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Abstract
Even though numerous studies have helped to better delin-
eate abnormalities of either innate or adaptive immune sys-
tem in end-stage renal disease (ESRD) patients,
understanding immune dysfunctions in ESRD patients re-
mains a very complex puzzle with missing pieces. In this
context, we showed that the soluble form of CD40
(sCD40) is elevated in ESRD patients and is associated
with a lack of response to hepatitis B vaccination. Interest-
ingly, although most dialysis membranes are unable to
clear sCD40, we demonstrated that polymethylmethacry-
late (PMMA) BK-F membranes (Toray Medical Company,
Japan) allow a dramatic diminution of the molecule. We
took advantage of this observation to address the question
of the potential usefulness of PMMA membrane (BK-F se-
ries) in the improvement of humoral immune response of
ESRD patients. We, thus, present our recent data highlight-
ing the potential role of BK-F membrane in the improve-
ment of hepatitis B vaccination of ESRD patients who
failed to mount a protective immune response despite
one or more well-conducted anterior vaccination.
Taken as a whole, our findings reinforced the concept
of seeing dialysis membranes not just as a simple diffu-
sive device but as a tool to tailor dialysis procedure to
improve the global quality of life of ESRD patients.
This opens a wide area of investigation, notably for
the management of immunological dysfunction of
ESRD patients.
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Chronic renal failure and adaptive immune
dysfunctions: central role of abnormal
co-stimulatory signal

It is well established that end-stage renal disease (ESRD) is
accompanied by deep disturbance of the immune system

impacting both the innate and the adaptive arm (for exten-
sive reviews, see [1,2]). As a result, ESRD patients display
several features of immune response deficiency such as re-
current infections (bacterial or viral), high frequency of
malignant tumours and poor response to thymo-dependent
vaccination (see Table 1 and associated references). This
immunodeficiency plays a key role in the increased mor-
bidity and mortality of ESRD patients. In fact, sepsis-in-
duced mortality is dramatically increased, and infections
are the second leading cause of death in ESRD patients.
However, immunodeficiency is not necessarily exclusively
responsible as haemodialysis (HD) procedure by itself re-
sults in skin barrier breakage, which is also, although mod-
estly, involved in high infection prevalence in ESRD
patients. Interestingly, HD procedure can also accentuate
the alteration of the immune system. In fact, as a result
of metabolic disturbance linked to uraemic status, ESRD
is accompanied by the accumulation of numerous toxic
substances, so-called uraemic toxins, that are thought to
increase the immunodeficiency of ESRD patients.

A better understanding of factors associated with abnor-
mal immune response is still a major goal towards amelio-
rating the management of ESRD patients—optimization of
the HD procedure or development of new strategies of im-
mune intervention. In this context, improvement of vacci-
nation efficiency has been a long story. Even in reinforced
vaccination protocols, 30–60% of ESRD patients fail to
produce protective antibody titre against hepatitis B after
vaccination (Table 2a and associated references). More-
over, even in responder patients, the level and the duration
of the antibody-mediated protection are lower than those in
normal population because of lower antibody levels after
vaccination and a gradual loss of antibody titres [3]. Inter-
estingly, among non-responder patients, only 30% are able
to mount a proper response after a new vaccination, high-
lighting the deep alteration of humoral immune response
in such patients (Table 2b and associated references).

The leading causes of this obvious humoral immune re-
sponse impairment are not fully elucidated. In fact, al-
though ESRD is associated with B-cell lymphopaenia,
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normal plasmatic levels of immunoglobulins are generally
observed. However, in vivo and in vitro data clearly show a
diminished antibody production to thymo-dependent anti-
gen (relying on the co-stimulation of B cells by T-cell re-
ceptor-activated T lymphocytes) [4,5], whereas response to
thymo-independent antigen (inducing the direct activation
of B cells without the help of T lymphocytes) such as poly-
saccharides (i.e. pneumococcal vaccination) is conserved.
Taken as a whole, the most likely explanation of such dys-
functions is an impaired co-stimulation of B cells by either
antigen-presenting cells or T lymphocytes.

Among the co-stimulatory molecules involved in the de-
velopment of a proper thymo-dependent B-cell response,
the CD40/CD40L interaction plays a key role. CD40 is a
50-kDa glycoprotein that is expressed by a wide range of
immune cells including B cells, dendritic cells, monocyte/
macrophage cells or non-immune cells such as endothelial
cells, epithelial cells (and notably renal epithelial tubular
cells) or f ibroblast. The expression of the ligand for
CD40 or CD40L (CD154) is mainly restricted to activated
CD4 T cells, but platelets, mastocytes or natural killer cells
have also been shown to express this molecule. CD40 trig-
gering by CD40L is pivotal for B-cell growth, differentia-
tion and isotypic switch (the process leading to the
production of IgG, IgA, IgE or IgD) as illustrated by the
hyper-IgM syndrome in which mutation in the CD40L
gene results in a normal or elevated IgM levels but no
IgG, IgA, IgE or IgD. Moreover, CD40 activation on the
surface of dendritic cells induces expression of the co-stim-
ulatory molecules CD80 and CD86 and cytokine produc-

tion necessary for a proper T-cell activation (for updated
review, see [6]). Considering the pivotal role played by
the CD40/CD40L interaction in the immunity and notably
in the humoral immune response, it needs to be tightly reg-
ulated. This is achieved by two major mechanisms (see
Figure 1) that are the transient expression of CD40L on
the surface of activated CD4+ T cells [7] and the produc-
tion, by proteolytic cleavage (so-called shedding), of a sol-
uble form of CD40 (sCD40) consisting of the extracellular
part of the molecule [8]. Natural soluble CD40 mostly co-
exists as dimeric and even higher oligomerized forms of 50
and 150 kDa, respectively [9]. Those molecules act as nat-
ural antagonists of the CD40/CD40L contact [8–10] as
demonstrated by in vitro experiments using purified natu-
ral sCD40. We showed that sCD40 is able to block immu-
noglobulin production by B cells cultured in the presence
of CD40L-transfected cells [9].

Potential role of the soluble form of CD40 in
hampered humoral immune response of ESRD
patients

We and other authors showed that the level of sCD40 is dra-
matically increased in the serum of patients with chronic
renal failure, with a marked elevation in patients with
ESRD [9,11]. This augmentation is mainly due to the al-
tered renal function because, in healthy subjects, sCD40
is normally eliminated in the urine. Although we did not
retrieve augmented production of sCD40 in culture super-
natant of peripheral blood mononuclear cells from ESRD
patients (unpublished data), one can speculate that the urae-
mic milieu is able to promote in vivo an abnormal shedding
of the molecule.

To compare the ability of different high-flux dialysis
membranes to clear sCD40 from the patient’s sera, we mea-
sured sCD40 before and after dialysis session in the serum
of 12 patients dialysed on high-flux membranes such as Ar-
ylane H4 (Hospal, France), Crystal 4000 (Hospal) or Poly-
flux 14S (Gambro, France) and 19 patients dialysed on
polymethylmethacrylate (PMMA) membrane (BK-F, Toray
Medical Company, Japan). As shown in Figures 2A and B,
during the first session, dialysis with BK-F allows a mean of
30% epuration of sCD40 [median and range: 1.73 (0.13–
3.40) ng/mL before dialysis vs 1.08 (0.13–2.90) ng/mL after
dialysis, P = 0.0025 (non-parametric Wilcoxon test)],
whereas other high-flux membranes were unable to do so
[median and range: 1.05 (0.29–1.62) ng/mL before dialysis
vs 0.97 (0.43–2.79) ng/mL after dialysis, P = 0.57]

Table 1. Clinical features of ERSD patients that might be associated with
poor immunological functions

Clinical features Type References

High cancer prevalence Urinary and genital
(uterine, kidney, bladder)

[24]

Myeloma, Hodgkin lymphoma
Hepatic
Pulmonary

Viral infections EBV [25]
HCV [26]
HBV [27]

Bacterial infections Clostridium difficile [28]
Tuberculosis [29]

Altered vaccinal
response to
thymo-dependent
antigens

HBV [30]
Influenza [31]
Tetanus [32]
Diphtheria [33]

Table 2a. Seroconversion rate of ESRD patients after one anti-HBV
vaccination

Number of patients % of responders References

106 60 [3]
24 58 [34]
102 71 [35]
83 32 [36]
43 53 [37]
174 63 [38]
118 67 [39]
110 58 [40]

Table 2b. Seroconversion rate of ESRD patients who did not respond to
HBV vaccination after a second vaccination

Number of
patients

Number
of injections
and quantity

% of
responders References

11 3 × 5 μg 27 [41]
15 3 × 10 μg 47
83 3 × 20 μg 25 [36]
25 2 × 40 μg 40 [42]
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(Figure 2C). In a longitudinal follow-up of three patients,
we demonstrated that sCD40 levels gradually dropped
down reaching normal subjects’ values in an average of 3
months (see Figure 3A, adapted from [9]). This observation
was further confirmed on a larger cohort of 11 patients
(Figure 3B). sCD40 clearing could be linked to the high
filtration and/or the high adsorptive capacities of the BK-
F membrane. In fact, this membrane belongs to the high-
permeability synthetic membrane with a high porosity
and an increased hydraulic permeability, and those peculiar
capacities allow the elimination of high molecular weight

uraemic toxins such as β2 microglobulin [12,13], immuno-
globulin free light chains [14], homocystein coupled to
high molecular weight protein [15] or an inhibitor of eryth-
ropoiesis [16].

Thus, because the huge majority of dialysis membranes,
including high-flux polysulfone, are not able to clear
sCD40, it is thought that sCD40 accumulates gradually in
the serum of ESRD patients. With regard to the physiolog-
ical role of sCD40, accumulation of important amounts of
the molecule could deeply alter the humoral immune re-
sponse of ESRD patients. Interestingly, we found that the
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Fig. 1. Summary of the pivotal role of CD40/CD40L interaction in the humoral immune response (A) and mechanisms of its regulation (B and C).
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most elevated levels of sCD40 in ESRD patients were as-
sociated with a lack of response to HBV vaccination [9].

Collectively, these data highlight the potential role of
sCD40 in the disturbance of humoral immune response in
ESRD patients. We thus postulated that clearing sCD40
from ESRD patient’s sera by using dialysis on PMMA
membrane would improve their humoral immune functions
and notably their capacity to respond to HBV vaccination.

Dialysis with PMMA membrane improves the
efficiency of HBV vaccination:
patient’s description

We conducted this pilot study in 2007 in the Department of
Nephrology of Pellegrin Hospital and the Center for Treat-
ment of KidneyDiseases, Bordeaux, France. Fifteen patients
with renal failure requiring dialysis participated in the study

after giving their informed consent. All the patients were in
stable condition and were dialysed for at least 3 months on
non-PMMAmembrane before inclusion. They were not im-
munized against hepatitis B (anti-HBs Ab <10 IU/L) despite
anterior complete vaccination according to usual recom-
mendations and were indeed considered as ‘immunologi-
cally refractive’ to vaccination. Patients with previous
hepatitis B infection despite negative anti-HBs antibody
but positive anti-HBC antibody and/or HBs antigenaemia
were excluded. Patients with active neoplasia, plasma cell
dyscrasia and lymphopaenia or those treated with immu-
nosuppressive agents or corticosteroids were not included.

Study design

Briefly, patients were dialysed 3 months onto PMMA
membrane (BK-F2.1, Toray Medical Company) to allow
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sCD40 clearing (see Figure 4); then, the vaccination pro-
tocol was started as follows: one injection of HBVAX-
PRO (40 μg, Sanofi Pasteur MSD, France) at months 3
(M3), M4 and M9. The patients were kept dialysed onto
the BK-2.1F membrane until the completion of the study
(i.e. M10). Serological control was assessed at M3 (to ex-
clude patients developing HBV infection between the in-
clusion and the start of vaccination), M5, M9 and M10.
Seroconversion was defined as level of anti-HBs antibody
levels >10 IU/L. Serum sCD40 levels were measured at
M0 and M3 by enzyme-linked immunosorbent assay
(ELISA) as described elsewhere [9]. The major criterion
was the percentage of patients able to develop a protec-
tive response to HBV vaccination according to the defi-
nition >1 month after the last injection (i.e. M10). Minor
criteria consisted in the evaluation of the kinetic and the

strength of the response and the correlation to sCD40
clearing.

Results

As depicted in Figure 5, nine (60%) of 15 patients were
able to develop a protective immune response against
HBV (anti-HBs antibody levels >10 IU/L) 1 month after
the last vaccine injection. Of note, seven (78%) of nine pa-
tients exhibited anti-HBs antibody levels >100 IU/L,
which is a crucial point because such levels allow a very
good seroprotection against HBV. Moreover, for eight pa-
tients (89%), anti-HBV immunization is detectable as soon
as M5, that is, 1 month after the second injection of vac-
cine. Among those patients, four already have levels >100
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Fig. 5. Longitudinal follow-up of anti-HBs antibody levels. The graph represents the results of anti-HBs antibody measurements (IU/L) at month 3
(M3), M5, M9 and M10 in the sera of the 15 patients (P1–P15) enrolled in the study. All patients’ serological tests were negative at M3 excluding a
recent HBV infection. For patients 2 and 11 (P2 and P11), anti-HBV serology was not performed (white arrowheads). For the patients with levels of
anti-HBs ≥1000 IU/L (P5 and P9), HBV detection was conducted by PCR and was negative. Responder patients according to the abovementioned
criteria appear in bold (9/15).

Table 3. Comparison between responder and non-responder groups

Responders Non-responders

PaMedian Min–max Median Min–max

Age 69 49–85 75 62–86 ns
Sex ratio (women/men) 1.3 2 ns
Length of dialysis (months) 18 10–48 35.5 17–108 ns
Weekly length of dialysis 12 9–12.5 12 12–12 ns
CRP 7.5 3–38.3 9.15 1.8–38 ns
Albumin 36,6 25.2–39 32 23.1–36.4 ns
PTH 224 99–547 234.5 35–553 ns
Kt/V 1.365 1.17–1.63 1.355 1.09–1.56 ns
Total vaccine dose received (μg) 120 120–240 160 120–200 ns

aNon-parametric Mann–Whitney U-test; ns, non-significant.
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UI/L. For patients 5 and 9, no HBV infection (negative an-
ti-HBc antibody and HBs antigen) was retrieved in spite of
high anti-HBs antibody production confirming that it was
indeed due to vaccination itself. We did not retrieve any
difference neither in albuminaemia, C-reactive protein
(CRP), parathyroid hormone (PTH) level, Kt/V nor total
previous vaccine dose received between responder and
non-responder patients (see Table 3). Results of the mea-
surement of circulating sCD40 levels in the serum of re-
sponder and non-responder patients are shown in
Figure 6. As seen, sCD40 levels drop down in both groups
even if they did not reach normal ones; although non-sta-
tistically significant, there is a trend toward lower levels of
the molecule in responder patients at M0 and M3 [median
(range) M0 vs M3: 0.56 (0.08–0.79) vs 0.30 (0.12–0.53)
for responders and 0.68 (0.6–0.98) vs 0.44 (0.26–0.86)
for non-responders].

Taken as a whole, these results emphasized the potential
role of PMMA membrane in the improvement of humoral
immune response of ESRD patients through its unique ca-
pacity to clear some uraemic toxins including sCD40.

Discussion

ESRD is characterized by a profound innate and acquired
immunity deficiency. The leading cause is multifactorial
based on uraemia and associated accumulating uraemic
toxins, complications of chronic renal failure and the hae-
modialysis procedure. Better understanding of the mole-
cules associated with altered immune response is crucial
and could lead to therapeutical intervention and/or adapta-

tion of the dialysis procedure itself to improve quality of
life of ESRD patients.

It is now acknowledged that uraemia decreases antigen
presentation abilities of dendritic cells and macrophages.
Indeed, monocytes/macrophages exhibit a defective
CD86 expression that hampers their co-stimulatory func-
tion toward T cells [17]. Impaired dendritic cells and mac-
rophage co-stimulatory functions might be related to
abnormal Toll-like receptor (TLR) stimulation notably
through TLR4 whose expression is diminished in ESRD
patients [18]. Moreover, high production of IL-12 by anti-
gen-presenting cells and notably monocytes are involved
in a Th1 bias with high IFN gamma production that is im-
plicated in the activation of the cellular arm of the immune
response detrimental to the humoral one classically linked
to the Th2 polarization (IL4 and IL10) [19,20]. Interesting-
ly, uraemic toxin such as PTH has been involved in the
alteration of immunoglobulin production by B cells. As
demonstrated by the Massry group, PTH inhibited IgG
production by cultured B cells from HD patients, and
the potential role of PTH hormone in altered humoral im-
mune response to specific antigen was then confirmed
with a model of influenza vaccination of parathyroidecto-
mized rat [4,21].

In this line, we have evidenced a role for sCD40 in the
alteration of humoral immune response in ESRD patients
and notably in their impaired capacity of response to HBV
vaccination [9]. This molecule is not eliminated by classi-
cal dialysis procedure, even on high-permeability polysul-
fone membranes, but on PMMA membrane (BK-2.1F).
The mechanism responsible for sCD40 clearing was not
demonstrated in our study, but one can speculate that it
might be linked to its high adsorptive capacity of middle
and high molecular weight molecules as recently demon-
strated by a proteomic approach [22]. Of interest, our data
emphasized that dialysis on BK-F membrane contributed
to the amelioration of the seroconversion rate to HBV vac-
cination in ESRD patients who failed to mount a protective
immune response despite numerous well-conducted vacci-
nations. However, the direct link between sCD40 clearing
and seroconversion improvement was not formally demon-
strated, in part because of the low number of patients in-
cluded and the lack of control membrane unable to clear
sCD40. That is why we are now starting a multicentric ran-
domized clinical study in which seroconversion to HBV
vaccination and measurements of sCD40 levels will be as-
sessed in two groups of patients who did not respond to
anterior HBV vaccination: one group (50 patients) will
be dialysed on PMMA BK-2.1F membrane and the other
(50 patients) on high-flux polysulfone membrane unable to
clear sCD40.

Yet, dialysis procedure cannot be only seen as a replace-
ment therapy. Because of the specific properties of some
membranes, and notably those with high adsorptive capac-
ities, one can speculate that they could contribute to the
amelioration of adverse long-term clinical outcomes. In
fact, use of PMMA membranes ameliorates pruritus be-
cause of the adsorption of a 160 000-kDa-molecular-
weight molecule with stimulatory effect on mast cells
[23]. Importantly, dialysis on PMMA membrane also im-
proves carpal tunnel syndrome or total joint pain score
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compared with cellulosic membrane. As described by Ya-
mada et al. [16], patients dialysed with PMMA membrane
have lower need for erythropoietin that might be due to the
elimination of an inhibitor of erythropoiesis retrieved in
the dialysate.

Conclusions

Taken as a whole, these data associated to the already pub-
lished papers on peculiar capacities of PMMA membranes
reinforce the concept of seeing dialysis membranes not just
as a simple diffusive device but a tool to tailor dialysis pro-
cedure to improve the global quality of life of ESRD pa-
tients. This opens a wide area of investigation, notably for
the management of immunological dysfunction of ESRD
patients.
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