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a b s t r a c t 

Liposome is one of the most widely used carriers for drug delivery because of the 

great biocompatibility and biodegradability. Due to the complex formulation components 

and preparation process, formulation screening mostly relies on trial-and-error process 

with low efficiency. Here liposome formulation prediction models have been built by 

machine learning (ML) approaches. The important parameters of liposomes, including size, 

polydispersity index (PDI), zeta potential and encapsulation, are predicted individually 

by optimal ML algorithm, while the formulation features are also ranked to provide 

important guidance for formulation design. The analysis of key parameter reveals that 

drug molecules with logS [-3, -6], molecular complexity [500, 1000] and XLogP3 ( ≥2) are 

priority for preparing liposome with higher encapsulation. In addition, naproxen (NAP) and 

palmatine HCl (PAL) represented the insoluble and water-soluble molecules are prepared 

as liposome formulations to validate prediction ability. The consistency between predicted 

and experimental value verifies the satisfied accuracy of ML models. As the drug properties 

are critical for liposome particles, the molecular interactions and dynamics of NAP and PAL 

liposome are further investigated by coarse-grained molecular dynamics simulations. The 

modeling structure reveals that NAP molecules could distribute into lipid layer, while most 

PAL molecules aggregate in the inner aqueous phase of liposome. The completely different 

physical state of NAP and PAL confirms the importance of drug properties for liposome 

formulations. In summary, the general prediction models are built to predict liposome 
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formulations, and the impacts of key factors are analyzed by combing ML with molecular 

modeling. The availability and rationality of these intelligent prediction systems have been 

proved in this study, which could be applied for liposome formulation development in the 

future. 

© 2023 Shenyang Pharmaceutical University. Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

iposome is a bilayer vesicle-liked particle composed 

y various lipids with the diameter ranging from dozen 

anometer to micrometer, which is firstly described by Alec 
angham in 1964 and applied as carrier for biological active 

ngredient delivery by Gregoriadis in 1971 [ 1 ,2 ]. After that,
iposome has developed as one of the most widely applied 

rug delivery systems. Doxil R © is the first approved liposome 
roduct by the Food and Drug Administration (FDA) in 1995,
hat realize the process from concept to clinic application [3] .

ithin several decades, there are dozens of liposome-based 

roducts have been come into clinic trials and approved as 
roduct, which demonstrates the great application potential 
f liposomes [4] . Generally, liposome is composed by various 

ipids with hydrophilic head and non-polar chain that form 

s membrane-liked bilayer particles [ 5 ,6 ]. Due to the great 
iocompatibility and biodegradability, liposome has been 

idely applied for drug delivery, not only small molecules,
ut also biomolecules. In laboratory research and industrial 
roduction, liposomes are mainly prepared by active and 

assive loading methods, especially passive loading methods 
ncluding anti-solvent and thin film hydration methods,
re widely applied for liposome preparation as the basic 
echniques [7] . Sonication and extrusion are account for 
article downsizing to obtain homogenized liposomes with 

esired size [8] . There were some key characterization 

arameters in liposome formulations study that need to 
e controlled and evaluated, including size, polydispersity 

ndex (PDI), zeta potential and encapsulation [9] . Due to the 
omplex formulation components and preparation process,
he high-dimensional formulation space of liposomes could 

each to 10 25 – 10 30 [10] . The formulation development of 
iposomes faces huge difficulty by the simple trial-and-error 
xperiments that should be improved by more effective 
ays. 

In recent years, there are some computational methods 
pplied for liposome formulation prediction. Design of 
xperiments method (DoE) is a regression model that 
alculates response factors for each parameter. It has 
nalyzed the impact of physical properties for peptide-coated 

iposome and built a rapid screen manner for liposomes 
ith microfluidics preparation [ 11 ,12 ]. Langmuir balance 

tudy is another mathematic method used for liposome 
nalysis that has revealed the relationship between media 
on concentration and drug encapsulation of unilamellar 
iposomes [13] . Machine learning (ML) is one of the most 
xciting techniques for pharmaceutical formulation study 
hat could make predictions based on existed data with 
r
xplicit program [14–17] . There are some trials applying 
L for liposome formulation optimization or prediction.

ubramanian N et al. have built artificial neural network 
ANN) model based on 3 3 factorial variables formulation 

ata to optimize the percentage of cytarabine entrapped in 

he liposome [18] . Size and PDI of liposomes that prepared 

y turbulent jet are also predicted by ANN to find the 
ritical technological quality parameters [19] . In addition,
ucker D and co-workers have built a decision tree model 
n laboratory liposome data that prepared by active loading 
ethod to analyze the impact of drug properties and loading 

arameters for encapsulation [20] . Nevertheless, previous 
odels are based on small amount of data or specific 

reparation method, which limit their prediction ability 
nd application range. Predicting liposome formulation is 
till a challenge at present. It is worthy to develop ML 
odels to predict liposome formulations and improve study 

fficiency. 
To study the impacts of key parameters for liposome 

articles, experimental techniques could not directly observe 
he microstructure of liposomes, other computational 
pproaches will be used for liposome simulation. Molecular 
odeling is a powerful technique that could see the structure 

f liposome at molecular level. In the previous study, the 
ilayer structure of monopalmitoyl glycerol, cholesterol and 

icetyl phosphate composed vesicle has been simulated and 

he molecular interactions are investigated by molecular 
ynamic simulations [21] . Hypericin liposome is built by 
oarse-grained (CG) model, the distribution of drug in vesicles 
nd free energy between two molecules are calculated 

o analyze the liposome structure quantitatively and 

ualitatively in a large scale [22] . Tetrandrine, 5-fluorouracil,
igustrazine and osthole are coated with different lipids and 

onstructed by CG model to analyze particle stability and 

ncapsulation [23–25] . So, molecular modeling is suitable 
or visualizing particle structure and molecular interaction,
hich provides some novel interpretations for liposome 
roperties. 

Current study aims to build the general prediction 

odels for liposomes with passive loading methods by 
L approaches. The critical quality attributions (CQA) of 

iposomes are analyzed by feature importance ranking. Two 
rugs with different properties, water-insoluble naproxen 

NAP) and water-soluble palmatine HCl (PAL), are prepared as 
 series of liposome formulations to validate the prediction 

odel. To further analyze the influence of different 
rug properties, liposome structures are investigated by 
olecular dynamic simulations. The drug distribution 

nd molecular interactions in liposome particle will be 
evealed. 

http://creativecommons.org/licenses/by-nc-nd/4.0/
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2. Materials and methods 

2.1. Materials 

Naproxen (NAP) was obtained from Aladdin (Shanghai, China).
Palmatine HCl (PAL) was purchased from Hubei Yuancheng
Pharmaceutical Co., Ltd. (Hubei, China). Lecithin, cholesterol,
distearoylphosphatidylcholine (DSPC), 1,2-distearoyl-sn–
glycero-3-phosphoethanolamine-N-[amino(polyethylene 
glycol) −2000 (DSPE-PEG2000), 1,2-Dioleoyl-sn–glycero-
3-phosphoethanolamine (DOPE) and stearylamine was
purchased from Aladdin (Shanghai, China). All other chemical
reagents were of analytical or chromatographic grade. 

2.2. Building the prediction model 

2.2.1. Data collection 

The liposome formulation dataset was constituted by
published data that collected from Web of Science, Scopus
database and internal experimental data. Due to the diverse
modification strategies, it was hard to fully cover all kinds of
liposomes. Considering thin film hydration and anti-solvent
methods were the commonly used and easy-to-operate ways
for liposome preparation whether in laboratory or industrial
production, the current study focused on the conventional
liposomes that prepared by thin film hydration and anti-
solvent methods. Although there were various specific
operation steps reported for liposome preparation, they were
generally grouped into these two categories. The standards of
data collection were listed as follows: 

1) The conventional liposomes were defined by components
in this study. The novel synthetic lipids, ligands and
biological modification in liposomes were not contained
in this dataset. All liposome formulations in dataset
were composed by 114 drugs and 43 common lipids and
stabilizer; 

2) Thin film hydration method: all phospholipids were
dissolved in appropriate organic solvent. Removing solvent
by rotary evaporator and vacuum drying to form thin
films. Then aqueous solutions were added to completely
suspend lipids.

3) Anti-solvent method: briefly, the phospholipids in organic
phase were added into large volume of aqueous phase to
obtain emulsion with following organic solvent removal.

Finally, 665 formulation data with every component and
its percentage were collected as the formulation dataset,
including four sub-datasets: 624 data for size, 195 data for
PDI, 236 data for zeta potential and 532 data for encapsulation
prediction. Moreover, the preparation parameters were also
contained, that were preparation time, temperature, the kinds
of solvent and whether using sonication or filtration. So, the
liposome formulation data included APIs, lipids, solvents, key
process indicators and the characteristics of liposome. 

Firstly, each drug, lipid and solvent were encoded as
descriptors that searched from chemical information
database and ALOGPS online prediction system. They
contained molecular weight, XLogP3, hydrogen bond donor
count, hydrogen bond acceptor count, rotatable bond count,
topological polar surface area, heavy atom count, and
complexity. Melting point as an estimate of dissolution
capacity was also used to describe APIs. While boiling point,
vapor pressure, electric constant and polar index that related
to the preparation requirements and the polarity for solvents
were added for solvent describing. The drug/lipid ratio was
used to describe the contents of APIs, while a maximum of
3 kinds of lipids were collected and the weight percent was
added for lipids. The preparation methods of liposome were
encoded to integers. The key process indicators included
preparation time, sonication, filter diameter and preparation
temperature. The encapsulation efficiency, PDI, particle size,
and zeta potential of liposomes were the predicted targets. 

2.2.2. Building prediction model 
Before training models, each dataset was split into 3 subsets,
including the training set (80%), validation set (10%) and test
set (10%), using the MD-FIS data splitting algorithm [26] . This
three-dataset splitting strategy was extensively adopted in
ML, where the training set was for optimizing the model, the
validation set was for finding the optimal hyperparameter
configuration of model, and the test set was for testing the
final generalization performance of the model on unseen data.

In recent years, the advances of ML applications have
been driven by the growing computational power, the state-
of-the-art algorithms, and the available data. Various ML
models have been developed to fit different tasks [ 27 ,28 ].
Thus, it was necessary to choose an appropriate algorithm
that was suitable for complex liposome prediction. Five
machine learning algorithms, including LightGBM, random
forest (RF), support vector machine (SVM), multiple linear
regression (MLR), and partial least regression (PLS), were
introduced to construct models for the four prediction tasks,
consisting of size, PDI, zeta potential and encapsulation
of liposome. Based on previous studies, LightGBM and RF
algorithms were proved to outperform deep learning on
tabular data [29] . LightGBM was a histogram-based decision
tree algorithm that used leaf-wise with a depth limit decision
tree growth strategy, which could directly support categorical
features and ensure high efficiency while prevent overfitting.
RF was another tree-based ensemble learning algorithm
frequently with superior performance on tabular data for
practical applications, and it was well known to be built on
a parallel Bagging framework [30] . The RF training was highly
parallelized with simultaneous sampling of both sample and
feature dimensions, and such randomness ensured strong
generalization of the final model. Then the hyperparameters
configurations of each algorithm were set before training
model that could control the learning process and commonly
determine the network architecture to influence accuracies.
A random search method was carried out to search the
best hyperparameters of each model with higher efficiency
rather than grid and manual search [31] . One thousand
hyperparameter configurations in the hyperparameter space
were searched for each task, and the details of the final
settings were listed in Table 1 . The hyperparameters for
LightGBM were learning rate, the number of trees, the
subsample ratio, the subsample ratio of columns, maximum
leaves for base learners, and minimum sample in a leaf.
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Table 1 – Hyperparameters for size, PDI, zeta potential, and encapsulation models. 

Size PDI Zeta potential Encapsulation 

LightGBM 0.01298; 845; 0.9698; 0.6142; 
78; 14; 

0.003246; 712; 0.9680; 
0.9368; 35; 8; 

0.01483; 577; 0.2319; 0.8950; 
70; 18; 

0.002469; 1180; 
0.3435;0.6465; 86; 15; 

RF 34; 431; 42; 2; 1; 53; 137; 42; 5; 2; 46; 353; 8; 6; 2; 45; 1047; 15; 9; 4; 
SVM radial basis function; 

317.18; 0.04588; 
radial basis function; 146.7; 
0.001109; 

radial basis function; 439.4; 
0.00409; 

radial basis function; 84.4; 
0.01022; 

PLS 5; 17; 28; 28; 
MLR \ \ \ \ 

“;” separates different hyperparameters. 
“,” means that the hyperparameter is composed of more than one element. 
“\ ” denotes no hyperparameter. 
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or RF algorithm, the hyperparameter included maximum 

eatures, the number of trees, the maximum depth, the 
inimum samples for split, and the minimum samples in 

hild leaf. In SVM algorithm, the hyperparameters were the 
ernel function, the penalty parameter C and γ . And the 
yperparameter for PLS was the number of components. The 
ightGBM models were built by the LightGBM package (3.2.1),
he RF, SVM, PLS, and MLR models were established by the 
cikit-Learn package (0.24.2) in Python. 

After building models, mean absolute error (MAE) between 

rue value and predicted value, root mean error (RMSE) and 

oefficient of determination (R 

2 ) were calculated to evaluate 
he accuracy of prediction model, which was defined as follow: 

AE = 

∑ n 
i =1 

∣∣̂ y i − y i 
∣∣

n 

MSE = 

√ √ √ √ 

1 
n 

n ∑ 

i =1 

( ̂  y i − y i ) 
2 

here n is the number of data, y i is the i th real label, and ̂

 y i is
he i th prediction. 

.3. Experimental validation of liposome prediction model 

o validate the prediction ability of LightGBM models on new 

ata, some liposome formulations were prepared and input 
nto models as unknown data. NAP and PAL with different 
hysicochemical properties were acted as model drugs to 
repare liposomes by thin film hydration and anti-solvent 
ethods. NAP was the nonsteroidal anti-inflammatory drug 

hat was almost insoluble (15.9 μg/ml). PAL was an active 
ngredient of Chinese medicine with slight solubility in 

queous phase. Due to the positively charged nitrogen atom,
AL preferred to interact with negative charged molecules and 

xist as salt that improved solubility dramatically. These two 
rugs were encapsulated into liposomes with the variables of 
hree factors, that were different lipid composition, drug/lipid 

atio and preparation method. The components of NAP- and 

AL-liposomes were listed in Table S1-S2 (in supplementary 
aterial). In addition, the size, PDI, zeta potential and 

ncapsulation were measured by experiment and predicted 

y models. 
For thin film hydration method, the drug and lipids were 

eighted as formulation form listed, and then dissolved in 
 ml ethanol in a round-bottomed flask. The organic solvent 
as removed under reduced pressure using rotary evaporator 

t the temperature that above the transition temperature 
Tc) of the lipids to form as thin film on the wall of flask.
he film was put in vacuum drying at room temperature 
vernight to complete evaporate solvent. Then 4 ml PBS 
uffer was added in flask to hydrate lipid film until the 
omogenous solution was formed. Finally, the solution would 

e filtered through serious diameter membrane to obtain 

niform liposome particles. Meanwhile, anti-solvent method 

as also applied for liposome preparation. Specifically, each 

ipid and drug were weighted precisely and co-dissolved in 

.5 ml ethanol. Then the ethanol solution was injected into 

 ml PBS 6.8 buffer at the stirring speed of 1,200 rpm. After
tirring with 3 min, liposomes were prepared. 

The size, PDI and zeta potential of liposome particles 
ere determined by Zetasizer system (Nano–ZS, Malvern 

nstruments, UK) with triplicate measurements. For the 
ncapsulation analysis, it was necessary to separate 
ree drug and encapsulated drug in liposome particles.
he prepared liposome solution was transferred into 

ltrafiltration tube and centrifuged at 4,000 rpm for 30 min 

o remove free drug. Methanol was added into liposome 
olutions to completely destroy particle structure and release 
ncapsulated drugs. Then drug content in liposome was 
etermined by high performance liquid chromatography 

HPLC) and encapsulation was calculated as below equation: 

ncapsulation (%) = 

weight of drug in liposome 
weight of total drug 

×100% 

The experimental values of size, PDI, zeta potential and 

ncapsulation were compared with predicted value to validate 
he prediction accuracy of LightGBM models. 

.4. Molecular dynamic simulation 

.4.1. Coarse-grained model setup 
artini, a general forcefield of CG model, was employed 

o simulate system motion of NAP and PAL −encapsulated 

iposomes [32] . The CG topology parameters of lipid and 

holesterol were obtained from the Martini website ( http: 
/cgmartini.nl/index.php/force −field −parameters/lipids). 

hereas NAP and PAL molecules must be manually 
arameterized through the mapping principle by grouping 

http://cgmartini.nl/index.php/force
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Fig. 1 – Mapping of coarse-grained beads to the NAP and PAL molecules. SN0, SC4, P3 and SQ0 indicate the functional 
groups of methoxyethane, 2-butyne, choline and acetic acid, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

three and four atoms to one CG bead as Fig. 1 showed.
Reference data of all −atom (AA) was fitting with CG model in
the bond length, bond angle and dihedral [33] . Four types of
CG bead including SN0, SC4, P3 and SQ0 were introduced to
represent the structural properties of AA model. While bonds
4 − 6 (NAP) and 6 − 8 (PAL) were additionally introduced
to maintain the ring plane of molecules. The relevant
dihedrals analysis of CG and AA model were fitting well,
which confirmed the rationality of these drug structures (in
supplement Fig. S1). Next, CHARMM −GUI [34] was hired to
initialize the CG liposome structures within the cubic box
that the diameter was set as 15 nm, water molecules and ions
were added to balance systems. More details of two liposome
systems were listed in Table S3. 

2.4.2. Molecular dynamic simulation 

In the CG system, each assignment was executed in the
isothermal −isobaric (NPT) ensemble with pressure 1.0 bar.
Firstly, all molecules were coupled isotropically with 4.5 × 10 −5

compressibility with the coupling constant of 12.0 ps under
Parrinello −Rahman algorithm [35] and 1.0 ps under v −rescale
algorithm [36] at the temperature of 298.15 K. The cutoff
distance of electrostatic and van der Waals interaction was
set to 1.1 nm, and the long −range electrostatic interaction was
computed by reaction −field algorithm [37] . Finally, a timestep
of 25 fs was applied to integrate Newton’s motion equation
by the leap −frog integrator. All systems were accelerated
by GPU NVIDIA Tesla V100 and Intel(R) Xeon(R) Gold 6148
CPU @ 2.40 GHz using gromacs 2020 package. To better
illuminate the interaction and dynamics equilibrium, the
motion trajectory on 1 μs were visualized by VMD and Qtgrace
( https://plasma-gate.weizmann.ac.il/Grace/ ). 

To validate the reliability and atomistic reproducibility of
CG models, dihedrals topological properties of NAP and PAL
were computed and compared with atomistic data. Umbrella
sampling (US) was a non-boltzmann sampling technique
where adding an extra term to the energy for sampling that
could explore free energy in collective variable space. It was
used to simulate the dimerization process of two drugs in CG
and AA model for calculating and comparing the potential
of mean force (PMF), which determine whether CG model
can reproduce the AA properties in short- and long-range
interaction. The reaction coordinate of adjacent samples was
defined as at least 28 windows with 0.5 Å spacing. The center
of mass (COM) of drug molecule was fixed into the reaction
coordinate through a harmonic potential with a force constant
of 5,000 kJ · nm 

2 /mol. Weighted histogram analysis method
(WHAM) was employed to describe the PMF with the gmx
wham tool in gromacs. In this research, the radial distribution
function (RDF) was used to determine the distribution state in
the vesicle that was defined in the following way: 

g AB ( r ) = 

〈
ρB ( r ) 

〉
〈 ρB 〉 local 

= 

1 
〈 ρB 〉 local 

1 

N A 

N A ∑ 

i ∈ A 

N B ∑ 

j∈ B 

δ
(
r i j − r 

)
4 πr 2 

Where 〈 ρB ( r ) 〉 was the particle density of type B at a distance
r around particles A , and 〈 ρB 〉 local was the particle density of
type B averaged over all spheres around particles A with radius
r max . Type A in our study indicated the COM of vesicles or
drugs. Type B was the remaining ingredients including beads
NC3, PO4, C4B, CL −, NA 

+ . 

3. Results and discussion 

3.1. Data distribution 

Before building prediction models, some critical parameters
of liposome formulations were statistically analyzed ( Fig. 2 ).
There were 114 kinds of drugs with different physicochemical
properties and 43 lipids with various chain end groups
recorded in dataset, which represented the commonly used
ingredients in liposome products and research. All the drugs
in liposome dataset were small molecules as the distribution

https://plasma-gate.weizmann.ac.il/Grace/
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Fig. 2 – The distribution of input parameters (A. drug 
molecular weight; B. the solubility of drug molecules in 

dataset; C. preparation temperature; D. preparation method 

and filtration or sonication) and output parameters in 

liposome dataset (E. size; F. PDI; G. zeta potential; H. 
encapsulation). 
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f molecular weight was from one hundred to a thousand,
nd the majority was below 600. Referring to the definition 

f solubility in the pharmacopeia, the solubility of drugs 
as classified as Fig. 2 B with different degrees. Most of drug 
olecules were insoluble, whereas 30 kinds of drugs were 

oluble or sparingly soluble. For preparation parameters, 80% 

iposomes were prepared by thin film hydration, and others 
20%) were prepared by anti-solvent method. The temperature 
n the preparation process was centered on 20 to 60 ºC, which 

as related to phase transition temperature of lipids. In the 
ost-preparation process, there were about 50% formulations 
ownsized by filtration and 57% by sonication to obtain 

omogenous liposome particles in this dataset. Looking at 
he output parameters as prediction targets, particle size was 
istributed from tens of nanometers to micrometer and the 
ajority were below 300 nm. PDI was less than 0.3 except 

or the very few large data, which indicated the homogeneity 
f particles within nanoscale. 80% of liposome was neutral 
r negative charge as zeta potential was centered in −40 
o 20. For the encapsulation, it distributed uniformly from 

 few percent to over 90 percent, in general, the amount 
f data that below 50% was more than over 50%. Overall,
he comprehensive liposome formulation data were collected 
ncluding many drugs and lipids with different properties and 

wo kinds of general preparation methods. All the formulation 

omponents, preparation techniques, and characterization 

arameters were recorded and input into LightGBM models 
o ensure adequate training, which improved the rationality 
nd reliability of these models. 

.2. The accuracy of lightgbm model 

n order to find the optimal model for liposome formulation 

rediction, some algorithms that based on boosting (LightGBM 

nd RF), instance (SVM) and linear (MLR and PLS) methods 
ere applied in this study. The MAE, RMSE and R 

2 for each task
ere listed in Tables 2-5 . LightGBM model showed the lowest 
AE and highest R 

2 for size and zeta potential prediction,
hile RF exhibited the better prediction performance for 

DI and encapsulation prediction. The MAE of LightGBM 

odel for size prediction on test set was 42.3 nm and R 

2 

as 0.83, even considering most size was centered within 

00 nm, this absolute error was acceptable. For PDI prediction,
AE of RF model was 0.04 that was a very small error 

or data distributed between 0 and 1. But R 

2 was relatively 
ow with 0.6, which indicated the changes of formulation in 

iposomes were not strongly linearly correlated with PDI. The 
ey parameters that had impacts for PDI were needed to be 
nalyzed. The MAE of LightGBM model for zeta potential was 
.62 and R 

2 was 0.76. The MAE was a bit large that could
ossibly predict negative potential into positive potential.

t was attributed to the less and bias distributed data for 
eta potential that LightGBM did not completely learn data 
eatures. For encapsulation prediction, MAE of RF model was 
5.53 that was 15% absolution error compared with the data 
istribution in 1% −100% and R 

2 was 0.63. The lower R 

2 

mplied the relatively weak correlation between formulation 

arameters and encapsulation that would be further analyzed 

y feature importance. Considering the data distribution 

ange for each task, the MAEs and R 

2 of these prediction 

odels were reasonable and acceptable. The true value and 

redicted value for training set, validation set and test set 
ere labeled as scatter plots in Fig. 3 . Most data points were
istributed along the diagonal within ± 20% error area and 

ust very small amount of data was not well consistent with 

rue value for each prediction task, which indicated the good 

rediction accuracy of prediction models. LightGBM and RF 
ere the high-level tree-based algorithm that could quickly 
nd the best solutions for feature learning automatically 
o achieve the better prediction performance for liposome 
ata. 

.3. Feature importance of prediction models 

xcept for the predicting functions, the feature importance 
f each input parameter could be ranked according to the 
otal gain value of LightGBM and total reduction of RF. The 

olecular inner properties, drug/lipid ratio, and preparation 

arameters were comprehensively analyzed to evaluate 
heir impact for size, PDI, zeta potential and encapsulation 

ndividually as Fig. 4 showed. 
In the LightGBM model for size, the diameter of filtration 

embrane was the most important factor that ranked top 1.
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Table 2 – Performance of various machine learning algorithms for the prediction of size. 

Algorithms Training set Validation set Test set 

MAE RMSE R 2 MAE RMSE R 2 MAE RMSE R 2 

LightGBM 30.37 56.58 0.95 34.22 48.25 0.84 42.30 67.37 0.83 
RF 28.68 52.01 0.96 29.48 39.06 0.90 46.81 68.11 0.82 
SVM 49.98 121.25 0.78 50.39 81.31 0.55 63.27 107.75 0.55 
PLS 166.81 230.30 0.22 104.98 145.85 −0.46 156.91 210.38 −0.70 
MLR 161.23 214.96 0.32 133.34 176.58 −1.14 179.70 225.05 −0.94 

Table 3 – Performance of various machine learning algorithms for the prediction of PDI. 

Algorithms Training set Validation set Test set 

MAE RMSE R 2 MAE RMSE R 2 MAE RMSE R 2 

RF 0.05 0.09 0.72 0.08 0.14 0.62 0.04 0.07 0.60 
LightGBM 0.06 0.10 0.66 0.08 0.13 0.65 0.04 0.08 0.45 
PLS 0.10 0.15 0.31 0.12 0.18 0.36 0.08 0.01 0.34 
SVM 0.09 0.13 0.50 0.11 0.16 0.47 0.08 0.10 0.22 
MLR 0.10 0.14 0.34 0.13 0.18 0.33 0.11 0.18 −1.75 

Table 4 – Performance of various machine learning algorithms for the prediction of zeta potential. 

Algorithms Training set Validation set Test set 

MAE RMSE R 2 MAE RMSE R 2 MAE RMSE R 2 

LightGBM 5.15 7.61 0.88 8.64 12.67 0.84 9.62 15.66 0.76 
SVF 5.38 11.00 0.74 10.94 14.53 0.79 11.95 16.80 0.72 
RF 6.22 9.02 0.83 11.83 16.16 0.74 9.69 17.02 0.71 
PLS 10.93 14.46 0.55 13.23 15.94 0.74 13.36 19.12 0.64 
MLR 8.22 10.84 0.75 11.10 13.49 0.82 11.42 20.63 0.58 

Table 5 – Performance of various machine learning algorithms for the prediction of encapsulation. 

Algorithms Training set Validation set Test set 

MAE RMSE R 2 MAE RMSE R 2 MAE RMSE R 2 

RF 9.36 12.84 0.85 11.88 19.22 0.64 15.53 21.22 0.63 
LightGBM 9.27 12.42 0.86 13.16 21.10 0.56 15.35 21.46 0.62 
MLR 15.30 19.91 0.63 23.53 46.29 −1.12 17.93 24.29 0.52 
PLS 15.81 20.52 0.61 16.37 20.62 0.58 17.96 24.70 0.50 
SVM 9.73 16.23 0.76 14.96 20.92 0.57 20.68 27.42 0.38 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It agreed with the experimental process that filtration was
the most common and effective way to minimize particle
size. Then drug/lipid ratio was in second place. It claimed
that the weight proportion of lipid and drug had a great
impact for particle size that could determine the particle
structure. XLogP3 of drug, preparation time and rotatable
bond count of drug were listed in 3rd to 5th place, which
revealed the preparation process and drug properties like
lipophilicity and chemical structures of drug molecules were
the main influencing factors for liposome size. Unlike with
the previous experience of ignoring the nature of the drug,
physicochemical properties of drug were related to the
interaction way with lipid layers that were emphasized as
main influential factors by this model. XLogP3 represented the
affinity of drug molecules for lipid bilayer and rotatable bond
count reflected the molecular flexibility of drug. Generally, the
higher flexibility was not benefit for the interaction between
drug molecules with lipids. Complexity and molecular weight
of drug that related to molecular structure were ranked in
next two place. In the post-preparation, besides filtration,
sonication was another effective way to minimize liposome
size ranked in 8th. Other drug properties and preparation
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Fig. 3 – Scatter plots of true value and predicted value on training set, validation set and test set for size, encapsulation, PDI 
and zeta potential prediction. 
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ime were also the contributing factors for liposome size with 

maller gain value. 
For PDI prediction by RF, preparation parameters were the 

ajor contributing factors, especially filtration diameter was 
isted in top1 with a large proportion. Then preparation time,
LogP3 of drug, sonication, and drug/lipid ratio were listed in 

nd to 5th with very small reduction value. It suggested that 
DI was mostly rely on filtration in post-preparation process 
ather than the change of formulation parameters, which also 
xplained the relatively low R 

2 of RF model. So, size and PDI 
ere mainly dependent on preparation method and technical 
arameters, while physicochemical properties of drug were 
lso critical that needed to be considered. 

In zeta potential prediction model by LightGBM, XLogP3 
hat reflected the polarity of molecules and molecular weight 
f lipids were ranked in the top positions. As lipids have 
onstructed the liposome matrix, the surface charge of 
iposomes was mainly determined by the lipid properties.

hile melting point that related to the crystal lattice energy 
f drug molecules and XLogP3 of drugs that represented the 
ffinity between drug-lipid molecules were ranked in 2nd 

nd 3rd position. Overall, zeta potential was major influenced 

y lipid and drug properties, especially lipids showed the 
ignificant impacts. 

Encapsulation was essential for liposome characterization 

hat related to the effective drug concentration in liposomes.
s Fig. 4 D showed, the reduction value of logS_drug 
as significantly higher than other features that was 

he prominent influencing feature for encapsulation.
hen, complexity and XLogP3 were ranked in 2nd and 

rd. logS was the 10-based logarithm of the aqueous 
olubility of a compound. Molecular complexity was the 
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Fig. 4 – The top 20 ranking of feature importance for (A) size, (B) PDI, (C) zeta potential and (D) encapsulation by the optimal 
prediction model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

estimation of the complexity of a structure and computed
by the Cactvs toolkit 3.4.8.18 ( https://cactvs.com/ ) using
the Bertz/Hendrickson/Ihlenfeldt formula. XLogP3 was a
predicted value of the octanol-water partition coefficient
using the algorithm [38] . The technical parameters, like
preparation temperature and preparation time, were ranked
in 5th and 7th, which reminded the appropriate method
should be used for liposome preparation to obtain the
superior encapsulation. Looking at the total reduction value,
logS_drug and complexity_drug were obviously greater
than other parameters, which indicated the higher weights
of these two parameters during the process of building
prediction model. This uneven distribution of parameter’s
weights may be the reason for low R 

2 in encapsulation
prediction. Although drug properties were closely related to
encapsulation, it was not to say every drug was appropriate
for preparing liposomes with higher drug loading efficiency.
What kind of drug was better for liposomes? It was needed to
be further analyzed. 

Since logS, complexity and XLogP3 of drug were the main
influence factors for encapsulation in feature importance
ranking, the relationship between these three features with
encapsulation were described as heat map that visualized
data as color in two dimensions ( Fig. 5 ). Firstly, encapsulation
value was divided as 0–10, while logS, complexity, and XLogP3
were separated into several segments. The shades of color
in each matrix and its number reflected the frequency of
occurrence of each drug property with the corresponding
encapsulation value. The legend on the right of Fig. 5 showed
the number of occurrences for the color scale, the darker of
color indicated the higher of frequency. Firstly, it has defined
that greater than 50% was considered as high encapsulation,
conversely less than 50% was low encapsulation. When the
logS of drug was located in interval [-3, -6] and complexity
was in [500, 1000], the color of gride that located in high
encapsulation area was darker. For the relationship of XLogP3
of drug with encapsulation, it was worthy to note that
the XLogP3 of most drug molecules was 2. Looking at the
data frequency in the interval of XLogP3 = 2, the half
of corresponding encapsulation was greater than 50% and
another half was less than 50%. When it was less than
1, encapsulation was mainly situated in below 50% area.
Therefore, when the logS was in [-3, -6], molecular complexity
was in [500, 1000], and XLogP3 ≥ 2, the drugs were priority for
preparing liposomes with higher encapsulation. 

3.4. Experimental validation of prediction model 

To further validate the prediction accuracy on unknown
data, some liposomes with various lipid combinations were
prepared by thin film hydration and anti-solvent methods
in the laboratory. NAP and PAL represented two types
of compounds with different molecular complexity and
solubility were selected as model drugs and 24 formulations
were prepared by different methods. The size, PDI, zeta
potential, and encapsulation were measured and compared
with prediction values as Fig. 6 listed. With the changes
of lipid compositions and preparation process, liposome
properties were greatly varied by experimental measurement.
In the optimum prediction model for size and PDI, the
majority of predicted values were very close to experimental
value that data points distributed along the diagonal. For
zeta potential prediction, although most of predicted data
were consistent with experimental value that distributed
within ± 20% error, LightGBM model was easier to predict
unknown data into negative charge. It was attributed to
the bias distribution of zeta potential data with negative
charge in training set, but the experimental formulations were

https://cactvs.com/
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Fig. 5 – Heat map analysis for the relationship between logS, complexity and XLogP3 of drug with liposome encapsulation. 
The number in each matrix represented the frequency of occurrence of encapsulation corresponding to each property. 
Note: −1 in log S of drug represented interval [ −1, 0), −2 represented interval [ −2, −1)…; 1in complexity of drug represented interval 
(0,100], 2 represented interval (100,200]…; 1 in XlogP3 of drug represented interval (0,1], −1 represented interval [ −1, 0) …. 

Fig. 6 – The scatter plot of experimental value and predicted 

value for size, PDI, zeta potential and encapsulation. 
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lmost neutral charged. Fortunately, the feature importance 
nalysis and previous research claimed that zeta potential 
as decided by lipid composition [39] , the appropriate lipids 

ould ensure surface charge of liposomes in formulation 

esign. For the RF model in encapsulation prediction, about 
0% predicted value were corelated with experimental value 
hat distributed along diagonal within ± 20% error. According 
o the conclusion of feature importance, drug properties 
ere critical for encapsulation. There were just two drugs in 

xperiment, main variables were the formulation composition 

nd preparation method. The sensitivity of RF model for 
ormulation change was relatively poor, which would be 
he reason for inaccurate prediction in experimental data.
ue to the limited amount of liposome formulation data,
urrent prediction models just achieved good accuracy for 
ew formulation prediction not excellent, but these also 
rovided some guidance for formulation design to improve 
fficiency of formulation screening. 

As drug properties were critical for liposomes, how the 
ifferent drugs existed in vesicles would be related to the 
article properties. However, it was still not very clear to 
haracterize molecular interactions by experimental skills.
olecular dynamic simulation was an efficient way to mimic 

article structure that can be applied for liposome structure 
uilding to see the drug distribution at molecular level. 

.5. The structure building of liposome by molecular 
ynamic simulations 

A simulation was an ideal method to reflect the atom motion 

f biosystem but was time-consuming with large-scale in 

oth space and time. So, CG model was hired to describe the 
olecular motion of NAP − and PAL −encapsulated liposomes.

ational mapping principle and conformation parameter 
ere critical for CG model to deduce the system properties 

n AA model. Fig. S1 exhibited the self-designed mapping 
rinciple of NAP and PAL from AA to CG, and the relevant 
ihedrals of CG models were well corresponded to AA 

roperties. Moreover, PMF curve (Fig. S2) and � error (Table 
4) confirmed that CG model could well reproduce the free 
nergy change of AA model. It was sufficiently illustrated CG 

ode could reappear the precision of AA model with the 
pparent enhancement of simulation speed and volume. In 

he simulation process of CG model, the radius changes of 
yration from axes X, Y, and Z revealed the stable state of two
iposome systems during 1 μs movement (Fig. S3). Therefore,
G model was reliable for liposome structure building to 
eflect the distribution and interaction of molecules. 

NAP (C 14 H 14 O 3 ) was insoluble (0.0159 mg/ml) at 25 ºC,
hereas PAL (C 21 H 22 NO 4 

+ ) existed as salt with distinct 
issolution states due to the positive charge exposure 
fter losing hydroxyl group. To balance the ions of PAL 
ystem, moderate chloride ions were added into box, which 

ransferred PAL from slightly soluble to soluble salt. The 
nitial inclusion systems of drug −lipid were constructed in 

ig. 7 A and 7A1, then these two systems were conducted 1 
s dynamic simulations. Fig. 7 B and 7B1 were the snapshots 
uring modeling process, and the final structures of two 

iposomes were shown in Fig. 7 C and 7C1. Meanwhile, the size 
istribution was measured, and the structure of NAP and PAL 

iposomes were featured by transmission electron microscopy 
TEM) in Fig. 7 D and 7D1. It claimed that NAP and PAL liposome



Asian Journal of Pharmaceutical Sciences 18 (2023) 100811 11 

Fig. 7 – The snapshots during 1 μs molecular dynamics simulations and the experimental size distribution of NAP (A, B, C 

and D) and PAL (A1, B1, C1 and D1) liposomes were demonstrated. The radial distribution function of beads NC3, PO4, C4B, 
CL −, NA 

+ in NAP (E and F) and PAL (E1 and F1) were analyzed. In detail, A and A1 indicated the initial conformation of two 

liposome systems with 100 drug molecules inside the inner sphere; B and B1 represented the snapshots of section profile 
during the equilibrium process; C and C1 showed the final location and distribution of NAP and PAL in the vesicles; D, D1 
was the size distribution and TEM image of NAP and PAL liposome; E, E1 and F, F1 calculated the radial distribution function 

of each ingredient of vesicles. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

particles were both vesicle-liked structures with about 100 nm
diameter, but the microscopic differences between these
two particles were not discovered by TEM images. Thus,
molecular modeling would explain the structure of liposomes
at molecular level. 

3.5.1. NAP molecules were evenly distributed into lipid layer 
The molecular motion and distribution of NAP liposome
system from initial state to equilibrium conformation were
exhibited in Fig. 7 A- 7 C, and supplementary motion video.
Primarily, a drug sphere with 100 NAP molecules (distance
between each molecule was 8.0 Å, and corresponding
interaction potential was 0.44 kJ/mol) (Fig. S2) was inserted
into the inner aqueous phase by replacing redundant water.
Before touching the inner layer of vesicle, NAP aggregated
autonomously and formed as a layer of fragment through
weak interaction of intermolecular (dimerization energy:
−6.5 kJ/mol) (supplementary motion video). Limited to the
small volume of aqueous phase in liposome, the NAP −layer
eventually contacted to the hydrophilic head of inner lipid
layer, and then swiftly fused together as a fluid −mosaic state.
The carboxyl head of NAP (bead P3) was arranged towards to
aqueous phase, and methoxy group towards to glycerol region
( Fig. 7 B and 7 C). The final location of each functional group
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Table 6 – Average interaction energy among drugs (NAP 

and PAL), lipid bilayer, and water during whole simulation 

process using MARTINI coarse-grained model. 

Average interaction energy (kJ/mol) 

NAP-NAP −3703.6 
NAP-lipid bilayer −16,695.1 
NAP-water −2642.6 
PAL-PAL −18,337.9 
PAL-lipid bilayer −7404.9 
PAL-water −11,934.9 
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ncluding NC3 (choline), PO4 (phosphate), C4B (hydrocarbon 

hain) were calculated by RDF from COM in Fig. 7 E. It was 
bvious that NAP was embedded in the inner layer between 

he bead NC3 (green line), PO4 (red line) and C4B (blue line) 
ith the 5.4 nm semidiameter. Interestingly, the RDF from 

AP ( Fig. 7 F) shown the density of lipid beads NC3 and PO4 
ear the NAP bead PC3 was much higher than their average 
ensity, which indicated carboxyl head of NAP was attracted 

y the choline and phosphate function (space distance: ∼
.8 Å), whereas relatively far away from the hydrocarbon 

hain (space distance: ∼ 20 Å). Thus, NAP molecules could 

ntegrate into lipid layer to form fluidly mosaiced status by 
he interaction between polar molecules (carboxyl function,
holine and phosphate function). 

.5.2. PAL majorly aggregated in the inner aqueous phase of 
iposome 
AL molecules (distance between each molecule was 8.0 Å,
nd corresponding interaction potential was −8.8 kJ/mol as 
ig. S2 showed) were firstly placed into aqueous phase. Being 
istinct from NAP, PAL existed fully different states in dynamic 
imulation process as showed in Fig. 7 A1, 7 B1 and 7 C1) and
upplementary motion video. Firstly, most PAL integrated with 

earby molecules including another PAL molecules and CL −

o form as aggregate cluster in aqueous core ( Fig. 7 B1). After 
 μs simulations, the complex of PAL + −CL − aggregated in the 
ater phase and dissociative PAL hydrophobically bound to 

he inner lipid layer ( Fig. 7 C1). Relevant RDF revealed that the 
ensity of PAL in box center was higher than average density 
f whole system (seen in Fig. 7 E1), while the lower density was 
lso viewed in 5 nm distance and overlap with lipid beads,
hich indicated a few PAL molecules have embedded in the 

nner lipid layer ( Fig. 7 F1). On the other hand, the distance 
etween bead SQ0 (NC3 + ) of PAL molecules and CL − (space 
istance: ∼ 4.0 Å) was most closely than other components 

n aqueous phase, which confirmed the salt formation of 
AL. The radial distribution analysis has proved that the 
nteraction force between positive and negative charge was 
tronger than van der Waals force between PAL and lipids. 

Finally, average interaction energy including coulomb and 

an del Waals interaction among drugs (NAP and PAL), lipid 

ilayer, and water during whole simulation process was 
nalyzed by MARTINI coarse-grained model in Table 6 . It 
ould be observed that the NAP preferred to interact with 

ipid bilayer ( −16,695.1 kJ/mol) but not fascinated by itself 
3,703.6 kJ/mol) and water ( −2,642.6 kJ/mol). Whereas PAL was 

illing to interact with itself and water molecules rather than 
ipid bilayer, which demonstrated the higher solubility and 

he aggregation phenomenon of PAL in the aqueous core of 
iposome. The high correspondence of molecular modeling 
ith experimental phenomenon indicated the reliability of 

his approach. So, molecular modeling was a promising way 
hat could explain the behaviors of drug in liposome vesicle 
ith visible images and quantitative energy analysis. 

Therefore, how the drug molecules distributed in liposome 
as not only decided by lipid bilayer, but also by the properties 
f drugs. As the modeling results showed, there were not only 
ingle form for drug molecules, the drug-drug aggregation 

nd drug-lipid interaction were also existed simultaneously 
n liposomes. It was hypothesized that if the distance of drug 

olecule and lipid membrane within 5 Å, it regarded as drug- 
ipid interaction, otherwise if the distance larger than 5 Å,
t was drug-drug aggregation (The PMF results indicated the 

olecules of 5 Å showed strong attraction force to other 
olecules). The proportion of the existence of drug-lipid and 

rug-drug interaction for each liposome was calculated in Fig.
4. After 1 μs simulation, NAP molecules were all located into 

ipid bilayer, whereas 27% PAL molecules were distributed into 

ipid membrane, another 73% PAL molecules were aggregated 

n aqueous core. 

.6. ML and molecular modeling synergistically constructed 
iposome prediction system 

ompared with previous liposome prediction models, this 
tudy was an improvement that building reasonable and 

idely applicable prediction models by ML and combining 
ith molecular modeling to investigate key factors of 

iposomes. Previous prediction models were the initial trials 
hat based on small datasets or internal data prepared 

y specific methods like turbulent jet co-flow. This study 
eveloped the more general prediction models for higher 
omplexity liposome formulations data with passive loading 
ethod by LightGBM and RF algorithms. Although active 

oading was an effective way for liposome preparation with 

ufficient drug content, it required the drug molecules was 
onizable and encapsulated agent was amphipathic, which 

as the technical barrier for the application of active 
oading. So, current study focused on liposome formulations 
ith passive loading to investigate CQAs. The formulation 

ataset was not limited by specific drug or preparation 

ethod, various liposome formulations were collected from 

ll kinds of resources, which promoted the comprehensive 
eature learning and extended the application of these 

odels. LightGBM achieved the highest accuracy for size 
nd zeta potential prediction, while RF was best for PDI 
nd encapsulation prediction. Liposome formulation dataset 
overed most common lipids that could be applied for new 

iposome prediction. For the liposomes composed by novel 
ynthetic lipids, it could be predicted by these prediction 

odels if providing molecular descriptors to expand the 
easibility of machine learning applying in liposome research.
he quality and quantity of data were the most significant 

imiting factors for ML, which lead to the insufficient 
earning in the specific area with few data distribution.
urrently, the liposome prediction platform was freely 
vailable in FormulationAI platform ( https://formulationai. 
omputpharm.org/ ). With more and more new formulation 

https://formulationai.computpharm.org/
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data input, it can be believed that prediction ability of these
models would be improved in the future. 

Except predictions, LightGBM and RF algorithms could
output the importance of all parameters without extra
analysis. The total gain value in LightGBM and reduction
value in RF as the evidence were calculated during learning
process, which distinctly improved the credibility of feature
importance ranking. Particle size and PDI mostly depended on
preparation methods to downsize and homogenize particles
and were also related to drug properties. Zeta potential was
mainly determined by lipids that construct bilayer matrix.
Encapsulation was closely related with drug properties. LogS,
molecular complexity, and XLogP3 of drugs that reflected
the solubility, spatial structure and affinity between drug
and lipids were the key factors for encapsulation. Then
melting point represented intermolecular energy between
drug-drug molecules also influenced the encapsulation.
Feature importance analysis by LightGBM and RF models
were mostly in conformity with experimental experience,
moreover, many deeper factors were explored to provide
some novel understanding of liposomes. Therefore, the
properties of each ingredient and preparation parameters
comprehensively affected final liposome particles that needed
to be considered from all sides. 

As drug properties were critical for liposome, two kinds
of drugs with different molecular structure and solubility
were prepared as liposomes. NAP and PAL liposomes
were characterized by experiments and simulated by
molecular modeling to verify the impacts of drug properties.
Although TEM was the common technique for structure
characterization in experiment, it only exhibited the whole
particle morphology without molecular details. Molecular
dynamic simulations presented how the different drug
distributed in liposome vesicles and revealed the impact of
drug properties from an atomic perspective. NAP and PAL
exhibited totally different molecular motion in dynamic
modeling trajectory. Whether drug molecules aggregated into
aqueous core or diffused in lipid bilayer was not only related
with lipid bilayer vesicle, but also determined by the charge,
functional group, and spatial structure of drug molecules.
So, molecular dynamic simulation provided a platform for
structure visualization at molecular level, which helped us to
understand liposome with novel perspective. 

With the mutual validation of ML models, experiments
and molecular modeling, the prediction ability and key
factor exploration have proved to be reliable and reasonable.
Appropriate drug, lipid and preparation method should
be considered to suit for liposome. Instead of traditional
trial-and-error method, a series of formulations can be
firstly predicted by ML models to find the best one. Then
molecular modeling will build structures to exhibit drug-lipid
interactions. The collaboration of ML and molecular modeling
could provide some guidance for liposome formulation
design. 

4. Conclusion 

This study has built the prediction model for liposome
size, PDI, zeta potential and encapsulation by LightGBM and
RF algorithms. Whether in training set, validation set, test
set or un-known experimental data, the prediction models
have obtained satisfied accuracy. However, there were few
experimental formulations were not predicted very well,
which due to the limitation of the small data volume and
biased data distribution. Then, feature importance for size,
PDI, zeta potential and encapsulation were evaluated to find
the CQAs for liposome formulation design. Generally, drug
molecules with logS [-3, -6], molecular complexity [500, 1000]
and XLogP3 ≥2 were preferred to be prepared as liposomes
with higher encapsulation. Then NAP and PAL with different
solubility were designed with various liposome formulations
to validate the prediction accuracy of models on un-known
data, while particle structures were described by CG modeling.
The distribution and interaction way of drug molecules in
lipid bilayers were exhibited at molecular level and the
differences between these two liposomes were compared,
which explained the impacts of drug properties for liposomes.
Therefore, it was a successful trial to build general liposome
formulation prediction models and analyze particle structure
by CG modeling. In the future study, it will be an effective tool
for liposome formulation design and optimization. 
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