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Abstract: Iron is an essential element in multiple biochemical pathways in humans and pathogens.
As part of the innate immune response in local infection, iron availability is restricted locally in
order to reduce overproduction of reactive oxygen species by the host and to attenuate bacterial
growth. This physiological regulation represents the rationale for the therapeutic use of iron chelators
to support induced iron deprivation and to treat infections. In this review paper we discuss the
importance of iron regulation through examples of local infection and the potential of iron chelation
in treating infection.
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1. Introduction

Iron is an essential element for almost all living organisms as it plays a role in DNA
synthesis, transcription, and repair as well as other important functions such as oxygen
transport, cellular respiration, and immune response [1]. In humans, about 65% of the
total iron is allocated in red blood cells (RBCs), 14% in macrophages, 10% as myoglobin
in muscle fibers, 6% is stored in the liver, and 5% in bone marrow. Most of the iron is
found within heme in RBC hemoglobin, used to distribute oxygen to every cell in the
body. Mature RBCs have a life span of approximately 120 days, after which they are
phagocytosed by specialized macrophages and the iron recycled [2]. Heme iron is mainly
found within meat in the form of hemoglobin and myoglobin. In the stomach, heme
is released from these proteins due to the low gastric pH and the action of proteolytic
enzymes. Concentrated heme produced from hemoglobin hydrolysis is poorly soluble at
a low pH. However, heme solubility is increased by the presence of protein. Therefore,
the peptides and amino acids produced from meat hydrolysis can aid in enhancing the
absorption of heme [3]. Inorganic, nonheme iron is available in many foods and is absorbed
at the intestinal brush border by duodenal enterocytes. Using different pathways, heme
and non-heme iron pass from the intestinal lumen to enterocytes across the brush border.
Heme iron is taken up into the enterocyte as the intact metalloporphyrin by the heme carrier
protein 1 (HCP1) [4]. Nonheme iron is reduced to Fe2+ by ferrireductase, cybrd1 (DcytB)
prior to transportation through the cellular membrane by the divalent metal transporter 1
(DMT1) [5]. Excess intracellular iron is stored in the storage protein, ferritin. In the plasma,
iron circulates bound to the glycoprotein transferrin (Tf), which has two binding sites for
ferric iron [1]. Iron levels are tightly regulated through the process of utilization, recycling,
and storage to avoid iron overload or deficiency. Hepcidin, a peptide hormone secreted by
the liver, together with its main target, the iron exporter protein ferroportin, are the most
important physiological regulators of systemic iron levels [6]. Hepcidin causes ferroportin
to be internalized and degraded in lysosomes. However, hepcidin can also be released
to regulate iron levels locally by cells such as macrophages and neutrophils. Intracellular
iron levels are regulated through the iron-responsive element/iron-regulatory protein
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(IRE/IRP). Here IRP 1 and IRP 2 bind to IRE on mRNAs that regulate iron metabolism [1]
(Figure 1). Proteins of iron metabolism are regulated post-transcriptionally by intracellular
iron levels through the action of IRP. Cytoplasmic IRP binds to specific mRNA stem loop
structures known as IRE. Under conditions of iron depletion IRP bind to IRE at the 3′-
untranslated regions (UTR) of transferrin receptor 1 (TFR1) and DMT1 mRNA to increase
both transcription and protein levels. In contrast, IRP can also bind to the 5′UTR of ferritin
mRNA inhibiting translation of ferritin mRNA, causing ferritin protein levels to decrease.
When there is excess iron, RNA-binding activity of IRPs is lost, and they fail to bind IRE.
Therefore, translation of ferritin mRNA is stimulated, and ferritin protein levels rise [4].
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Figure 1. Iron Regulation. Iron is reduced by ferrireductase and then transported through by the
divalent metal transporter 1 (DM1). Intracellularly, free iron catalyzes the production of reactive
oxygen species (ROS). Ferritin stores any excess iron in the intracellular space, oxidizes ferrous iron
and sequesters this ferric iron into a ferrihydrite mineral core. Intracellular iron levels are regulated
through the iron-responsive element/iron-regulatory protein (IRE/IRP). IRP 1 and IRP 2 bind to
IRE on mRNAs that regulate iron metabolism. Ferroportin exports ferrous iron into the plasma after
which it is oxidized by ferroxidase hephaestin and is bound to transferrin (TF). Hepcidin is a peptide
hormone and a regulator of iron. It causes ferroportin to be internalized and degraded in lysosomes.
Figure generated with bioRender.

Iron is able to exist in two oxidation states: Fe2+ (ferrous) and Fe3+ (ferric) [1]. Through
the Fenton and Haber–Weiss reactions, free iron catalyzes the production of reactive oxygen
species (ROS) [7]. ROS generation is beneficial during infection as it aids in destroying
microbes. However, over production of ROS due to the presence of excess iron can result
in oxidative stress and damage DNA, lipids, and proteins [8]. Therefore, in local infection
excess iron is detrimental to the host.

The regulation of iron metabolism is important during any type of infection since
iron is also an essential requirement for microorganisms. In response to local infections
monocytes circulate to the tissue and release hepcidin through a toll-like receptor 4 (TLR-4)
dependent pathway [9]. The release of autocrine hepcidin from monocytes results in
decreased expression as well as internalization and degradation of ferroportin. As a re-
sult increased iron retention is observed within macrophages [10]. Stimulation of other
pathways such as TLR2/TLR6 and interferon-gamma have been shown to be involved in re-
ducing ferroportin expression through hepcidin-independent and dependent mechanisms,
respectively [11,12]. Furthermore, lactoferrin, a host glycoprotein that binds iron with high
affinity is found in mucosal secretions and released by specific granules of neutrophils in
response to cytokines at sites of local infection [13].
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In this paper we review the potentially detrimental effects of iron through examples
of local infection such as microbial keratitis, skin wound infection and bacterial cystitis and
examine the potential role of iron chelation as a novel treatment.

2. Iron Homeostasis

Iron is an essential trace element. However, the ability of iron to cycle between
the oxidized and reduced forms can result in the formation of reactive oxygen species.
Therefore, organisms have developed elaborate mechanisms to carefully regulate iron
metabolism. Iron enters the body through the diet as either heme or nonheme iron. Heme
iron is well absorbed, found mainly in meat, poultry, and fish. Non-heme iron is not
absorbed as easily and comes mainly from plants. Over 95% of functional iron in the human
body is in the form of heme [3]. Nonheme iron can be bound by dietary components which
impedes its absorption, such as phytates and polyphenols. However, heme iron is tightly
sequestered within a protoporphyrin ring, allowing for more efficient absorption as its
absorption cannot be hindered by dietary components [14].

Iron is absorbed by mature enterocytes in the small intestine. Once iron has been taken
up by enterocytes it can then be transported into the bloodstream for use in other tissues
or stored inside endogenous ferritin. In order to be transported from the intestine into
the blood stream, iron must cross the apical brush-border membrane and the basolateral
membrane of enterocytes. Once within the enterocyte, iron is released from heme through
heme oxygenase. On the brush border, ferric reductase activity facilitates the reduction of
dietary ferric nonheme iron to the ferrous forum which can be transported via the ferrous
iron transporter DMT-1. If the iron is not immediately needed it is stored in the cell within
the storage protein ferritin. Once required iron can be transported across the enterocyte
basolateral membrane via ferroportin (FPN1). Ferroportin is coupled with hephaestin, a
ferroxidase which functions to convert ferrous iron to ferric iron [15].

Iron is supplied to the bloodstream through erythrocyte degradation, duodenal en-
terocytes absorbing dietary iron and hepatic stores. These processes all release iron into
the circulation via the only known iron exporter, ferroportin. Ferroportin is regulated by
hepcidin, a peptide that binds ferroportin and induces its internalization and degradation
by proteasomes. Iron in excess to the bodies requirements is stored mainly in hepatocytes.
The liver monitors iron levels and secretes hepcidin when levels are adequate or too high
in order to decrease iron release into the bloodstream [16]. Hepcidin is produced at a
high rate (10 mg/d) at baseline and is cleared rapidly from the circulation by the kidneys,
with a half-life of several minutes. This allows for hepcidin levels to change rapidly in
response to changing blood plasma iron concentrations, liver iron stores, inflammation,
and erythropoiesis [17].

Once in the circulation, iron is bound to plasma transferrin. Each transferrin molecule
can bind up to two atoms of iron. Diferric transferrin delivers iron to cells by binding to
transferrin receptor (TfR) 1 on the plasma membrane. The transferrin- TfR1 complex is
internalized via endocytosis and a reduction of transferrin-bound Fe3+ allows for the release
of iron from transferrin. Iron can then move into the cytoplasm across the endosomal
membrane via DMT1 and be used by the cell [14].

The majority of iron in the body is found within heme in hemoglobin. Mature erythro-
cytes have a life span of 120 days, after which they will be phagocytosed by macrophages
that recycle iron. Recycled iron from erythrocyte degradation accounts for over 90% of
daily iron requirement in humans. FPN1 is highly expressed in macrophages and pumps
ferric iron into the circulation for recycling [18].

Ferritinophagy is an iron-dependent physiological process in which ferritin is de-
graded and iron is released. This process is mediated by nuclear receptor coactivator 4
(NCOA4). When NCOA4 levels are deplete, iron availability is reduced and iron-responsive
element-binding protein 2 (IRP2) activity is induced to promote the translation of transferrin
receptor. [17]. NCOA4-mediated ferritinophagy maintains intracellular iron homeostasis
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by facilitating ferritin iron storage or release, depending on iron availability and demand.
Decreased NCOA4 levels inhibit ferritinophagy and increase ferritin iron storage [19].

Ferritinophagy also plays a role in the modulation of ferroptosis. The ability of iron to
easily switch between Fe2+ and Fe3+ forms renders iron as the major catalyst for generation
of reactive free radicals. For this reason, iron is tightly bound to transferrin, keeping it
in the redox-inert state. Non-transferrin bound iron can accumulate in the plasma dur-
ing pathological states and play a role in ROS generation. Excess ROS are detoxified by
antioxidants. However, imbalance in the rate of ROS generation and detoxification leads
to oxidative stress and free radical production which can damage DNA, proteins, and
lipids. Ferroptosis, a form of regulated cell death that is dependent on iron and ROS, is
characterized by the accumulation of ROS from iron metabolism, NAPDH oxidase activity
and lipid peroxidation products [20]. Ferroptosis sensitivity has been shown to be mod-
ulated by NCOA4. NCOA4 deletion inhibits ferroptosis by blocking ferritinophagy and
ferritin degradation, while NCOA4 over-expression increases sensitivity to ferroptosis [19].
Dysregulation of iron metabolism and ferroptosis can play a role in infection contributing
to the pathogenesis of the disease.

3. Iron in Infection
3.1. Role of Iron in Microorganism Pathogenicity

Iron is an essential element for both microbes and humans. The host employs mech-
anisms to sequester iron, while the pathogens attempt to circumvent these withholding
strategies. Bacterial invaders that can scavenger iron from the host have the potential to
cause infection. Prokaryotes have two highly conserved iron-responsive regulators that
respond to iron deprivation. These regulators are able to repress transcription of iron
acquisition genes when the intracellular iron concentration is high and dull this repression
when concentrations are low. For Gram-negative bacteria, iron homeostasis is controlled
by members of the ferric uptake regulator (Fur) superfamily. Gram-positive bacteria uti-
lize the diphtheria toxin repressor (DtxR) to control virulence gene expression and iron
uptake [21]. In several bacterial genera including Escherichia, Salmonella, Klebsiella, Yersinia,
and Vibrio, Fur controls iron acquisition via the small regulatory non-coding RNA (sRNA)
RyhB. Under iron-rich conditions, Fur acts as a negative regulator of RyhB and iron uptake
genes by binding within the promoter region of target genes, preventing their expression.
Contrarily, when iron availability is low, Fur becomes inactive and the production of and
RyhB iron acquisition systems is initiated [22]. The role of Fur and RyhB in the virulence of
human pathogens has been widely studied. Studies by Porcheron et al. (2014) found that
in a murine model of urinary tract infection, a RyhB mutant and a double RyhBfur mutant
significantly reduced bladder colonization of Escherichia coli [23]. Furthermore, studies by
Reinhart et al. (2015) used a murine model of acute lung infection to demonstrate that mice
infected with an iron-responsive PrrF1 and PrrF2 sRNA mutant survived during the entire
28-day course of the experiment, while mice infected with the wild-type strain succumbed
to lung infection [24].

Fur and RyhB control an arsenal of virulence factors that allow bacteria to invade
eukaryotic cells and resist environmental stresses. Iron and heme acquisition systems
are directly repressed by Fur in iron-replete environments for both Gram-negative and
Gram-positive bacteria [22]. Fur also plays a role indirectly in the regulation of iron
acquisition. Fur represses expression of pvdS, which directly activates expression of genes
for pyoverdin siderophore biosynthesis and uptake [25]. Furthermore, RyhB regulation of
iron acquisition and homeostasis is well established in E. coli strains. In the uropathogenic
E. coli strain CFT073 a RyhBmutant resulted in a reduced biosynthesis of all three types of
siderophores produced by this strain [23].

Additionally, invading pathogens have evolved mechanism to access heme from
intracellular hemoproteins through the secretion of hemolysins. Expression of these cy-
tolytic factors is often induced under conditions of iron starvation. A number of bacterial
pathogens are able to acquire extracellular heme as a cofactor or iron source through the
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synthesis and secretion of small, soluble, heme-binding proteins known as hemophores.
Hemophores are able to capture both free heme and appropriating it from hemoproteins.
Two major types of hemophores have been characterized: HasA-type hemophores of Gram-
negative pathogens and the near iron transporter (NEAT)-domain containing hemophores
of Gram-positive bacteria [21]. However, some bacteria such as S. aureus are not known
to use hemophores; thus, heme extraction, binding and transfer are all performed by cell
surface-associated proteins. Staphylococcus aureus utilizes the Isd pathway consisting of
nine iron-regulated proteins, IsdA through IsdI. This pathway is required for uptake of
iron from physiological concentrations of heme and the heme-degrading enzymes IsdG
and IsdI are required for maximal virulence in murine models of infection [26,27].

3.2. Siderophores

Bacteria acquire iron by secreting siderophores, small ferric iron-binding molecules.
Affinities of bacterial siderophores to iron are generally much higher than those of host
proteins. This allows bacteria to outcompete the host in the battle over limited iron [28].
Excreted siderophores bind available ferric iron forming a ferri-siderophore complex.
This complex will then bind to specific receptor proteins present on the microbial cell
surface and become internalized via active transport. The mechanisms of uptake of iron-
loaded siderophores differs between Gram-negative and Gram-positive bacteria. Gram-
negative bacteria recognize iron-loaded siderophores through a β-barrel receptor in the
outer membrane. Ligand binding results in a conformational change, translocating the iron-
loaded siderophore into the periplasm. Transport into the cytoplasm and iron reduction
is then mediated by an ATP-binding cassette (ABC) transporter in the inner membrane.
In Gram-positive bacteria siderophores can be directly imported into the cytosol via ABC
transporters as there is no outer membrane (Figure 2). Siderophore synthesis, release and
uptake mechanism are tightly regulated in order to maintain iron homeostasis within the
cell [29].
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Figure 2. An overview of iron-loaded siderophore transport in Gram-negative compared to Gram-positive bacteria. Gram-
negative bacterial cell wall is composed of an outer and inner membrane, separated by the periplasm. Gram-negative
bacteria recognize iron-loaded siderophores through a through a β-barrel receptor in the outer membrane. Ligand binding
results in a conformational change translocating the iron-loaded siderophore into the periplasm. Transport into the
cytoplasm and iron reduction is mediated by ABC transporter in the inner membrane. In Gram-positive bacteria, the
iron-loaded siderophore can be directly imported into the cytosol via ABC transporters. Figure generated with bioRender.

Siderophores have been classified into three main groups based on their chemi-
cal structure and properties: hydroxamate, catecholate, and carboxylate. Hydroxamate
siderophores are hydrophilic and are the most common group of siderophores in nature.
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Catecholate siderophores are found only in bacteria and consist of catecholate and hydroxyl
groups. Compared to carboxylate and hydroxamate siderophores, catecholate siderophores
have the highest affinity for ferric iron under physiological conditions. Enterobactin, pri-
marily produced by E. coli, is a catechol siderophore with the highest affinity towards ferric
iron than any other known siderophore [30].

3.3. Synthetic Iron Chelators

Siderophores can function as competitive agents against the host which aid bacteria
in causing infections. In iron-limited environments siderophores can lock iron away
from the host. Humans do not have their own siderophores to compete with bacteria.
However, considerable progress has been made in investigating iron chelators, which are
now available clinically. Desferrioxamine (DFO) is a clinically approved iron chelator
originating from Streptomyces pilous. DFO is a chain-like molecule which can wrap around
iron in a 1:1 Fe3+ /DFO complex (Table 1). However, DFO is not ideal for use in bacterial
infections as many bacterial species are able to utilize the iron sequestered within DFO.
DFO also requires prolonged i.v. infusions five to seven days a week. Research has therefore
moved towards creating synthetic iron chelators which can be self-administered orally [31].

Deferiprone (DFP) is an FDA-approved oral iron chelator with comparable efficacy
to DFO (Table 1). DFP is rapidly absorbed, with a peak blood level at 45 min after in-
gestion. Three daily doses of DFO is the current widely adopted recommendation [32].
Richter et al. (2017) studied the antibiofilm activity of a surgical wound gel loaded with DFP
on multidrug-resistant bacteria. When DFP was used in combination with ciprofloxacin
the efficacy exceeded the activity of the individual compound and showed significant
antibiofilm activity against Staphylococcus aureus and Pseudomonas aeruginosa [33].

Deferasirox (DFX) is an FDA-approved oral iron chelator with similar efficacy to DFO
(Table 1). DFX reaches peak plasma concentration within one and a half to four hours after
oral administration. DFX has a half-life ranging from 8 to 16 h, allowing for once-daily
dosing [34]. Studies by Puri et al. (2019) found DFX to reduce Candida albicans invasion of
oral epithelial cells and infection levels in a murine model of oropharyngeal candidiasis.
C. albicans cells were found to have a twofold reduction in survival and reduced adhesion
to and invasion of oral epithelial cells in vitro when treated with DFX [35].

Lastly the novel iron chelator, DIBI, has shown antibacterial effects in recent stud-
ies. Thorburn et al. (2017) studied the impact of DIBI on bacterial proliferation in a
murine model of abdominal sepsis. They found a significant decrease in bacterial counts
in the blood and peritoneal lavage fluid (PLF) when DIBI was used in combination with
imipenem [36]. Furthermore, studies by Parquet et al. (2019) demonstrated the antibacterial
effects of DIBI in vitro and in experimental pneumonia in mice. An intranasal dose of DIBI
after intranasal challenge with hypervirulent ciprofloxacin (CIP)-resistant A. baumannii
significantly reduced bacterial burden in mice. DIBI was shown to restrict host iron avail-
ability and work as an anti-infective or in combination with antibiotics for the treatment of
A. baumannii pneumonia [37].
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Table 1. Overview of selected iron chelators [38].

Properties Desferrioxamine (DFO) Deferasirox (DFX) Deferiprone (DFP)

Binding capacity
(chelator: iron) Hexadentate (1:1) Bidentate (2:1) Tridentate (3:1)

Route of administration Subcutaneous, intravenous Oral tablet Oral tablet

Side effects

Growth retardation
Local skin reaction
Ophthalmological

Auditory
Allergic reaction

Pulmonary at high doses
Neurological at high doses

Rash
Rise in creatinine

Auditory
Gastrointestinal

Ophthalmological

Gastrointestinal
Zinc deficiency

Agranulocytosis
Musculoskeletal and joint pains

Half-life 47–134 min 8–16 h 3–4 h

Structure
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4. Local Infection
4.1. Infections of the Eye

Infection of the eye are considered to be particularly problematic, since poorly man-
aged infections can have devastating consequences including blindness. The eye harbors
its own defense mechanisms against infection, e.g., through the production of lactoferrin
(Lf). Lf is an 82 kDa protein that is produced by the acinar cells of the lacrimal glands. Lf
binds free iron in the extracellular space [13]. As a result, iron is not available for pathogen
use. The existence of this natural mechanism for iron restriction within the eye suggests a
potential role for iron chelation in the treatment of eye infections.

Uveitis is the inflammation of the middle layer of the eye. Uveitis has a prevalence
of 115.3 per 100,000 and may be either infectious or non-infectious [39]. A study by
N. Arora et al. (2018) showed a promising role for iron chelator DIBI in experimental
endotoxin-induced uveitis [40]. Rao et al. (1986) showed similar findings when using
the iron chelator deferoxamine (DFO). DFO treatment of experimental uveitis in rats
significantly reduced choroidal inflammation and suppressed retinal damage [41]. Lastly,
studies by Lennikov et al. (2014) examined echinochrome as a potential therapy for
endotoxin-induced uveitis (EIU) in rats. Echinochrome is a pigment found in the shells
and spines of sea urchins. It has been proposed to have protective mechanisms as it is a
naturally occurring iron chelator and free radical scavenger [42]. Lennikov and colleagues
found echinochrome significantly reduced inflammatory cell infiltration and protein levels
in the aqueous humor and ROS production in ocular tissue of EIU rats [43].

Microbial keratitis (MK) is a condition that is caused by a variety of microbes that
infect the cornea and produce an inflammatory response. The predisposing factors for
MK are contact lens wear, corneal injury, or ocular surface disease. It has been estimated
that the incidence of MK ranges from 1 to 20 per 10,000 users depending on the type of
contact lens worn [44]. MK caused by contact lens wear is most commonly associated with
gram-negative bacteria Pseudomonas aeruginosa, a species known for biofilm formation [12].
Bacterial biofilm formation on contact lenses and their storage cases has been implicated
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in the pathogenesis of MK since biofilms prolong the retention time of organisms at the
ocular surface and provide intrinsic antibiotic resistance [45].

As reviewed by Kang and Kirienko (2018) iron acquisition is closely linked with both
biofilm formation and pathogenicity of P. aeruginosa [46]. P. aeruginosa produces two types
of siderophores in iron-limited conditions; pyoverdine and pyochelin. These siderophores
acquire iron from host transferrin and lactoferrin and are necessary for the development
of biofilms [46], Studies by Suzuki et al. (2018) demonstrated that P. aeruginosa strains
defective in pyoverdine genes had significantly decreased invasion capacity and bacterial
growth [47] (Figure 3). Banin et al. (2005, 2006) showed the loss of pyoverdine, but not
pyochelin, was able to disrupt biofilm formation [48,49]. Additional studies have noted the
anti-biofilm effects of iron chelation.
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4.2. Skin Wound Infections

In North America currently the most common microbial strain found in wound
infections is Staphylococcus aureus (84%), of which about 50% are methicillin-resistant S.
aureus (MRSA) [50,51]. S. aureus colonizes the skin and mucosal surfaces such as the nares
in 30% of healthy humans hence it is easily exposed to skin wounds [52]. Antibiotics are
used to treat patients infected with S. aureus; however, antibiotic resistance is increasing.

S. aureus requires iron for pathogenicity. It has an iron-regulated surface determinant
(Isd) locus which consists of seven genes (IsdA, IsdB, IsdC, IsdE, IsdF, IsdG, and IsdH)
that encode for proteins that have been found to acquire iron from heme and hemoglobin
into the cytoplasm [26]. The ferric uptake repressor (Fur) which is a DNA sequence that is
found in the transcriptional units of Isd inhibits transcription when iron concentrations
are high [53,54]. Fur has also been found to play a role in the biosynthesis of siderophores,
staphyloferrin A and staphyloferrin B. These siderophores aid S. aureus acquire iron from
transferrin and lactoferrin as they have a higher affinity for iron than host iron binding
proteins [55]. During an infection, the host’s defense system withholds iron, and it has
been suggested that Isd gene expression is high at this time (Figure 4). Moreover, in an
experiment, expression of Isd was found to be higher in an S. aureus culture with iron
chelators compared to one with S. aureus in a media containing iron [26]. Therefore, there
is a need for synthetic iron chelators that can aid in iron sequestration.
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The novel iron chelator DIBI, a hydroxypyridinone-containing iron-chelating antimi-
crobial polymer, has been shown as an effective treatment for wound infections caused by
S. aureus. Studies by Parquet et al. (2018) found DIBI to be strongly inhibitory to a diverse
group of S. aureus isolates (human, cattle, and dog). Additionally, antibiotic-resistant
hospital and community-acquired MRSA isolates were also inhibited by DIBI. Further-
more, topical application of DIBI to a skin wound infection provided a dose-dependent
suppression of infection and reduced inflammation. Lastly, DIBI/antibiotic interactions
were studied and DIBI did not impair the killing activity of 274 antibiotics, and actually
increased the initial or extended the initial antibiotic killing phase [52]. Results of these
studies display the potential of iron chelators to work in conjunction with antibiotics to
improve their effectiveness.

4.3. Bacterial Cystitis

Bacterial cystitis (BC), commonly known as urinary tract infection (UTI), is among the
most common bacterial infections affecting 150 million people worldwide each year [56].
BC occurs most commonly in otherwise healthy women when uropathogenic bacteria,
most commonly Escherichia coli (UPEC) from the gastrointestinal flora, enters the urethra
and ascends into the bladder [57]. Approximately 25% of women who experience bacterial
cystitis will suffer a recurrent UTI within six months of the initial episode. Trimethoprim-
sulfamethoxazole (TMP-SMX), nitrofurantoin, and Fosfomycin are the current treatments
of choice for cystitis in women. However, antimicrobial resistance among uropathogens
has been increasing to TMP-SMX and antibiotics fail to eliminate recurrences [58].

Autophagy commonly acts as a host defense mechanism against invading pathogens.
During this process, damaged organelles, proteins, and invading microbes are broken
down and recycled via fusion of autophagosomes and lysosomes. Ferritinophagy is a
form of selective autophagy important in iron homeostasis. Host cells utilize this pathway
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to recycle iron by shuttling iron-bound ferritin to lysosomes [59]. Escherichia coli persists
within the urinary tract epithelium (urothelium) by forming reservoirs within autophago-
somes [60]. Studies by Bauckman and Mysorekar (2016) reported that UPEC utilizes host
ferritinophagy in order to shuttle with ferritin-bound iron into the autophagosomal and
lysosomal compartment of the urothelium [59]. Their study demonstrated that excess
iron increased intracellular UPEC growth in a dose-dependent manner. In addition, iron
chelation treatment with DFO decreased bacterial growth in urothelial cells and improved
host cell survival [59]. These results were further investigated by Bauckman et al. (2019)
using a UPEC induced mouse model of BC. Treatment with a low iron diet decreased local
bladder tissue iron stores and reduced bacterial colonization and inflammation. Further-
more, hepcidin-deficient mice (Hamp1−/−) exhibited an accumulation in iron deposits and
significantly higher bacterial colonization and heightened inflammatory response to the
UTI [61]. Lastly, studies by Hagan and colleagues (2010) also demonstrate the importance
of iron in UPEC pathogenesis. In urine samples from women with cystitis, genes involved
in siderophore production and iron acquisition were the most highly expressed virulence
determinants across all isolates. Furthermore, pathogen-specific genes were found to
be expressed during human cystitis. UPEC isolates produced siderophores that are not
synthesized by most non-pathogenic fecal E. coli strains suggesting horizontally acquired
fitness genes [62]. Results of these studies demonstrate the potential for iron chelators as
treatment for bacterial cystitis.

4.4. Medical Device-Associated Infections

Medical device-associated infections result from the use of a foreign object within the
body for medical purposes. These infections are commonly associated with indwelling
devices such as urinary catheters and prosthetic joints, and account for approximately
half of all healthcare-associated infections [63]. The presence of these objects facilitates
the formation of biofilms, which consist of bacteria which adhere to both each other and a
surface. These bacteria are contained within a matrix consisting of polysaccharides and
other materials. Infections related to biofilm formation are typically difficult to resolve due
to the adaptations facilitated by biofilm formation. Biofilms exhibit altered gene expression,
protein production, and metabolism, and have an increased level of both antibiotic resis-
tance and resistance to the host immune response [64]. Additionally, patient populations
with indwelling devices tend to be aging and faced with various comorbidities, which
compromises the immune system. Device-associated infections have variable mortality,
depending on the type of device and infecting pathogen. For example, catheter associated
UTIs have a mortality rate of approximately 5%, while infections of prosthetic hip joints
have a mortality rate of 7% [65,66].

Urinary catheters are common indwelling devices and are often used long-term.
Patients develop a chronic, asymptomatic bacteriuria after just several weeks of catheter us-
age [67]. In a European prevalence study, only 1.3% of patients went on to develop a symp-
tomatic infection [68]. Gram-negative Enterobacteriaceae, and non-Enterobacteriaceae,
such as P. aeruginosa, are common uropathogens in patients with indwelling catheters [69].
These pathogens, specifically E. coli and P. aeruginosa, are known biofilm formers, which
complicates treatment. Most infections are considered avoidable with proper sterile tech-
nique and appropriate management, but there is still a need for new strategies to manage
these complex infections. Because of the critical role of iron in biofilm formation and
bacterial pathogenesis, iron chelation may be able to play a role in infection manage-
ment. Catheters made of iron-scavenging materials may reduce biofilm formation, but
this concept has yet to be tested clinically. Adding physiological chelator lactoferrin to
P. aeruginosa cultures reduced biofilm formation [70]. In combination with colistin, iron
chelation with a synthetic hexadentate chelator is able to almost completely eradicate P.
aeruginosa biofilms [71]. An alternative strategy involves the addition of chelating agents to
catheter lock solutions. Chelating agents such as EDTA and citrate have shown anti-biofilm
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activity in the context of lock solutions for central venous catheters but are not currently
approved for use in Canada [72].

Joint replacement is a frequent procedure, with the number of annual procedures
rising along with an aging population. In the USA, the number of annual hip or knee arthro-
plasties is expected to reach 4 million by 2030 [73]. The rate of prosthetic joint infection
following surgery is 2% and increases with revision surgery [74]. The most commonly iso-
lated pathogens include S. aureus, coagulase-negative Staphylococcus (CNS), Enterococcus,
and Gram-negative bacilli [74]. As reviewed by Hall-Stoodley et al. (2012), it is challenging
to directly identify biofilm-related infections as standard culture methods are insufficiently
sensitive to detect pathogens within a biofilm [75]. Systemic antibiotics successfully eradi-
cate planktonic bacteria while leaving the biofilm intact. As such, biofilm-related infections
are often culture-negative despite clinical signs of infections. Iron chelation may enhance
the penetration of antibiotics into biofilms. Combination therapy, with both deferiprone
(DFP) and conventional antibiotics, showed enhanced activity against CNS biofilms on
titanium [76]. Recent advances in this field include the development of a novel poly-
cyclic polyprenylated acylphloroglucinol antibiotic with mild chelating activity, giving it
enhanced anti-microbial and anti-biofilm activity [77].

4.5. Iron in Viral Infection

In order to efficiently replicate and infect host cells, viruses require iron for fundamen-
tal cellular processes such as DNA synthesis and ATP production. Individual viruses have
different mechanisms of invasion. A primary initiating event involves the interaction of the
virus with a receptor or set of plasma membrane surface markers. TfR1 is highly expressed,
making it a target for the virus to recognize and bind to [78]. Canine parvovirus (CPV)
and feline panleukopenia virus (FPV) were the first pathogens recognized to infect cells
through TfR1 trafficking pathways. Studies by Parker et al. (2001) found that anti-TfR1
antibodies were found to block CPV infection [79] Additionally, Radoshitzky et al. (2007)
demonstrated a specific, high affinity association between TfR1 and the entry glycoprotein
(GP) of Machupo virus, a New World hemorrhagic fever arenavirus. They found expres-
sion of human TfR1 in hamster cell lines enhanced the infection of viruses with the GP
of Machupo and an anti-TfR1 anti-body efficiently inhibited the replication of the virus.
Furthermore, iron depletion of culture medium enhanced the efficiency of infection while
iron supplementation decreased this efficiency of infection, demonstrating that TfR1 is a
cellular receptor for New World hemorrhagic fever arenaviruses [80].

Host iron status has been described to affect the induction and propagation of viral
mutations, mainly through mechanisms of oxidative stress. Redox regulation can lead to
faster viral replication and direct oxidative damage to genomic alterations [78]. A number
of viral infections, including viruses of the Flavivirus genus, have been found to trigger
oxidative stress. Therefore, the maintenance and restoration of a homeostatic intracellular
environment is crucial for the host to combat viral infection. Among Flaviviridae viruses,
hepatitis C virus (HCV) infection and the induction of oxidative stress has been more
extensively studied. Approximately 170 million people worldwide are infected with
HCV, which leads to chronic liver disease. It is widely accepted that chronic hepatitis
C (CHC) is associated with iron overload and hepatic iron accumulation. HCV alters
iron metabolism by reducing hepcidin levels [81]. Almost all HCV proteins have been
demonstrated to be involved in the induction of oxidative stress. Antioxidant defenses
work to attenuate cellular oxidative stress and return the cell to a basal state. However,
these antioxidant systems are manipulated by Flaviviridae viruses and are associated with
chronic HCV infection. Mitochondria are the major source of ROS inside hepatocytes and
liver-resident blood cells. Excessive ROS production is the leading factor that contributes
to liver inflammation, fibrogenesis, and hepatic carcinogenesis [82]. Studies by Yano et al.
(2007) found β-carotene, vitamin D, and linoleic acid inhibited HCV RNA replication
and that their combination caused additive effects. However, the use of antioxidants as
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therapeutics against HCV remains controversial as results from Yano and colleagues also
found vitamin E to enhance HCV RNA replication [83].

5. Therapeutic Applications
5.1. Routs of Administration

In order to be used therapeutically, synthetic iron chelators must be able to compete
with biological iron binding substances. Most of the modern iron chelators can be admin-
istered topically for local infection and inflammation, e.g., in eye drops or creams [40].
However, the oral bioavailability of some novel iron chelators, such as DIBI, is limited. In
the case of colitis, the iron chelator maltol can be administered orally [84]. Furthermore,
although DFO has been shown as a potential treatment for both local infections and in-
flammation it requires prolonged infusion five to seven days per week. FDA-approved
iron chelators, DFP and DFX can both be administered as an oral tablet and have longer
half-lives, 3–4 h and 8–16 h, respectively [38,85]. DFP and DFX have comparable efficacy
to DFO and can be self-administered one to three times daily. Future research should
therefore examine the potential role of these iron chelators in treating local infections and
inflammation.

5.2. Limitations

Depleting iron from the host is beneficial in reducing local infection. However, the
local administration of iron chelators should be limited in order to avoid systemic effects.
Moreover, theoretically, local iron restriction could have an impact on host immune re-
sponse by attenuation of local ROS production. During pathologic states, unshielded
labile iron accumulates in plasma and is readily taken up by hepatocytes and other tissue
parenchymal cells. Exposure of proliferating cells to different concentrations of H2O2
triggers a range of responses including increased proliferation rates, permanent inhibition
of cell proliferation and apoptotic or necrotic cell death. There is evidence that chela-
tion of intracellular labile iron inhibits H2O2-mediated expression of adhesion molecules
and the resulting recruitment of monocytes [86]. Labile iron plays a crucial role in the
signaling mechanisms that differentiation between survival or death in cells exposed to
H2O2. Furthermore, H2O2 can stimulate iron sequestration within ferritin, mitigating post-
transcriptional ferritin suppression [87]. The presence of multiple opposing mechanisms
for ferritin regulation underlies the fine line necessary for regulating the labile iron pool in
response to a variety of stimuli.

Therefore, pharmacological modulation of labile iron by chelation therapy is crit-
ical for the management balance between prevention of cell damage and meeting the
cellular demands. In general, the local administration of iron chelators represents a safe
pharmacological approach with a low side effect profile.

6. Conclusion

Iron plays a crucial role in the host’s innate immune response and iron balance is
necessary in order to treat infections. Bacteria with enhanced iron uptake mechanisms (e.g.,
Pseudomonas aeruginosa and Escherichia coli) have been shown to have increased virulence.
Excess iron has been shown to exacerbate infection in microbial keratitis, skin wound
infections and bacterial cystitis. Therefore, depriving bacteria of iron through synthetic iron
chelators which acts to enhance the host’s innate iron-withholding mechanisms presents as
a potential treatment for local infections. As shown through the examples above, during
local infection depletion of iron can be effective in reducing microbial proliferation. This is
the rationale for the use of iron chelators under those conditions.
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