable criss-cross attention. This has been 

incorporated into the U-Net framework (DDANet) to improve the seg
mentation of lesion regions in COVID-19 CT scans. Our extensive ex
periments have demonstrated that both adapting the U-Net with a 
straightforward incorporation of the CCNet module and also extending 
this CCNet with multiple recurrent application does not yield substantial 
improvements in segmentation quality. Our novel solution and smart 
combination of adapted dynamic deformable spatial attention have 
shown to be a working combination yielding superior and promising 
results. This solution has immense potential in better aiding clinicians 
with state-of-art infection segmentation models. 

Our proposed approach works well on medical data, specifically to 
segment small lesion structures like the COVID lesion segmentation 
example in this article. It should be highlighted that our technique and 
concept is generic and could very well generalize to other medical data 
segmentation problems and potentially to other semantic segmentation 
problems in computer vision. This would need further investigation, 
experiments and validation. This could be an interesting area for future 
work. Our proposed architecture can also be trained with less number of 
data, as we have used the UNet architecture of Oktay et al. [19], which 
has only 611 K parameters and after integrating our Deformable atten
tion the modified network has only 850 K parameters. 

For our future studies, we plan to explore its adaptation in ResNet 
like architectures for 2D and once more labelled 3D scans become 
available the module can easily be adapted to 3D V-Net architectures. 
We will make our source-code and trained models publicly available. 
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