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Anti-amyloid: An antibody to cure
Alzheimer’s or an attitude
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SUMMARY

For more than a century, clinicians have been aware of the devastating neurolog-
ical condition called Alzheimer’s disease (AD). AD is characterized by the pres-
ence of abnormal amyloid protein plaques and tau tangles in the brain. The domi-
nant hypothesis, termed the amyloid hypothesis, attributes AD development to
excessive cleavage and accumulation of amyloid precursor protein (APP), leading
to brain tissue atrophy. The amyloid hypothesis has greatly influenced AD
research and therapeutic endeavors. However, despite significant attention, a
complete understanding of amyloid and APP’s roles in disease pathology, pro-
gression, and cognitive impairment remains elusive. Recent controversies and
several unsuccessful drug trials have called into question whether amyloid is
the only neuropathological factor for treatment. To accomplish disease ameliora-
tion, we argue that researchers and clinicians may need to take a compounding
approach to target amyloid and other factors in the brain, including traditional
pharmaceuticals and holistic therapies.
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INTRODUCTION

Alzheimer’s disease (AD) is a devasting neurodegenerative condition marked by progressive dementia.

Presently, more than six million Americans are living with AD, and that number is estimated to reach

12.7 million by 2050, barring any medical breakthroughs.1 In response to the growing number of affected

individuals, significant resources have been dedicated to the study of AD and the development of thera-

peutic strategies. Remarkably, the Cure Alzheimer’s Fund has documented the mortality rate significantly

increasing for people with AD and decreasing in all other major diseases including stroke, cardiovascular

disease, HIV, and some cancers.2 The defining pathological features of AD are widely recognized as the

presence of abnormal amyloid protein plaques and tau tangles in the brain. It is hypothesized that the

accumulation of abnormal protein deposits of amyloid beta (Ab) due to the excess cleavage of amyloid pre-

cursor protein (APP) leads to synapse and neuronal loss ultimately resulting in brain atrophy in AD. This hy-

pothesis – termed the amyloid hypothesis – has dominated the scientific viewpoint on AD pathogenesis

and therapeutic development for the past century.3 While a significant portion of research and clinical trials

have focused on targeting amyloid and APP proteins, the full scope of their roles in disease pathology, pro-

gression, and cognitive impairment is still not fully understood. We suggest that the time for a rapid drug

intervention to expand the therapeutic toolbox used to treat AD is long overdue.
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GENETICS SUPPORTS THE AMYLOID HYPOTHESIS

The popularity of the amyloid hypothesis is reflected in ongoing clinical trials and lead drug development

candidates, many of which target either soluble or aggregated amyloid peptides. The central idea of this

hypothesis is based on the premise that accumulation of the neurotoxic beta-amyloid (Ab) peptide coupled

with the ineffective clearance and degradation of Ab clumps in the brain is the primary driver of the neuro-

degenerative processes in AD. While the hypothesis is not universally accepted among researchers, an

important line of unbiased evidence confirms the importance of this peptide in AD – genetics. There are

a variety of specific genes and gene mutations that increase the risk of developing AD (Table 1). The

most well-established AD risk factor is ApoE4. Carriers of one allele of ApoE4 have triple the likelihood

of developing late-onset AD compared to non-carriers. Other risk genes beyond ApoE4 have also been

identified and include BIN1, TREM2, ABCA7, INPP5D, CD33, and others.4 Interestingly, most of these

risk factors function in pathways that control vesicle trafficking processes including phagocytosis,
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Table 1. Risk factor genes associated with Alzheimer’s disease and their role within the brain

Gene Role AD Risk Onset

APOE ε2 Lipoprotein synthesis Reduced N/A

APOE ε3 Lipoprotein synthesis (most common allele in

general population)

Neutral N/A

APOE ε4 Lipoprotein synthesis (AD risk gene with

mutations found on chromosome 19)

Elevated Early

ABCA7 Cholesterol processing Elevated Late

CLU Regulates clearance of Ab in the brain Elevated when gene expression is deficient Late

CR1 Chronic neuroinflammation Elevated when gene expression is deficient Late

PICALM Neuronal communication Late

PLD3 Unknown Elevated Late

TREM2 Regulation of neuroinflammation Elevated due to rare variants Late

SORL1 Odd variants known on chromosome 11 Elevated Late

APP Mutations on chromosome 21 cause

overproduction of toxic Ab peptide

Elevated Early (inherited)

PSEN1 Mutations on chromosome 14 cause

overproduction of toxic Ab peptide

Elevated Early (inherited)

PSEN2 Mutations on chromosome 1 cause

overproduction of toxic Ab peptide

Elevated Early (inherited)

Here, we also describe whether the gene mutation increases or decreases the likelihood of developing AD, and on what timeline. The onset of Alzheimer’s is

typically defined as being early- or late-onset. Late-onset AD is much more common, generally being symptomatic after age 65. Early-onset AD is a relatively

rare form of the disease usually diagnosed in individuals under the age of 65 – typically between 40 and 50 years of age.
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endocytosis, and immune signaling, suggesting defects in these processes are in part a priming risk for AD

pathogenesis.

In rarer cases, AD is driven by deterministic genes that guarantee development of a disease and are in-

herited in a familial autosomal dominant form. Research has identified multiple familial mutations in

APP, PSEN1, and PSEN2 that support the importance of Ab peptide accumulation in the progression of

AD.5 Mutations in these genes form the catalytic component of the g-secretase complex, which is respon-

sible for cleaving APP into various Ab oligomers, implying that aberrant APP metabolism is central to AD

pathogenesis. However, it is estimated that only 1% of people with AD have one of these mutations. Indi-

viduals with Down Syndrome (DS) have three copies of chromosome 21, which is also the locus for the APP

gene. Because of this, these individuals are significantly more likely to develop AD and do so at a

younger age.

Interestingly, there are extremely rare familial mutations in these genes that reduce or even prevent the risk

for developing Alzheimer’s. For example, the Icelandic mutation reduces the cleavage of APP that would

normally lead to abnormal amyloid processing, effectively preventing amyloid plaque accumulation and

disease progression. Although these genetic and pathological studies point to the importance of amyloid

in AD, it would be a great oversimplification to conclude that amyloid alone can explain the entirety of AD

pathogenesis.

RESEARCH ALLEGATIONS CAST A SHADOW ON THE AMYLOID HYPOTHESIS

Despite well-established lines of scientific evidence, recent controversies driven by unsuccessful clinical tri-

als and research publications have called into question whether amyloid is the pathological factor that ini-

tiates symptoms and drives AD pathogenesis, threatening the progressmade in the field. Shockwaves were

sent through the AD field after allegations that falsified images of Ab56 oligomers were used in seminal

manuscripts from 2006.6 The group claimed to have discovered a new oligomer, ‘‘amyloid beta star 56’’

(Ab56) that was isolated from a transgenic mouse model and injected into rats, which subsequently

developedmemory deficits – a hallmark of AD pathology. With over 2000 citations from this research alone,

scientists believed an obvious target for treatment was discovered. To the field, the discovery of this addi-

tional oligomer made it seem obvious that amyloid accumulation resulted in a cascade of signaling and
2 iScience 26, 107461, August 18, 2023
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neuronal damage, ultimately causing AD and related dementias. If this species was, in fact, the cause of

memory loss, then inhibiting or degrading the protein would potentially prevent disease progression.

However, confirmatory experiments have never been able to observe this oligomer species in mice or

even human fluids or tissues. Furthermore, it was discovered that protein bands on the published western

blots appeared to be duplicated.7 The cleavage of APP does, in fact, lead to various oligomer species of

amyloid, but the main forms studied in AD have been Ab40 and Ab42. While we were once excited by the

possibility of this new finding, investigations into the lab’s falsified images have led to increasing pressure

on the validity of the amyloid hypothesis. Despite the allegations, there is still compelling evidence in post-

mortem brain tissue and imaging analyses that amyloid is a major hallmark of the disease.8 Has our desire

to find a cure placed too much emphasis on amyloid at the expense of other putative targets? We would

argue that amyloid is a critical determinant in AD, and we should consider a multimodal approach to treat-

ing AD.

It appears that brain amyloid accumulation may be related to AD as plasma cholesterol levels are to heart

disease, or troponin is to myocardial infarction. They are critical determinants, occasionally adequate on

their own, but not conclusive of the whole scope of treating the disease pathology. In fact, as amyloid

burden increases in the AD brain, the key microtubule stabilizing protein tau, which is of critical importance

inmaintaining neuronal structure and function, becomes hyperphosphorylated.9 The phospho-forms of tau

subsequently aggregate within neurons forming structures known as tau tangles. These events lead to the

loss of neuronal integrity, impaired signaling, and ultimately neuronal cell death. From a therapeutic view-

point, modulating tau to treat AD is an important consideration.10,11 Concomitantly, we must revolutionize

how we approach targeting both proteins, and at a clinically relevant time window before disease

progression.
THE STATE OF ALZHEIMER’S CLINICAL TRIALS

In the relatively short time that clinical trials have been conducted on AD, almost none have proven to be

clinically efficacious or demonstrate robust safety, with side effects ranging from meningoencephalitis,

toxicity, and amyloid-related imaging abnormalities (ARIA) – such as brain edema, sulcal effusion, and hem-

orrhagic hemosiderin deposits.12,13 Most of the drugs tested in clinical trials have been immunotherapy-

based monoclonal antibodies (mAb) targeting one singular protein, primarily amyloid: with a failure rate

of these drugs near 100%.14 One recent breakthrough in developing amyloid therapeutics is aducanumab,

sold under the brand name Aduhelm: a synthetic mAb that targets amyloid aggregates in both the oligo-

meric and fibrillar forms. Its efficacy is questionable though since the drug was approved solely for its ability

to reduce amyloid while data ignored reporting on any significant symptomatic benefit for patients.15 More

recently, a second amyloid immunotherapy targeting soluble aggregated amyloid protofibrils, lecanemab

was approved by the Food and Drug Administration (FDA). While 12-month primary endpoints were not

met across doses in Phase II, new trials indicate a reduction in cognitive decline by 27% after 18 months.16

To date, this is the most promising data generated from any AD trial. Out of the separate monoclonal an-

tibodies that have been tested to target various aspects of the amyloid cascade pathway, lecanemab has

demonstrated some efficacy (Figure 1A). More recently, donanemab is being studied for its effect in

reducing amyloid plaques by binding to soluble or aggregated conformations of the Ab42 isomer.17 Inter-

estingly, Phase III trials and a press release noted that the antibody slowed cognitive and functional decline

in AD by 33% compared to placebo participants, but also noting significant side effects are present.18,19

This raises the question as to which amyloid species should be targeted. Amyloid plaques were long

held as the neurotoxic structure, however newer studies and results from clinical trials suggest this may

not be the case. Therapeutics like lecanemab and donanemab that target soluble amyloid appear to be

much more effective than those that target insoluble fibrils and plaques (Table 2). These results correlate

to studies in mice, where new data supports a more neurotoxic role for monomeric and oligomeric amyloid

species compared to their fibrillary or dense-core plaque bound counterparts.20,21

As of now the question remains as to whether intervening with anti-amyloid therapy can even forestall

clinical indicators and other downstream effects, such as cognitive and functional decline. Previous clinical

trials have fallen short, in part because AD is a complex neuropathology with multiple mechanisms contrib-

uting to pathogenesis and progression. A more robust interventive approach using combinatorial

targeting of key pathogenic mechanisms will likely be necessary. For example, inhibition of Ab production

by utilizing secretase inhibitors to block the cleavage of APP (BACE1), modulating the immune response to

clear Ab accumulation, active and passive vaccines, or utilizing natural intravenous immunoglobulin (IVIg)
iScience 26, 107461, August 18, 2023 3
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Figure 1. A new opportunity for combined and adjunct anti-Alzheimer’s therapeutics

(A) A list of drug candidates has been developed and undergone clinical trials, with little to no patient efficacy. Most of the

clinical drugs target a singular protein of AD, with close to 100% failure rates.

(B) To circumvent this singular drug target, we propose a therapeutic revolution where multiple neuropathological factors

of the disease must be targeted. This can be done as a combined and adjunct therapeutic whereby neuroprotective

mechanisms aim at targeting the molecular hallmarks of the diseases, and neurorestorative ways work to augment

symptoms caused by AD and determine the correct time of intervention. Images made with BioRender. Ab, amyloid-beta;

AD, Alzheimer’s disease; mAb, monoclonal antibody.

ll
OPEN ACCESS

iScience
Perspective
from human blood donors49,50 would be holistically beneficial. However, attempts at targeting most of

these areas have proven less effective or more difficult than hoped. Moreover, timing matters . interven-

tions for themisprocessing of the APP cleavage pathway should be given at the right time, before extensive

cognitive decline, to reduce amyloid accumulation in the brain and a clinically relevant decrease in symp-

toms. Of course, this requires the development and implementation of better diagnostic approaches and

disease biomarkers. A significant number of resources and studies are now being directed at developing

new testing methodologies and novel biomarkers to determine AD in its earliest stages.51,52 These ad-

vances will afford for the ability to initiate therapy at the appropriate time and likely prior to cognitive

decline.

EXPANDING THE THERAPEUTIC TOOLBOX: A NEW OPPORTUNITY FOR A

COMBINATION ANTI-ALZHEIMER’S THERAPY

While we should acknowledge the promising early results observed from lecanemab therapy, it is impor-

tant to recognize that it alone is not the ultimate solution for AD. Several pathways have been shown to be

significantly affected in patients with AD. These pathways include druggable targets in mechanisms related

to oxidative stress, blood vessel architecture, neuroinflammation, and neurogenesis that are thought of as
4 iScience 26, 107461, August 18, 2023



Table 2. Anti-amyloid and tau antibodies have been developed and commonly failed at curing the disease in previous clinical trials

Drug Type Target Result

Lecanemab mAb Ab protofibrils Phase III trial underway, slows progression22

Phase III trial underway, slows progression22

Donanemab mAb Established Ab plaques Shows signs of benefit in phase II trial23 Shows

signs of benefit in phase II trial23

Crenezumab mAb Binds to Ab oligomers

and monomers

Stopped at Phase III trials, not likely to meet

endpoints24,25

Aducanumab mAb Aggregated Ab Decrease Ab and slow cognitive decline as of

Phase II trials12,26,27

Bapineuzumab mAb Aggregated Ab Failed to decrease cognitive decline28 Failed to

decrease cognitive decline28

Verubecestat BACE1 Inhibitor Enzyme cleavage of APP Failed to decrease cognitive decline and had

treatment-related adverse events in Phase III

trials29,30

Atabecestat BACE1 Inhibitor Enzyme cleavage of APP Dose-related cognitive worsening and

neuropsychiatric adverse events (AEs) in Phase

III trials31,32

CNP520 BACE1 Inhibitor Enzyme cleavage of APP Lack of efficacy and worsens cognition in Phase

III trials33,34

Lanabecestat BACE1 Inhibitor Enzyme cleavage of APP Lack of efficacy and did not slow cognitive

decline in Phase III trials35 Lack of efficacy and

did not slow cognitive decline in Phase III

trials35

Solanezumab mAb Aggregated Ab Failed to decrease cognitive decline in Phase III

trials36,37

Gantenerumab mAb Aggregated Ab Failed to decrease cognitive decline38,39

Ponezumab mAb Aggregated Ab Abandoned after phase II trials40,41

Tideglusib (GSK-3b) protein

kinase inhibitor

Phosphorylated tau No significant clinical benefit in phase II trials42

trx0014 and lmtm Methylene blue

dye derivative

Inhibit tau aggregation Technique and efficacy in slowing cognitive

decline are controversial43,44

AN1792 Vaccine Anti-Ab Discontinued, 6% of participants developed

meningoencephalitis, with no significance in

Ab antibody development45–47

UB-311 Vaccine Anti-Ab Latest clinical trial drug in Phase II, shown to be

well-tolerated but safety profile like placebo48

Here, we describe some of the most reported therapeutics targeting AD, their drug classification, specific target in the Alzheimer’s pathway, and a summarized

result of the human clinical trial. Most of the drugs tested in clinical trials have been immunotherapy-based monoclonal antibodies (mAb) targeting one singular

protein, primarily amyloid: with a failure rate of these drugs near 100%.
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potential neuroprotective approaches.53,54 To elucidate these pathways, researchers are beginning to un-

derstand the molecular and cellular mechanisms that underlie AD to develop effective combination treat-

ments, including developing and targeting drugs to cross the blood-brain barrier without causing general

toxicity. Beyond amyloid, tau targeted therapies have been the second highlight area for new treatment

opportunities.10 Tau is an important protein also closely associated with AD as it is important for microtu-

bule stabilization to support neuronal structure. In AD, tau often becomes hyperphosphorylated leading to

microtubule destabilization and eventual neuronal dysfunction. A variety of targets surrounding tau exist,

including the kinases that phosphorylate tau and the ability for it to aggregate into tangles.55 These kinases

are closely linked to the amyloid cascade pathway, specifically APP, therefore targeting them may prove

effective in both protein pathways.56 One hurdle in developing therapeutic targets for these kinase inhib-

itors is the high specificity that is needed. Kinase inhibitors including the tyrosine kinase inhibitor Nilotinib

are currently being evaluated in AD.57 Other therapies to stabilize microtubules in neurons including NAP
iScience 26, 107461, August 18, 2023 5
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and TPI287 are in early clinical studies.58–60 As with amyloid targeted, the majority of clinical or near clinical

drugs targeting tau are immunotherapies and directed at preventing tau aggregation and tangle forma-

tion. The tau aggregation inhibitors methylthioninium chloride (MTC) and a stabilized-derivative LTMX,

showed initial promise, but failed to slow cognitive decline.61 However, the study did provide hope in

that a subset of trial participates, approximately 15% did show significant clinical benefit, suggesting

refining tau inhibitors may be of value in moving tau targeting forward. Importantly, tauopathies in combi-

nation with amyloid are two significant pathological features in Alzheimer’s that should be dually targeted,

in contrast to the traditional mono-therapeutic approach, albeit few have succeeded due to toxicity or low

efficacy.

Two plausible targets of high therapeutic value outside of amyloid and tau include neuroinflammation and

mitochondrial dysfunction. Activation of neuroinflammatory pathways including the production of cell

death inducing cytokines such as IL-1b and TNFa as well as increased fragmentation of mitochondrial

and reactive oxygen species (ROS) production are well-defined components of human AD pathology.

New brain-penetrant therapeutics are being developed to target IL-1b production by inhibiting the

NLPR3 inflammasome as well as key cleavage enzymes including caspase-1.62,63 Another route of modula-

tion exists by targeting mitochondrial dynamics and ROS production. At the pharmacological level these

therapeutics provide promise for potentially the first disease modifying drugs for AD and possibly other

neurodegenerative diseases. As amyloid is not the only determinant of AD, it is plausible that if anti-amy-

loid therapies are successful, they will need to work in concert with other treatment targets to have the

maximum effect, like combined antiretroviral therapy (cART) to treat HIV infection.64 Combined anti-Alz-

heimer’s therapy can include an anti-amyloid drug, an anti-tau drug, and even a neuroprotective or

anti-inflammatory drug.

In terms of next steps for AD treatment, a more holistic approach is needed that addresses the underlying

neuropathological co-morbidities in addition to the pathology of the disease itself (Figure 1B). There are

two branches of therapeutic approaches to be utilized: neuroprotective and neurorestorative. While the

holy grail for AD would be a truly diseasemodifying curative therapy, neurorestorative therapies that target

the consequences of the disease, including cognitive and memory augmentation provide promising hope

in the interim. Neurorestorative therapeutics in this regard act to slow the progression of memory loss, but

not completely circumvent it. Activities such as being mentally active, socialization, and physical activity

have been shown to prevent, or at least, delay the onset and progression of AD.65–67 The thought behind

these activities is that mental stimulation supports the growth of new nerve cells and stimulates nerve cells

to communicate with one another. Nevertheless, delaying symptom onset by using more neuroprotective

therapies in combination with augmenting any suffered memory loss as a restorative effect would be bene-

ficial for the overall management of AD and decrease its incidence and prevalence. Another approach to

neurorestorative methods is to implement enhanced neurorehabilitative programs for patients and care-

givers. Non-drug interventions have proven to be helpful for patients in long-term recovery efforts toward

cognitive function and relieving disease symptoms, particularly when caregivers and families are empow-

ered and engaged.68 This can ultimately affect patient-caregiver relationships, patient anxiety, and overall

patient quality of life. In an exciting advance, prescription digital therapeutics (PDT) are becoming more

well studied and even approved by the FDA, which act as a new adjunct therapy to oral drugs.69 This digital

therapy can be utilized to assist treatment or be used prior to disease onset to intervene before symptom-

atic presentation. The advantage of promotingmemory augmentation through a digital health platform, or

software as a medical device (SaMD), is that ease of access and time to intervention are significantly expe-

dited. Digital therapies have the potential to help patients long-term through noninvasive means that do

not pose any negative pharmacokinetic effects on other drugs and improve the patient-caregiver dynamic.

The importance of studies that also focus on symptomatic recovery cannot be understated when it comes

to improving a patient’s life. There is no doubt that there is room to improve the therapeutic toolbox for

patients who suffer from not only AD but other neurological disorders, and adjunct therapies are just a start

to ameliorating chronic symptoms.
Conclusion

Despite substantial funding allocated to Alzheimer’s disease and related dementias (ADRD) research, the

success rate in developing effective drug candidates has been limited. The vast amount of money spent on

research has yielded few effective therapeutic options, highlighting the urgent need for a paradigm shift in

how we approach research and therapeutic development. It is increasingly evident that initiating treatment
6 iScience 26, 107461, August 18, 2023
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before the onset of symptoms is likely to be the most effective approach. The failure of certain drugs in

clinical trials may be simply due to mistiming of intervention and target validity. Until we gain a better un-

derstanding of the multifaceted nature of the disease, achieving a definitive treatment for AD may remain

elusive, making it one of the most crucial discoveries in modern medicine. Alzheimer’s needs a therapeutic

revolution. Exploring innovative and combinatorial methods to accelerate the discovery and development

of breakthrough therapies for Alzheimer’s is crucial to maximizing the impact of the resources invested in

this field.
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