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A timely diagnosis is a key challenge for many rare diseases. As an expanding group of rare
and severe monogenic disorders with a broad spectrum of clinical manifestations,
ciliopathies, notably renal ciliopathies, suffer from important underdiagnosis issues. Our
objective is to develop an approach for screening large-scale clinical data warehouses and
detecting patients with similar clinical manifestations to those from diagnosed ciliopathy
patients. We expect that the top-ranked similar patients will benefit from genetic testing for
an early diagnosis. The dependence and relatedness between phenotypes were taken into
account in our similarity model through medical concept embedding. The relevance of
each phenotype to each patient was also considered by adjusted aggregation of
phenotype similarity into patient similarity. A ranking model based on the best-
subtype-average similarity was proposed to address the phenotypic overlapping and
heterogeneity of ciliopathies. Our results showed that using less than one-tenth of learning
sources, our language and center specific embedding provided comparable or better
performances than other existing medical concept embeddings. Combined with the best-
subtype-average ranking model, our patient-patient similarity-based screening approach
was demonstrated effective in two large scale unbalanced datasets containing
approximately 10,000 and 60,000 controls with kidney manifestations in the clinical
data warehouse (about 2 and 0.4% of prevalence, respectively). Our approach will
offer the opportunity to identify candidate patients who could go through genetic
testing for ciliopathy. Earlier diagnosis, before irreversible end-stage kidney disease, will
enable these patients to benefit from appropriate follow-up and novel treatments that
could alleviate kidney dysfunction.
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1 INTRODUCTION

Rare disease patients that have delayed diagnosis present disease
progression, incorrect treatment, and complications that may be
irreversible. For example, a significant proportion of patients
having ciliopathies are diagnosed when they have kidney failure
and about half of patients on kidney transplantation waitlists are
classified as undetermined diagnosis (Schrezenmeier et al., 2021).

Ciliopathies are an expanding group of rare and severe genetic
diseases related to the abnormal structure and function of cilia,
ubiquitous cellular organelles involved in controlling key
signaling pathways during development and tissue
homeostasis. Cilia dysfunction can lead to diseases with a
broad spectrum of clinical manifestations ranging from
embryo fetal lethality and individual organ malformation, to
multisystemic defects. Until now, there have been no
treatment for ciliopathies, but only maintenance and palliative
care. Meanwhile several candidate drugs are currently tested in
animal models or in in vitro models (Stokman et al., 2021).

Two major obstacles must be overcome to provide early
diagnosis to ciliopathic patients: the phenotypic and genetic
heterogeneity of patients, and the growing pace at which new
clinical phenotypes are being described. Nowadays, more than 50
clinically and genetically overlapping ciliopathy disorders linked
to variants in about 180 established ciliopathy-associated genes
have been reported (Reiter and Leroux, 2017). Despite this
progress, our knowledge of ciliopathies is far from complete,
as new clinical phenotypes are still being described, shedding new
light on the role of the primary cilium in health and disease
(Shamseldin et al., 2020).

A conspicuous example of the complexity behind the
diagnosis of ciliopathies is the recent discovery of ciliary genes
pathogenic variants in end-stage kidney disease adult cohorts: the
NPHP1 homozygous locus-deletion was found in up to 0.9%
frequency in adults raging 18–50 years of age (Snoek et al., 2018),
along with a 0.3% frequency of other known ciliopathy-related
gene mutations (Groopman et al., 2019). These studies, together
with the fact that nonspecific clinical presentation is often missed
due to a lack of suspicion for genetic tests, strongly suggest that
ciliopathic patients are probably underdiagnosed.

In such complex situations, patient-patient similarity
measures may be useful to search for potential ciliopathy
patients in clinical data warehouses. Due to the wide adoption
of electronic health records (EHR) systems in hospitals, patients’
data collected during care can be reused and mined to support
diagnosis. To do so, we need a similarity model that considers the
semantic relations between medical concepts and the different
levels of relevance presented in patients’ EHRs—including
incompleteness, inaccurate phenotyping, noisy phenotypes
related to multiple comorbidities, and medical histories.

Recently, we developed a similarity method combining natural
language processing (NLP) techniques, namely word embedding,
and statistical modeling, to demonstrate the feasibility of
screening a small patient cohort of 79 ciliopathies and 200
controls (Chen et al., 2021). The results showed a significant
improvement in the enrichment of the number of ciliopathy
patients among the top-ranked patients, compared with the

baseline method that did not consider phenotype dependence
and relevance.

The work presented here expands our previous preliminary
study, as we 1) further assessed the adequacy of other existing
embeddings for modeling medical concept dependence, 2)
leveraged the similarity model by considering each diagnosis
of ciliopathy as index (as opposed to using average similarity
with all diagnosed patients) to take into account the high
heterogeneity of ciliopathies, and 3) applied the developed
model to two large-scale unbalanced datasets containing
approximately 10,000 and 60,000 controls with kidney
manifestations in the clinical data warehouse.

2 MATERIAL AND METHODS

2.1 Clinical Data Warehouse and Patient
Phenotyping
This study was conducted as part of the C’IL-LICO project. This
project was approved by the French National Ethics and Scientific
Committee for Research, Studies and Evaluations in the field of
Health (CESREES) under the number #2201437. It aims to
develop transformative diagnostic, prognostic, and therapeutic
approaches for patients suffering from ciliopathies. As a national
reference center for rare and undiagnosed diseases, the Necker
Children’s Hospital hosts the Imagine Research Institute, whose
data repository contains more than 1800 patients with proven or
suspected ciliopathy disorders. More than 1100 of them have bi-
allelic variants in one causative gene identified. The clinical data
warehouse (Dr. Warehouse) of Necker/Imagine contains EHR
data from more than 700,000 patients. The high throughput
phenotyping module within Dr. Warehouse (Garcelon et al.,
2018) is based on the extraction of phenotypes encoded with
the Unified Medical Language System (UMLS), a large thesaurus
of medical terms and concepts from more than 200 different
vocabularies. We used a definition of “phenotype” based on the
UMLS, i.e., any concept assigned to 1 of the 12 semantic types
(UMLS 2019AB release) belonging to the “Disorder” Semantic
Group (McCray et al., 2001).

2.2 Patient Selection and Study Design
We considered two groups of patients: patients with ciliopathy
disorders and non-ciliopathy controls.

Based on Dr. Warehouse, 329 patients with proven or
suspected ciliopathy disorders had been followed at least once
at Necker Children’s Hospital with EHR data available. To ensure
inclusion of only patients with sufficient EHR information to
characterize their health condition, we focused on patients with at
least four distinct UMLS phenotype concepts. The concepts
corresponding to the diagnosis of a ciliopathy, such as
“Nephronophthisis” (C0687120), were removed to avoid bias.

The patient similarity method was applied to screen patients in
Dr. Warehouse that had at least one kidney manifestation, to
identify potential undiagnosed ciliopathy patients. More
precisely, the target population for screening was selected as
patients who had any automatically extracted UMLS
phenotype concept subsumed by the term “Kidney Diseases”
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(C0022658) excluding known ciliopathies. This cohort is referred
to as “other-nephropathy” controls. As the control cohort was
built automatically based on the UMLS phenotype extraction of
any kidney-related signs (from mild signs such as “polyuria” to
end-stage kidney disease), it included patients of all ages
(pediatrics and adults) and all types (native or transplant
kidney disease).

2.3 Embeddings for Concept Similarity
The semantic similarity between two concepts was calculated
using the cosine similarity between two embeddings. The
embeddings of UMLS concept unique identifiers (CUIs)
derived from a collection of 2.5 million French clinical
narratives from Dr. Warehouse provided a good performance
with the similarity method in a previous feasibility study (Chen
et al., 2021). This embedding is referred to as cui_embd_fr in the
following sections. We further assessed the adequacy of other
existing embeddings for modeling medical concept dependence,
including cui2vec and HPO2Vec+. cui2vec (Beam et al., 2019)
contains embeddings of 109,053 UMLS CUIs, derived from
multiple sources of medical data, including an insurance
claims database of 60 million patients, 1.7 million full-text
biomedical journal articles, and 20 million clinical notes.
HPO2Vec+ (Shen et al., 2019) contains embeddings of 7258
terms from the Human Phenotype Ontology (HPO) trained from
biomedical knowledge resources, such as Online Mendelian
Inheritance in Man (OMIM), Orphanet, for HPO terms. To
compare with the other two UMLS CUI embeddings
(cui_embd_fr and cui2vec), the mapping between HPO terms
and UMLS terms provided by the HPO consortium (HPO
format-version: 1.2; data-version: releases/2020–12-07) was
considered. Embedding of each HPO term was associated with
all corresponding UMLS terms.

2.4 Patient-Patient Similarity
The similarity between two patients was calculated using an
adjusted average best-match method, i.e., for each concept of
each patient, the best match concept from the other patient was
identified as the one that maximized the concept similarity, then
concept similarities for all pairs of concepts were weighted
averaged according to the relevance of each concept to each
patient. More details are provided in (Chen et al., 2021).

Based on the pairwise patient similarity, we would like to
measure an overall similarity between a patient and a group of
patients, i.e., the diagnosed ciliopathy cases, to estimate the
probability that the patient has ciliopathy. The first idea would
be to consider the average similarity to all diagnosed cases.
Intuitively, the closer patients are to the centroid of all
diagnosed cases, the more likely they are to belong to the
ciliopathy group. However, the underlying hypothesis is that
all diagnosed cases are similar to each other and form a
homogeneous group, which is inappropriate for ciliopathy
because of its high clinical heterogeneity. Another option is to
consider the maximum similarity to all diagnosed cases, i.e., the
closer patients are to any of the diagnosed cases, the more likely
they are to have ciliopathy. However, as we use EHR data that
may contain relevant information but also noises, it may bring

high uncertainty (analogy to “overfitting” in machine learning).
We thus considered the average similarity to the five most similar
diagnosed ciliopathy cases (referred to as max5-average in the
following sections) to improve the robustness. This process shares
the idea with a k-nearest neighbor classification where the
neighbors are searched within the set of cases and an average
similarity to searched neighbors was considered for ranking. The
average, max, and max5-average correspond, respectively, to the
average similarity to “all case neighbor,” “1-nearest case
neighbor” and “5-nearest case neighbor.” Then all patients
from the target screening population were ranked in the order
of decreasing “overall” similarity (average, max, or max5-
average).

We also considered the average similarity to each subtype of
ciliopathies (such as nephronophthisis, Senior-Loken syndrome,
Jeune syndrome, etc.) to measure the overall similarity between a
patient and a subgroup of diagnosed ciliopathy cases. The final
rank was based on the smallest rank obtained from all subtype
averages (referred to as best-subtype-average in the following).
An illustrative example is given in Table 1.

2.5 Evaluation Measures
The proposed approach aims at screening for likely undiagnosed
ciliopathy cases in a specific population. To evaluate the
performance, EHR data from diagnosed ciliopathy cases and
“other-nephropathy” controls were pooled. Each diagnosed
case was considered as an index. The patient-patient similarity
was calculated between each patient (case or control) and each
index. The self-similarity (similarity between a patient and
themselves) was set to NA. Then all patients were ranked with
different ranking models (average, max, max5-average, and best-
subtype-average) as described previously.

Based on these ranking models, the first k top-ranked patients
were predicted as suspected ciliopathy patients for some fixed k.
Then the most commonmeasures of evaluation, such as precision
and recall, can be determined at k. More precisely, the precision
(or positive predictive value) is calculated as the proportion of
true ciliopathy cases at top k to the total number of patients
predicted to be ciliopathy cases (k). The recall (or sensitivity) is
the proportion of true ciliopathy cases at k to the total number of
true cases. Evaluation of the models was based on the precision-
recall curves and partial receiver operator characteristic (ROC)
curves. As the “full” curves are not very informative for the
screening task with a large number of negative conditions, we
focused on the top-ranked list. The minimum number of patients
that would need to be screened to detect m true ciliopathy cases
for m = 5, 10, 50, 100 were reported.

3 RESULTS

3.1 Patients and Phenotyping
The ciliopathy data set comprises 253 previously diagnosed
ciliopathy cases with at least four distinct UMLS phenotypes
automatically extracted from their EHR data in Dr. Warehouse.

Two control cohorts were considered. First, we reused the set
of “other-nephropathy” patients in Dr. Warehouse presented in
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our previous study (Chen et al., 2019) as the control cohort 1,
which comprised 10,462 patients with the same inclusion criteria
based on the number of minimum distinct UMLS phenotypes.
Only “active” patients with the latest record after January 1, 2017,
in Dr. Warehouse were included in this set. All patients (253 cases
and 10,462 controls) presented 8698 distinct UMLS phenotypes.
Based on this dataset, we evaluated different embeddings and
different ranking models.

Then, to assess the performance of our proposed method on a
larger scale dataset with a more imbalanced case-control ratio, we
built a second control cohort with the same method but removed
the restriction on the date of the latest follow-up in Dr.
Warehouse, which thus includes all very old and inactive
patients as well. The second control cohort initially comprised
62,117 “other-nephropathy” patients, and after applying the same
exclusion criteria based on the minimum number of phenotypes,
58,249 patients were retained. In this case, all patients (253 cases
and 58,249 controls) presented 12,128 distinct UMLS
phenotypes. An overarching flow diagram is shown in Figure 1.

3.2 Comparison of Different Embeddings
3.2.1 Coverage of Different Embeddings
Using control cohort 1, cui_embd_fr was calculated for all 8698
UMLS phenotypes. As for cui2vec, since UMLS is a large
thesaurus containing more than 4 million CUIs, although the
pre-trained cui2vec contains 109,053 CUIs, only 72.4% of
extracted UMLS phenotypes (6296 of 8698) were available in
the pre-trained cui2vec. The 10 terms that were most frequently
absent were “Pyothorax-Associated Lymphoma” (C1709781),
“Transplant” (C3841811), “Monoclonal” (C0746619), “Organ

finding” (C0941132), “Urine microscopy leukocytes present
finding” (C0555120), “Ring dermoid of cornea” (C1867155),
“Immunosuppression” (C4048329), “Anticoagulation (finding)”
(C2919015), “Therapy cessation” (C1699848), and “Peroxisome
Biogenesis Disorder, Complementation Group R” (C1866352).
Among them, three absent terms correspond to noisy
extraction, mainly due to French ambiguous abbreviations,
such as “Pyothorax-Associated Lymphoma” - “pal”, “Ring
dermoid of cornea” - “rdc”, and “Peroxisome Biogenesis
Disorder, Complementation Group R” - “cgr”.

Regarding HPO2Vec+, only 24.5% of extracted UMLS terms
were successfully mapped to HPO terms (2134 of 8698) via the
conversion algorithm provided by HPO. The 10 most frequent
unmapped terms were “Systemic arterial pressure” (C1272641),
“Hypertrophy” (C0020564), “Recurrence (disease attribute)”
(C2825055), “Hypersensitivity” (C0020517), “Cyst” (C0010709),
“Communicable Diseases” (C0009450), “Cicatrix” (C2004491),
“Urate level - finding” (C0729829), “Disease regression”
(C0684320), and “Androgen-Insensitivity Syndrome” (C0039585).
Among them, some terms do not exist in HPO as they are not
considered as phenotypes in HPO, such as “Systemic arterial
pressure”; and most terms could not be mapped due to lack of
precision, such as “Cyst” in UMLS vs. “Renal cyst”/“Pulmonary cyst”/
“Bone cyst”/etc., in HPO. Among 2134 mapped HPO terms, 1587
were available in HPO2Vec+. The 5 most frequent absent HPO
terms were “Moderate albuminuria” (HP:0012594), “Crackles” (HP:
0030830), “Macroscopic hematuria” (HP:0012587), “Renal tubular
epithelial necrosis” (HP:0008682), and “Addictive behavior” (HP:
0030858). The mutual coverages of the different embeddings are
shown in Figure 1.

TABLE 1 | Illustrative example best-subtype-average ranking model.

Subtype 1 Subtype 2 Subtype 3 Smallest rank Final rank

Avg. Similarity Rank Avg. Similarity Rank Avg. Similarity Rank

Patient 1 0.9 1 0.5 1 0.1 3 1 1
Patient 2 0.8 2 0.2 3 0.7 1 1 1
Patient 3 0.7 3 0.4 2 0.6 2 2 3

FIGURE 1 | Overarching flow diagram.

Frontiers in Pharmacology | www.frontiersin.org March 2022 | Volume 13 | Article 7867104

Chen et al. Similarity-Based Screening for Rare Diagnosis

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


3.2.2 Performance of Different Embeddings
With the aim of assessing the adequacy of different embeddings
for modeling medical concept dependence, we first restricted this
analysis to the UMLS concepts available in both pre-trained
cui2vec and HPO2Vec+. The inclusion criteria based on the
minimum number of phenotypes was applied based on this list of
1587 phenotypes, i.e., each patient presenting at least four of these
concepts. The dataset comprised 9472 patients (216 ciliopathy
patients and 9256 controls). The number of phenotypes for each
ciliopathy patient ranged from 4 to 130, with a median value of 18
(interquartile 8–33). The number of phenotypes for each control
patient ranged from 4 to 161, with a median value of 18
(interquartile 9–34). There is no significant difference between
ciliopathy cases and controls regarding the number of
phenotypes.

We first projected the three embeddings of 1587 phenotypes
onto a two-dimensional plot for visualization using Uniform
Manifold Approximation and Projection (UMAP) (Figure 2).
The phenotypes were colored according to their hierarchical
categories in HPO. More precisely, we considered the direct
descendants of “Phenotypic abnormality” in HPO, such as
“Abnormality of the nervous system,” “Abnormality of the
genitourinary system,” etc., as phenotype categories. As shown
in Figure 2, phenotypes belonging to the same category were

generally better grouped together with cui_embd_fr and cui2vec
than with HPO2Vec+.

All three embeddings (cui_embd_fr, cui2vec, and HPO2Vec+)
were then used to calculate the concept similarity for the same
dataset. Patient-patient similarities were calculated with adjusted
average best-match aggregation between all patients (cases and
controls) and each ciliopathy case. All patients were ranked
according to the average and max similarity to all ciliopathy
cases. In terms of screening performance, the results are
summarized in Table 2. The minimum numbers of patients that
would need to be screened to detect m out of 216 ciliopathy cases
are shown for different embeddings and different values of m. The
precision-recall curves are shown in Figure 3with a zoom for small
values of k. The two UMLS CUI embeddings (cui_embd_fr and
cui2vec) outperformed HPO2Vec+. Using less than one-tenth of
learning sources, cui_embd_fr achieved comparable performances
compared to cui2vec, which implied the interest in a center and
language specific embedding.

As discussed before, a significant proportion of UMLS concepts
did not have any corresponding terms in HPO, and some mapped
HPO terms were not in the pre-trained HPO2Vec+, including
concepts that may be important for characterizing ciliopathy and
other nephropathy patients, such as “Diabetic Nephropathy”
(C0011881) not mapped to HPO, and “Moderate albuminuria”

FIGURE 2 | Phenotype projection of different medical concept embeddings. The phenotypes were colored according to their hierarchical categories in HPO.

TABLE 2 | Comparison of different embeddings.

Evaluation set Embedding Ranking model k for m true positives

m = 5 m = 10 m = 50 m = 100

1587 CUIs cui_embd_fr average 19 49 1056 3781
max 47 99 1071 3036

cui2vec average 13 63 1247 3826
max 48 67 1253 3530

hpo2vec average 155 355 2263 4765
max 61 136 1598 3908

6294 CUIs cui_embd_fr average 7 50 957 3,211
max 25 72 697 2546

cui2vec average 13 69 1201 3,160
max 23 51 711 2728

8696 CUIs cui_embd_fr average 15 43 847 3,158
max 18 80 538 2175

The best results were in bold.
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(C1654921, HP:0012594) mapped to HPO but absent in the pre-
trained HPO2Vec+. Therefore, we enlarged the dataset by including
all UMLS phenotypes with the two CUI embeddings available and
further compared cui_embd_fr and cui2vec. This dataset comprised
10,447 patients (248 ciliopathy cases and 10,199 controls),
representing in total 6294 distinct UMLS phenotypes. The results
are shown in Table 2. Compared to the first dataset with only 1578
phenotypes, the performances with both CUI embeddings were
improved, as more patient information was considered. The two
CUI embeddings still provided comparable results, confirming the
interest of a language and center specific embedding since
cui_embd_fr was derived from much smaller learning sources
than cui2vec.

Finally, as a supplementary analysis, we included all 8696
UMLS phenotypes and re-calculated the performance of
cui_embd_fr. The results were not further improved (Table 2),
suggesting the presence of redundancies and noises in EHR data.

3.3 Comparison of Different Ranking Model
Based on the results shown in Section 3.2, we focused on
cui_embd_fr in the following analysis to include all extracted
UMLS phenotypes as it provided the same level of performance as
cui2vec and much better performance than HPO2Vec+.

3.3.1 Subtypes of Ciliopathies
The genetic data for all ciliopathy patients with at least four distinct
“Disorder” UMLS phenotypes were collected. The precise diagnosis
was made and normalized to Orphanet if possible. Pathogenic
variants of 39 ciliopathy-related genes were identified in 169
patients (66.8%). Eleven ciliopathy types were present in at least
three patients in our data set: Nephronophthisis (NPH), Jeune
syndrome (Jeune), Senior-Loken syndrome (SLS), Joubert
syndrome (JBS), infantile nephronophthisis (Inf-NPH),
nephronophthisis with brain developmental damages (NPH-
Brain), Saldino-Mainzer syndrome (SMS), Leber congenital
amaurosis (LCA), Joubert syndrome with renal defect (JBS-R),

Bardet-Biedl syndrome (BBS), and Joubert syndrome with
oculorenal defect (JBS-OR), with 3–41 patients. The most
frequent was nephronophthisis. Other diagnoses with only one or
two patients were not considered for calculating subtype-average
similarity. The internal-external group average similarities for these
11 most frequent ciliopathy subtypes are shown in Figure 4,
illustrating the high heterogeneity of ciliopathies and the overlap
of phenotypic representation among the different subtypes.

3.3.2 Comparing Performance Between Ranking
Models
For each patient (ciliopathy case or control), the average
similarities with each considered subtype were calculated, and

FIGURE 3 | Precision-recall curves with a zoom for small values of k (k<=200) for different embeddings.

FIGURE 4 | Internal-external group average similarities for 11 most
frequent ciliopathy subtypes.
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the ranks were obtained for each subtype as rank_NPH,
rank_Jeune, rank_SLS, etc. The minimum value of all ranks was
used for the final ranking. We compared the performance between
the four ranking models: mean, max, max5-average, and best-
subtype-average. The distribution of the four ranks is shown in
Figure 5. The 10, 20, and 50% quantile were indicated, which
represent the minimum number of patients that would need to be
screened to include x% of the true ciliopathy cases, thus correspond
to the true positive rate (TPR, or sensitivity, or recall) of 10, 20, and
50%. The minimum number of patients that would need to be
screened to detect 50 out of 248 ciliopathy cases (corresponding to
a TPR of 20.2%) was 272 for best-subtype-average (precision of
18.4%), compared to 957, 697, and 614 for average, max, and
max5-average ranking models (precision of 5.2, 7.2, and 8.1%,

respectively), which indicated that the ranking model with best-
subtype-average performed the best for true cases.

The precision-recall curves and the partial ROC curves are
shown in Figure 6 for the four ranking models. We observed that
the ranking model by best-subtype-average can significantly
improve the performance, especially for small values of k,
which is of particular interest as we aim to identify suspected
ciliopathy patients at the top-ranked list who would benefit from
genetic testing. Given that random testing applied to the same
data set would require testing 2106 patients in order to detect 50
ciliopathy patients (prevalence in the data set of 248/10,447), we
can conclude that the best-subtype-average ranking model with
medical concept embedding improved detection of ciliopathy
patients by more than sevenfold.

FIGURE 5 | Distribution of ranks of diagnosed ciliopathy cases obtained from different ranking models.

FIGURE 6 | Precision-recall curves and the partial ROC curves for different ranking models.
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3.4 Performance on Larger Scale Dataset
With Extremely Unbalanced Case-Control
Ratio
We developed this method to screen large clinical data warehouses to
detect undiagnosed patients with rare conditions. In such situations,
the absolute value of evaluation metrics may be meaningless as an
unbalanced case-control ratio may inflate type I error. For example,
in a dataset with 100 cases and 100 controls (1:1 case-control ratio),
an algorithm with false positive rate (FPR, or probability of false
alarm) of 5% can achieve 95% precision@100; while in an imbalanced
dataset with 100 cases and 1000 controls (1:10 case-control ratio), the
precision@100 decreases to 50% with the same FPR of 5%, and in an
extremely imbalanced dataset with 100 cases and 10,000 controls (1:
100 case-control ratio), the precision@100may fall to nearly 0with an
algorithmwith FPR under 5%. In a real-life application, a rare disease
is defined in Europe as a disease affecting less than 1 in 2000 citizens,
which is an extremely imbalanced situation. Therefore, we further
assessed the performance of our proposed method on a larger dataset
with diagnosed ciliopathy patients pooled with patients from control
cohort 2, and compared the results between the two situations with a
random model.

The proposed ranking model using cui_embd_fr and best-
subtype-average similarity was applied, and the results are shown
in Table 3. The prevalence of cases using control cohort 2 was
about one-fifth of the prevalence using control cohort 1.
Therefore, with a random model to detect the same number of
true cases, the minimum number of patients that would need to
be screened increases fivefold. For example, to detect 30 out of
253 ciliopathy patients by random testing, 1244 and 6937 patients
would need to be screened based on a prevalence of cases using
control cohort 1 and control cohort 2, respectively; while with our
proposed method, 102 and 290 patients would have to be
screened in the two case-control ratio settings, corresponding
to, respectively, 12.2- and 23.9-fold improvement in the
enrichment of ciliopathy patients among the top-ranked
patients. The enrichment factor is not constant, implying the
effectiveness of our method in a large-scale extremely unbalanced
dataset.

3.5 Clinical Evaluation of Top Similar Control
Patients
We performed a more detailed evaluation of the EHRs of the top-
ranked patients. More precisely, we went through the final
ranking of patients from most to least similar to the

ciliopathies, and asked ciliopathy experts (SS, MZ) to review
the EHR of the 20 first met controls to analyze their profiles. At
this point, 17 ciliopathies were included as well.

Among 20 control patients, 14 patients were diagnosed with or
suspected of a genetic disease. In 4 of them, the cause of the
genetic disease was pathogenic variants related with ciliary
function (2 confirmed cases, 2 suspected), such as PMM2
(Dorval et al., 2021) and HNF1B (Gresh et al., 2004), carrying
overlapped phenotypes with ciliopathies. Ten patients were
diagnosed with or suspected to have a genetic disease that
affects the process of development; they presented
multisystemic malformations or developmental disorders
overlapped with ciliopathies (4 confirmed, 6 suspected), such
as congenital anomalies of the kidney and urinary tract
(CAKUT), Kabuki syndrome, and Dravet syndrome, 9 out of
10 being differential diagnosis of ciliopathies. The 8 patients
classified as suspected had not been provided with a molecular
diagnosis yet.

Five patients were unlikely to have any genetic disorders, and
the following diagnosis was established: Lithium induced
nephropathy (1 case), IgA nephropathy (1 case), post-
pneumococcal hemolytic-uremic syndrome (1 case), and non-
genetic neonatal disorders (2 cases) (oligohydramnios and
cortical necrosis). A high similarity with ciliopathies was due
to comorbidities. Finally, 1 patient died before receiving a
diagnosis.

Therefore, our results can be summarized as follows: if we
consider the set of 37 similar patients, we obtain 17 ciliopathies
and 4 cases of genetic disease caused by a pathogenic variant
related with ciliary function (21 “true positives” (57%) if we define
a true positive as having a mutation related with cilia), and 9more
patients with a differential diagnosis whose phenotypic
descriptions overlap with ciliopathies (30 cases where the
similarity algorithm was successful (81%)).

4 DISCUSSION

Underdiagnosis and delayed diagnosis is a common key challenge
for many rare diseases (Faviez et al., 2020). Several studies
confirmed the central role of data mining techniques applied
to EHR data to identify cases of rare conditions, either genetic or
not. For example, Doyle et al. reported that lack of suspicion,
nonspecific symptoms, and co-existing conditions are frequent
diagnosis difficulties for nontuberculous mycobacterial rare lung
disease, and screening for likely undiagnosed cases in the

TABLE 3 | Performance in two unbalanced datasets.

Control cohort 1 Control cohort 2

Case-control ratio 253:10,235 253:58,249

Prevalance ~ 2% ~ 0.4%

k for m true positives m = 50 m = 30 m = 20 m = 50 m = 30 m = 20
Random model 2072 1244 829 11561 6937 4625
Ranking model with cui_embd_fr and best-subtype-average similarity 272 102 62 939 290 130
Emrichment factor 7.6 12.2 13.4 12.3 23.9 35.6

Frontiers in Pharmacology | www.frontiersin.org March 2022 | Volume 13 | Article 7867108

Chen et al. Similarity-Based Screening for Rare Diagnosis

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


primary-care population is a feasible solution (Doyle et al., 2020).
Savolainen et al. demonstrated the feasibility of using EHR data to
identify undiagnosed patients suffering from Gaucher disease, a
rare inherited multiorgan disorder that is often delayed diagnosed
due to a broad spectrum of symptoms and lack of disease
awareness (Savolainen et al., 2021). At Necker/Imagine
Institute, Dr. Warehouse integrated with NLP of unstructured
narrative reports was demonstrated valuable to make diagnosis of
Dravet syndrome earlier (Barco et al., 2021), and to identify 2
undiagnosed patients with a KCNA2 variant in
neurodevelopmental syndrome (Hully et al., 2021) based on
similarity matching with other patients from the local data
warehouse.

The similarity-based approach that we have developed re-used
a comprehensive phenotypic description of patients based on
their EHR data to detect ciliopathy patients in a clinical data
warehouse. Unlike other studies using only a limited set of
features presented in EHR, such as International Classification
of Disease (ICD) codes (Griffiths et al., 2020), or a set of pre-
defined disease specific phenotypes (Savolainen et al., 2021), we
extracted all UMLS medical concepts in EHRs. Our results
showed that the performance can be improved by including
more phenotypes (6296 vs. 1578 phenotypes). However, using
all 8698 medical concepts extracted from EHRs did not lead to
further improvement compared with 6296 phenotypes,
suggesting the presence of redundancies and noises in EHR
data. The dependence and relatedness between phenotypes
were taken into account in our patient similarity model
through medical concept embedding. We did not consider the
information content (IC)-based semantic similarities, such as the
Resnik (1995) and Lin (1998) similarity, or the pathway distance-
based semantic similarities, such as the one mentioned in Yang
et al. (2021), because these similarities require an ontological
structure more formal than the UMLS Metathesaurus. Moreover,
some concepts can be close in the ontology, but very different
from a semiological point of view as they have different
pathogenesis: this is the case, for example, between “Type 1
diabetes” and “Type 2 diabetes”, or “chronic renal
insufficiency” and “acute renal insufficiency.” The relevance of
each phenotype to each patient was also considered by adjusted
aggregation of phenotype similarity into patient similarity. As
most of the NLP efforts were focused on English texts, using
multilingual reference terminology enables us to leverage and to
evaluate existing embeddings learned from English medical data
sources for French clinical narratives. To address the phenotypic
overlapping and heterogeneity of ciliopathies, each subtype was
considered individually to calculate the average similarity. Then,
as suggested by ciliopathy experts (McConnachie et al., 2021), the
different subtypes of ciliopathy were considered as a continuum
of disorders for the diagnosis task, and the minimum value of all
ranks with different subtypes was considered. Our final ranking
model based on the best-subtype-average outperformed other
ranking models, which supports and reinforces this idea. We
demonstrated the effectiveness of our screening approach in an
unbalanced condition, using two control cohorts with about 1:40
and 1:200 case-control ratio, respectively, which is more in line
with real-life rare disease diagnosis and also an important issue in

big healthcare data as mentioned inWolford et al. (2018). Twenty
top-ranked control patients that were similar to ciliopathies
patients were reviewed. Most of them (70%) were diagnosed
with or suspected of a genetic disease that clinically overlaps with
ciliopathies, involving genes either having direct impact on ciliary
function, or relating to a differential diagnosis of ciliopathies.
Such good performance is very encouraging and we plan to apply
our algorithm to external data warehouses.

This kind of screening approach should be distinguished
from diagnosis supporting systems that were developed for
clinicians that face a new patient and have all information on
desk: these systems aim at reducing miss rate (prioritizing
recall/sensitivity), and a false alarm (type I error) is less
critical in the diagnosis scenario. In contrast, our screening
approach is an automated system expected to address
underdiagnosis issues of rare diseases in a large clinical
data warehouse. In that situation, the system uses routine
care data with patient information that can be less precise and
less comprehensive, and the objective is to maximize the hit
(prioritizing precision). In doing so, we expect that top-
ranked patients will benefit from genetic testing, and thus
can be diagnosed earlier before the development of
irreversible lesions. Therefore, the purpose is to find
patients that should be tested and followed-up by experts.
Moreover, it could be possible that some top-ranked patients
presenting similar clinical profiles but not carrying a known
pathogenic variant in ciliary genes may benefit from the same
treatment.

As for ciliopathies, it could be interesting to apply our
approach to screen populations known to be associated with a
considerable proportion of ciliary disease, such as retinal
dystrophy patients, as 30% of patients with isolated retinitis
pigmentosa (RP, a genetic disorder of the eyes affecting 1 in
4000 people) are ciliopathy patients. We should notice that
diseases’ prevalence in our evaluation datasets may be different
from that in the general population. As Necker Children’s
Hospital is a reference center for genetic diseases, the local
data warehouse includes a larger number of patients with
ciliary disease (in particular, renal ciliopathies) compared to
other centers. Indeed, in our dataset 86% of diagnosed
ciliopathy cases have kidney impairment extracted from EHR.
Meanwhile, it is particularly challenging to distinguish between
patients with isolated nephronophthisis and many other
nephropathies, as renal impairments generally present with
nonspecific features in isolated nephronophthisis patients.
Therefore, we considered two nephropathy cohorts as control
cohorts to evaluate our approach, the first one with about 10,000
patients, and the second one with about 60,000 patients. Both
control cohorts were built automatically based on the UMLS
phenotype extraction of any kidney-related phenotypes (from
mild signs such as “polyuria” to end-stage kidney disease),
including patients of all ages and all types (native or after
kidney transplantation). Therefore, the inclusion of
demographic data such as age at chronic kidney disease onset,
and exclusion of phenotypes occurring after dialysis or kidney
transplantation are likely to improve performance of such an
approach. A pre-exclusion of patients unlikely to have genetic
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disorders (such as those diagnosed with a lithium-induced
nephropathy or IgA nephropathy who were found among the
top-ranked similar controls) could be considered as well.

There are several limitations in this study. As our proposed
approach is trying to match a patient’s phenotypes to a subgroup
of diagnosed ciliopathies in Dr. Warehouse, the performance
highly depends on the quality of patient’s phenotyping from EHR
for both cases and controls. In this work, patient phenotypes were
extracted from EHRs in Necker Children’s Hospital and were not
inclusive of medical visits and treatments outside Necker
Children’s Hospital, thus the phenotyping can be incomplete.
On the other hand, false positive extractions of phenotypes were
observed, many of them being related to polysemy and
abbreviation as shown in Section 3.2.1. Further efforts are
required to improve the quality of phenotype extraction. In
this work, we did not take into account the longitudinality of
phenotypes. A patient was represented as a “bag” of all their
phenotypes, including early signs, symptoms during disease
progression, irreversible damages, and post-treatment
symptoms (such as post-transplantation phenotypes). It would
be interesting to use only phenotypes before the diagnosis as
indexes to search for similar patients and eventually determine at
which stage the presented phenotypes enable early diagnosis of
ciliopathy (hopefully, before the onset of chronic kidney disease).
Moreover, the phenotypic similarity should take into account the
longitudinality to be able to distinguish, for example, two patients
with both kidney and eye abnormalities, one patient with early
onset of kidney disorders and progressive eye abnormality in
adulthood and the other patient with eye abnormalities in infancy
then late onset of renal affection. To address all these issues,
solutions for automatically extracting phenotype temporal
relations and their chronological timeline should be considered
in the future.

Our results suggest several clinical and methodological
perspectives. The next step will be to perform the similarity-
based screening in other hospitals. As Necker Hospital is a
national reference center for rare and undiagnosed diseases, it
is less probable to identify mis/underdiagnosed patients without
any genetic investigation in its local data warehouse. Therefore,
we could expect even better results in other hospitals. Regarding
the methodology, an embedding derived from a larger number of
rare disease data sources may potentially improve themodeling of
the dependence between medical concepts. Generating synthetic
patients could be considered to better represent each subtype of
ciliopathies. It is foreseeable that further improvements may be
achievable by integrating complementary information. For
example, disease descriptions extracted from HPO, Orphanet,
and OMIM can be used to exclude patients who are similar to

ciliopathy but even more similar to other diseases to address the
differential diagnosis issue. In addition to the phenotypic
similarity, patients’ biological data can also be integrated to
the similarity model. In the future, for the diagnosed
ciliopathy patients, omics data and new knowledge on
pathways should be integrated together with clinical data to
regroup clinically similar ciliopathies that may benefit from
the same molecule.
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