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Abstract

Background

Finding microbiome associations with possibly censored survival times is an important

problem, especially as specific taxa could serve as biomarkers for disease prognosis or as

targets for therapeutic interventions. The two existing methods for survival outcomes, MiR-

KAT-S and OMiSA, are restricted to testing associations at the community level and do not

provide results at the individual taxon level. An ad hoc approach testing each taxon with a

survival outcome using the Cox proportional hazard model may not perform well in the

microbiome setting with sparse count data and small sample sizes.

Methods

We have previously developed the linear decomposition model (LDM) for testing continuous

or discrete outcomes that unifies community-level and taxon-level tests into one framework.

Here we extend the LDM to test survival outcomes. We propose to use the Martingale resid-

uals or the deviance residuals obtained from the Cox model as continuous covariates in the

LDM. We further construct tests that combine the results of analyzing each set of residuals

separately. Finally, we extend PERMANOVA, the most commonly used distance-based

method for testing community-level hypotheses, to handle survival outcomes in a similar

manner.

Results

Using simulated data, we showed that the LDM-based tests preserved the false discovery

rate for testing individual taxa and had good sensitivity. The LDM-based community-level

tests and PERMANOVA-based tests had comparable or better power than MiRKAT-S and

OMiSA. An analysis of data on the association of the gut microbiome and the time to acute

graft-versus-host disease revealed several dozen associated taxa that would not have been

achievable by any community-level test, as well as improved community-level tests by the

LDM and PERMANOVA over those obtained using MiRKAT-S and OMiSA.

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010509 September 14, 2022 1 / 17

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Hu Y, Li Y, Satten GA, Hu Y-J (2022)

Testing microbiome associations with survival

times at both the community and individual taxon

levels. PLoS Comput Biol 18(9): e1010509. https://

doi.org/10.1371/journal.pcbi.1010509

Editor: Dina Schneidman-Duhovny, Hebrew

University of Jerusalem, ISRAEL

Received: March 22, 2022

Accepted: August 23, 2022

Published: September 14, 2022

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pcbi.1010509

Copyright: © 2022 Hu et al. This is an open access

article distributed under the terms of the Creative

Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in

any medium, provided the original author and

source are credited.

Data Availability Statement: The new methods

described here have been added to our R package

LDM, which is available on GitHub at https://github.

com/yijuanhu/LDM.

https://orcid.org/0000-0003-4171-8716
https://orcid.org/0000-0001-7758-3919
https://orcid.org/0000-0001-7275-5371
https://orcid.org/0000-0003-2171-9041
https://doi.org/10.1371/journal.pcbi.1010509
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1010509&domain=pdf&date_stamp=2022-09-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1010509&domain=pdf&date_stamp=2022-09-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1010509&domain=pdf&date_stamp=2022-09-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1010509&domain=pdf&date_stamp=2022-09-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1010509&domain=pdf&date_stamp=2022-09-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1010509&domain=pdf&date_stamp=2022-09-26
https://doi.org/10.1371/journal.pcbi.1010509
https://doi.org/10.1371/journal.pcbi.1010509
https://doi.org/10.1371/journal.pcbi.1010509
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://github.com/yijuanhu/LDM
https://github.com/yijuanhu/LDM


Conclusions

Unlike existing methods, our new methods are capable of discovering individual taxa that

are associated with survival times, which could be of important use in clinical settings.

Author summary

High-throughput sequencing of 16S gene or metagenomes provides an unprecedented

opportunity to discover microbial associations with traits such as clinical outcomes or

environmental factors. Detecting individual taxa associated with survival times has signifi-

cant implications: the taxa could serve as biomarkers for disease prognosis or as targets

for therapeutic interventions. However, the taxon data are highly complex because they

are high-dimensional, sparse (having 50–90% zero counts), and highly overdispersed.

Existing methods for microbial associations with survival outcomes are restricted to test-

ing associations at the community level and do not provide results at the individual taxon

level. An ad hoc approach testing each taxon with a survival outcome using the Cox pro-

portional hazard model may not perform well in the microbiome setting with sparse

count data. We present an approach that can be used by the LDM and PERMANOVA for

testing microbial associations with survival outcomes at both the community and individ-

ual taxon levels. In particular, we provide the first test at the individual taxon level. There-

fore, our work represents a major advance in analytical methods for microbial association

studies and will have a strong impact on current and future microbiome research in clini-

cal settings.

This is a PLOS Computational Biology Software paper.

Introduction

Advances in sequencing technologies for profiling human microbiomes have led to the discov-

ery of numerous microbiome associations with clinical responses [1–3]. These successes sug-

gest that microbial taxa may be useful as biomarkers for disease prognosis, or targets for

therapeutic interventions [4]. For example, the miCARE study is attempting to find whether

the gut microbiome can be used to predict colorectal cancer recurrence (Principal Investigator:

Dr. Veronika Fedirko, personal communication). Like the miCARE study, studies conducted

to establish these links would collect the subjects’ times to an event of interest (i.e., survival

times) as the outcomes, some of which may have censored values. For the success of this

research, finding microbiome associations with the survival outcomes only at the community

level may be less important than finding associations with individual taxa (we use “taxon”

generically to refer to any feature such as amplicon sequence variants or any other taxonomic

or functional grouping of bacterial sequences).

However, data from microbiome association studies can be difficult to analyze, because the

taxa count data may have hundreds to thousands of taxa and 50–90% zero counts, and are typ-

ically highly overdispersed. In addition, there generally exist confounders, such as previous

treatment history or current medications, that correlate with both the microbiome composi-

tion and the survival outcome and so must be properly adjusted for. Finally, the sample size in
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a microbiome association study is typically not large and the event rate may be low, especially

for rare diseases such as cancers. Analysis methods that cannot account for these data com-

plexities will typically not yield robust and clinically meaningful results.

Two methods have been proposed specifically for testing association between the micro-

biome and survival outcomes: MiRKAT-S [5] and OMiSA [6]. Unfortunately, both methods

are restricted to community-level (global) association tests. While OMiSA does allow testing

pre-determined sets of taxa such as taxonomic classes, it requires each set to be comprised of

multiple taxa. As a result, neither MiRKAT-S nor OMiSA can be used to find individual taxa

that can act as biomarkers. A third, ad hoc, approach is to apply the Cox proportional hazard

model [7] in a taxon-by-taxon manner [8, 9]. However, the performance of this approach has

not been formally evaluated in the microbiome context, although it is known that small sample

sizes and sparse count data may lead to inflated type I error when using the Cox model [10,

11]. Unfortunately, permutation-based inference, which might improve the performance of

the ad hoc approach, is difficult for survival outcomes.

We previously proposed the linear decomposition model (LDM) [12] for testing micro-

biome associations with continuous or categorical (including binary) outcomes, which not

only performs the test at the community level but also at the individual taxon level with false

discovery rate (FDR) control. Here, we extend the LDM to survival outcomes, in order to

allow a unified test framework to test both community-level and taxon-specific associations

for survival outcomes. The LDM is based on a linear model that regresses the microbial data at

each taxon on the (confounding) covariates that we wish to adjust for and the outcome vari-

able(s) that we wish to test. Inference is based on permutation to circumvent making paramet-

ric assumptions about the distribution of the taxon-level data. In addition, the LDM is highly

versatile: it can analyze the taxon-level data at the relative abundance scale, the arcsin-root-

transformed relative abundance scale (which is variance-stabilizing for Multinomial and

Dirichlet-Multinomial count data) or any other transformation, as well as the presence-

absence scale [13], and can also accommodate clustered samples [12, 14].

Our extension of the LDM was motivated by ideas developed in MiRKAT-S and OMiSA.

Both of these tests first fit a Cox model to account for the relationship between any fixed covar-

iates (excluding microbiome variables) and survival times. Then, using a random-effects

framework, the variance-covariance matrix of the (Martingale) residuals from the Cox model

are compared to a between-sample distance matrix calculated using the microbiome data; the

similarity between these two matrices indicates the extent of association between the micro-

biome and the survival outcome. MiRKAT-S allows an arbitrary distance matrix, most com-

monly, the Bray-Curtis or Jaccard distance matrix. OMiSA extends MiRKAT-S by using a

family of power transformations of the relative abundance data to weigh abundant and rare

taxa differently but calculating the MiRKAT-S test statistic based on the Euclidean distance

only. Our generalization of the LDM to survival outcomes is also based on obtaining residuals

from the Cox model; however, we use these residuals as covariates in the LDM to directly

assess the association between the microbiome and the survival outcome. In this way, we are

able to use the LDM to test both community-level and taxon-level associations with a survival

outcome. In a similar manner, we also extend PERMANOVA [15], the most commonly used

method for testing microbiome associations, to handle survival outcomes, although the test is

at the community level and distance-based like MiRKAT-S.

The rest of this paper is organized as follows. In the Methods section, we first describe our

tests based on the Martingale residuals, showing their connection to MiRKAT-S, OMiSA, and

the taxon-by-taxon Cox regression. Then we extend the tests to use the deviance residuals,

which are transformations of the Martingale residuals that are more symmetric above zero,

and then construct combination tests that combine the results from tests using the two types of
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residuals. In the Results section, we first present simulation studies and then an application of

all methods to data on acute graft-versus-host disease (aGVHD) after allogeneic blood or mar-

row transplantation [16]. We conclude with a brief discussion section.

Methods

Suppose that, for n unrelated subjects, we have data on the time to an event of interest (e.g.,

disease onset or relapse) that may be subject to random censoring. For i = 1, 2, . . ., n, let Ti be

the (underlying) time to event for the ith subject and Ci be the corresponding censoring time.

Instead of observing Ti and Ci, we only observe the time Ui = min(Ti, Ci) and the indicator Δi =

I(Ti� Ci) that indicates whether Ui corresponds to the event or to censoring. Further, let Xi be

a set of possibly confounding covariates, which does not include the intercept. For j = 1, 2, . . .,

J, let Zij denote the microbiome data on taxon j from subject i, which can be the relative abun-

dance, arcsin-root-transformed relative abundance, presence-absence status, or any (e.g., addi-

tive or centered) log-ratio transformed data. Following the conventions used in the LDM, we

assume that both Xi and Zij are centered to have mean zero, i.e.,
Pn

i¼1
Xi ¼ 0 and

Pn
i¼1

Zij ¼ 0

for any j.
Because survival times are censored, it is difficult to include them in the linear model frame-

work used by the LDM. Following MiRKAT-S [5], we resolve this issue by first fitting a Cox

model to the survival outcomes (Ui, Δi) and covariate data Xi; we then use the residuals from

this model as a covariate in the LDM [12]. Because no microbiome data is used in the Cox

model, the residuals should be associated with the microbiome data if the microbiome affects

the survival outcome. If we use the Martingale residuals, denoted by Mi for subject i, we pro-

pose to test the association of taxon j with the Martingale residuals while adjusting for covari-

ates Xi by using the LDM to fit the following linear model:

Zij ¼ b
T
X;jXi þ bjMi þ ei; ð1Þ

where ei is the error term with mean zero and a constant variance (the only distributional

assumption we make). Note that the Martingale residuals have the properties that
Pn

i¼1
Mi ¼

0 and
Pn

i¼1
MiXi ¼ 0 [11].

To test H0 : βj = 0, the LDM uses an F-statistic, the numerator of which is proportional to

the square of Uj given by

Uj ¼
Xn

i¼1

MiðZij � b̂
T
X;jXiÞ ¼

Xn

i¼1

MiZij;

where b̂X;j is the least squares estimator of βX,j under the null model of (1). Further, the numer-

ator of the global test statistic for testing the global association between the Martingale residu-

als and the microbiome is

U2

global ¼
XJ

j¼1

U2

j :

These test statistics can be used to show a connection between our approach and existing

methods. First, the global statistic U2

global agrees with the variance-component score statistic in

MiRKAT-S when the Euclidean distance (the linear kernel) is used, as well as the variance-

component score statistic in OMiSA (the OMiSALN part) for untransformed data. Second, let-

ting λ(�) denote the hazard function for a survival analysis, the taxon-specific Uj coincides with

the score statistic for testing αj = 0 in the Cox model lðt;Xi;ZijÞ ¼ l0ðtÞexpðaTXXi þ ajZijÞ [11],
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which includes both the covariates and the microbiome data from the jth taxon as explanatory

variables in the hazard function. These connections justify the use of the Martingale residual as

a covariate in the LDM.

The main advantage of our approach is that results for individual taxa are available, and

that the global test statistic is a coherent combination of these taxon-specific statistics; neither

MiRKAT-S nor OMiSA provide taxon-specific results. However, the LDM is based on the

Euclidean distance for combining taxon-specific statistics, while MiRKAT-S can use arbitrary

distances. For this reason, we also provide an extension of PERMANOVA for testing survival

outcomes that can be used with arbitrary distances, at the end of this section.

An important feature of our approach is that, although the effect of Xi has been removed

from Mi (i.e., Mi and Xi are uncorrelated), we still include Xi in (1). In the S1 Text, we show

how including this term allows our permutation tests to achieve higher power than the permu-

tation tests currently available in MiRKAT-S. We further show how to obtain global tests with

power similar to what we achieve using the original MiRKAT method [17] with the Martingale

residual as a continuous outcome.

Compared with the ad hoc approach of fitting a Cox model for each taxon, our permuta-

tion-based inference is robust to small sample size, low event rate, and sparse count data, while

the Cox model is known to have inflated type I error in these situations [10, 11]. Compared

with the ad hoc approach, both MiRKAT-S and our approach share the huge computational

advantage that the Cox model only needs to be fit once. In addition, both methods only

depend on the presence of an association between the Martingale residuals and the micro-

biome measures, and so do not depend on the correct specification of the Cox model for valid-

ity (i.e., type I error control), although power may be lost if the Cox model provides a poor fit

to the data.

One deficiency of the Martingale residual is its skewness, because it has a maximum value 1

but a minimum value −1. Because a residual measure with a more normal-like distribution

may perform better in downstream analyses, Therneau et al. [18] introduced the deviance

residual for a Cox model:

Di ¼ signðMiÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� 2fMi þ Di logðDi � MiÞg

p
;

which is a non-linear transformation of the Martingale residual Mi. Therneau et al. found that

with less than 25% censoring, the deviance residual is approximately normally distributed;

with more than 40% censoring, too many points will lie near 0 making the distribution non-

normal, although the deviance residuals remain approximately symmetric about 0. Therefore,

we also consider a variation of our method that replaces Mi by Di in the linear model (1).

Although Di is not orthogonal to Xi, we can still use the LDM to fit (1) as long as Xi enters the

model before Di because, in this case, the LDM will make Di orthogonal to Xi before testing for

association with Zij. In our simulations, use of the Martingale residual sometimes gave better

power and sensitivity; in other situations the deviance residual performed better. Since we can-

not characterize those scenarios a priori, we also combine the results from analyzing each

residual separately into a single combination test. To account for differences in residual scale,

we take the minimum of the p-values obtained from analyzing each residual separately, and

use the corresponding minima of null p-values for each test from the permutation replicates to

simulate the null distribution; the null p-value is calculated based on the rank of the test statis-

tic among all permutation replicates [19].

We extend PERMANOVA to analyzing survival outcomes in a similar way. Like MiR-

KAT-S, PERMANOVA is distance-based and offers a global test of the association at the com-

munity level. To explain the variability in a given distance matrix, we use a similar linear
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model as in (1) that includes the covariates Xi and the Martingale residual Mi as explanatory

variables. We obtain the p-value for testing Mi, repeat the procedure with the deviance residual

Di, and then construct a combination test that take the minimum of the two p-values as the

final test statistic. A common use of PERMANOVA is through the function “adonis2” in the R

package vegan. We have also provided an alternative implementation of PERMANOVA

through the function “permanovaFL” in our LDM package [12], which differs from adonis2 in

the way permutations are conducted. We found that permanovaFL outperforms adonis2 in

many situations [12, 14, 20].

Results

Simulated design

We conducted simulation studies to evaluate the properties of our approach and compare our

results to those obtained using competing methods. Our simulations were based on data on

856 taxa of the upper-respiratory-tract (URT) microbiome [21] that were also used in the MiR-

KAT-S paper. We considered a binary confounder Xi and assumed equal numbers of subjects

with Xi = 1 and Xi = 0. We randomly sampled 100 taxa to be associated with Xi and generated

their associations as follows. We first set two vectors, π1 and π2, to the taxon frequencies (i.e.,

relative abundances) estimated from the URT microbiome data, and then permuted the fre-

quencies in π2 that belong to the set of 100 taxa selected to be associated with Xi, which ensured

the same frequencies in π1 and π2 for taxa not selected. Next, we defined a subject-specific fre-

quency vector to be ~pðXiÞ ¼ ð1 � bXZXiÞp1 þ bXZXip2, in which βXZ can be interpreted as the

effect of Xi on the selected taxa. When βXZ = 0, there was no association between Xi and the

microbiome, in which case Xi reduced to a simple covariate for the survival outcome instead of

a confounder. Finally, we generated the taxon count data for each subject using the Dirichlet-

Multinomial (DM) model with mean ~pðXiÞ, overdispersion 0.02, and library size sampled

from N(10000, (10000/3)2) and left-truncated at 1000.

We considered two models, M1 and M2, for simulating the survival outcome. In what fol-

lows, we number the taxa by decreasing relative abundance so that taxon 1 is the most abun-

dant. In model M1, we assumed that the relative abundances of taxa 1–10 determined the

association with the survival outcome; in model M2, we assumed that the presence or absence

of 10 randomly selected taxa, selected from taxa 11–100, determined this association. Specifi-

cally, we defined Si ¼
P

j2AdjZij=
�Zj under M1 and Si ¼

P
j2AdjIðZij > 0Þ under M2, where δjs

were directions taking values 1 and −1 with equal probabilities (and fixed across replicates of

data), A was the set of selected “causal” taxa, Zij was the observed frequency (taxon count

divided by the library size), and �Zj was the average frequency for the jth taxon across subjects.

Then, we simulated the time to event from the Cox model with the baseline hazard following

the Weibull distribution Wð2; 0:01Þ, namely, Ti ¼ 10B� 1=2

i ð� logViÞ
1=2
; where Vi was sampled

from the uniform distribution U[0, 1] and Bi = exp{βXSscale(Xi) + βscale(Si)} with β character-

izing the effects of the “causal” taxa on the event time, βXS being fixed at 0.5, and scale(.) stan-

dardizing the input vector to have mean 0 and standard deviation 1. The censoring time was

simulated independently from the Exponential distribution Exp(μ), where μ was set to 0.03,

0.08, and 0.2 to achieve approximately 25%, 50%, and 75% censoring. Using this procedure,

we generated n = 100 or 50 subjects for each replicate of data. To evaluate robustness of our

methods to violation of the proportional hazard (PH) assumption, we also simulated the event

time from the accelerated hazard (AH) model [22] with the baseline hazard following the log-

normal distribution, namely, Ti ¼ B� 1
i expfF� 1½1 � expðBi logViÞ�g, where F−1 is the inverse

cumulative distribution function of the standard normal distribution. The censoring time was
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simulated as before using μ = 0.5 to achieve approximately 50% censoring. The AH model gen-

erated data that strongly violated the PH assumption (specifically, 28.8% rejection rate for test-

ing the PH assumption [23] using our simulated data, which was much higher than the

nominal level 5% of the test) and even had crossing survival curves.

Prior to analysis, we filtered out taxa that were found in fewer than 5 subjects in the dataset.

We used the R package Survival to obtain the Martingale and deviance residuals, Mi and

Di, from fitting the Cox model for the survival outcomes with Xi as the explanatory covariate.

For testing individual taxa, we applied the LDM with either Xi and Mi as covariates or Xi

and Di as covariates in the linear regression model (1), and refer to them as LDM-m and

LDM-d, respectively. Specifically, for data generated under model M1, we applied the LDM to

the relative abundance data and arcsin-root-transformed relative abundance data separately

and used the omnibus test that combined their results; for data generated under model M2, we

applied the LDM to the presence-absence data. We also obtained the combination test that

combines the results from LDM-m and LMD-d, and refer to it as LDM-c. To evaluate the ad

hoc approach, we fit the Cox model and the Firth-corrected Cox model (using the “coxphf”

function in the R package coxphf) taxon by taxon, using Xi and the taxon relative abundance

under model M1 or taxon presence-absence status under model M2 as covariates; the p-values

for these taxon-specific tests were then adjusted for multiple testing using the Benjamini-

Hochberg procedure [24]. We evaluated the sensitivity and empirical FDR at nominal level

10% for all taxon-specific tests, using 1000 replicates of data.

For testing global association, we obtained these results from LDM-m, LDM-d, and LDM-

c, and we also applied permanovaFL in a similar way to obtain permanovaFL-m, permano-

vaFL-d, and permanovaFL-c. For permanovaFL-based tests and all other distance-based tests

described below, we used the Bray-Curtis distance under model M1 and the Jaccard distance

(without rarefying the taxa count table since the library sizes were balanced in the simulation)

under model M2. For comparison, we applied MiRKAT-S using the permutation p-value,

which was based on the Martingale residual only. We also applied OMiSA, specifically OMi-

SALN, the part of OMiSA that combines the results from analyzing differently power-trans-

formed relative abundance data (with the default set of power values), which always analyzes

data at the relative abundance scale even under model M2. In addition, we considered a num-

ber of secondary tests to gain more insights. To verify the equivalence of MiRKAT-S to an

implementation of MiRKAT, we applied MiRKAT with a linear regression model that used

the Martingale residual as the continuous outcome and the microbiome profile as the covari-

ates without adjusting for Xi, and refer to this test as MiRKAT-m1. We also applied a variation

of MiRKAT-m1 that additionally adjusted Xi in the linear regression, referred to as MiRKAT-

m, and a variation of MiRKAT-m that replaced the Martingale residual by the deviance resid-

ual, referred to as MiRKAT-d. Finally, we applied PERMANOVA implemented in adonis2,

with either Xi and Mi as covariates or Xi and Di as covariates to obtain adonis2-m and ado-

nis2-d. All global tests were evaluated on their type I error and power at the nominal level 0.05,

based on 10000 and 1000 replicates of data, respectively.

Simulation results

We focus on the results from simulated data with 50% censoring and sample size 100; the

results when the censoring rate was varied to 75% or 25% or the sample size was reduced to 50

showed the same patterns and are thus deferred to Supplementary Materials (S1 Table, S3–S5

Figs). Fig 1 shows the sensitivity and empirical FDR results for the taxon-specific tests. In both

scenarios M1 and M2, the deviance residual (LDM-d) corresponds to higher sensitivity than

the Martingale residual (LDM-m), although the difference was small. We explored two more
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scenarios, one assuming taxon 11 to be associated with the event time (referred to as M3) and

one assuming taxon 21 to be associated (referred to as M4), in which data were analyzed at the

relative abundance scale and the presence-absence scale, respectively. The results were dis-

played in S1 Fig. We found that the Martingale residual led to higher sensitivity than the

deviance residual under M3 and the two residuals performed very differently under M4. Fortu-

nately, the combination test LDM-c tracked the results of the best-performing residual in all

cases. As expected, all LDM tests controlled the FDR (except for some minor inflation when

the sensitivity was extremely low). The ad hoc Cox regression had very inflated FDR in all

cases; the Firth-corrected Cox regression also had inflated FDR, albeit to a lesser degree. We

hypothesized that the inflated FDR for both methods is due to the sparsity of the data, with

zero counts for many observations at many taxa. To confirm this hypothesis, we varied the

overdispersion parameter from 0.02 to 0.002 and finally to 0.0002 to successively decrease the

number of cells with zero counts; results from these simulations are found in S6 Fig. Indeed, as

the data became less sparse, the FDR of both Cox models became less inflated.

The type I error results of the global tests are summarized in Table 1, which shows that the

LDM- and permanovaFL-related tests all yielded type I error close to the nominal level 0.05.

MiRKAT-S and OMiSA produced conservative type I errors when Xi was a confounder; for

example, their type I error rates were 0.007 and 0.034 under model M2. Note that all these tests

yielded highly inflated type I error (> 0.4) when the confounder was not adjusted for in the

entire analysis, confirming that we have generated substantial confounding effects. The type I

Fig 1. Sensitivity and empirical FDR of the taxon-specific tests in analysis of simulated data with a confounder Xi
(βXZ = 0.8), 50% censoring, and n = 100. “Cox-f” is the Firth-corrected Cox model. The gray dotted line represents the

nominal FDR level 10%.

https://doi.org/10.1371/journal.pcbi.1010509.g001
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error rate of all these tests were robust to violation of the PH assumption when the event times

were instead simulated using the AH model.

Fig 2 displays the power for the global tests. Using either the LDM or permanovaFL, the

Martingale and deviance residuals, as well as the combination test, all led to similar power.

Table 1. Type I error of the global tests for simulated data with 50% censoring and n = 100.

Hazards model Scenario βXZ LDM- permanovaFL- MiRKAT-S OMiSA

c m d c m d

Cox M1 0 0.051 0.049 0.047 0.051 0.051 0.048 0.052 0.050

0.8 0.050 0.047 0.048 0.052 0.051 0.050 0.032 0.034

0.8� 0.626 0.634 0.563 0.450 0.453 0.418 0.471 0.518

M2 0 0.044 0.042 0.044 0.046 0.046 0.044 0.048 0.050

0.8 0.048 0.050 0.047 0.049 0.050 0.046 0.007 0.034

0.8� 0.805 0.808 0.74 0.814 0.817 0.74 0.818 0.518

AH M1 0 0.050 0.051 0.054 0.050 0.050 0.052 0.052 0.052

0.8 0.050 0.048 0.045 0.051 0.050 0.050 0.034 0.034

M2 0 0.050 0.049 0.049 0.051 0.052 0.050 0.053 0.052

0.8 0.052 0.050 0.053 0.050 0.046 0.051 0.007 0.034

Note: AH is the accelerated hazards model [22]. When βXZ = 0, Xi was a simple covariate (i.e., not correlated with the microbiome data); when βXZ = 0.8, Xi was a

confounder; when βXZ = 0.8�, Xi was a confounder but omitted in the entire analysis.

https://doi.org/10.1371/journal.pcbi.1010509.t001

Fig 2. Power of the global tests in the presence of a covariate (βXZ = 0) and a confounder (βXZ = 0.8). The data were

simulated with 50% censoring and n = 100. The gray dotted line represents the nominal type I error level 0.05.

https://doi.org/10.1371/journal.pcbi.1010509.g002
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The similar power between the LDM and permanovaFL was a coincidence here and is not

guaranteed in general, since permanovaFL results will vary depending on the distance measure

used. MiRKAT-S had similar power to permanovaFL-m when Xi was a simple covariate (i.e.,

not correlated with the microbiome data) but had lower power than permanovaFL-m when Xi

was a confounder (especially under Model M2), which is consistent with its conservative type I

error results in this situation. OMiSA had very low power in both scenarios M1 and M2. We

explored an additional scenario in which rare taxa (taxa 91–100) were associated with the

event time; OMiSA yielded good power among all tests when the data were simulated and ana-

lyzed based on the relative abundance scale (S2 Fig).

Fig 3 displays the power for the secondary global tests and included MiRKAT-S again as a

calibration. Indeed, MiRKAT-S had equivalent power to MiRKAT-m1 in all cases. MIRKAT-

m and MiRKAT-d always had very similar power to permanovaFL-m and permanovaFL-d,

respectively, which was expected given the equivalent performance of MiRKAT and permano-

vaFL we have consistently observed in the context of testing continuous or binary outcomes.

These results confirmed that the improvement in the power of permanovaFL-m over MiR-

KAT-S was truly due to its inclusion of Xi in the linear regression model (1). Lastly, adonis2-m

and adonis2-d occasionally had lower power than permanovaFL-m and permanovaFL-d, as

seen before [12, 14, 20].

Fig 3. See the caption to Fig 2. The MiRKAT-S results are the same as those in Fig 2.

https://doi.org/10.1371/journal.pcbi.1010509.g003
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Analysis of the aGVHD data

We analyzed the same data on aGVHD [16] that were also analyzed in the MiRKAT-S paper.

We first followed the same procedure as in the MiRKAT-S paper to process the 16S rRNA

sequencing data to obtain 2436 operational taxonomic unites (OTUs) in 94 subjects, and then

removed subjects with library sizes less than 1000 and excluded OTUs that were found in

fewer than 5 subjects to obtain a final set of 88 subjects and 441 OTUs for our analysis. We

tested the association of the gut microbiome with two survival outcomes separately, the overall

survival and the time to stage-III aGVHD, both adjusting for age and gender. The censoring

rates for the overall survival and the time to stage-III aGVHD were 52.3% and 42.0%, respec-

tively. The Martingale and deviance residuals obtained from the Cox model with age and gen-

der as covariates were displayed in S7 Fig, which shows that neither residuals were normally or

symmetrically distributed in this dataset.

We applied the LDM, the Cox model, and the Firth-corrected Cox model for testing indi-

vidual OTUs, and the LDM, permanovaFL, MiRKAT-S, and OMiSA for testing the global

association. We applied these methods to both relative-abundance and presence-absence data

scales, in the same way as in the simulation studies; in particular, we used the OMiSALN part

only for OMiSA in analysis of the relative abundance data. For the presence-absence analyses,

we considered both rarefied and unrarefied data for all methods. The unrarefied data may be

subject to confounding by the library size, which varied considerably between 1,274 and

265,352 in this dataset. In the rarefaction-based analysis with rarefaction depth 1,274, the

LDM was based on all rarefied OTU tables (the LDM-A method in [13]), and permanovaFL

and MiRKAT-S were based on the expected Jaccard distance matrix over all rarefied OTU

tables [20]. Unfortunately, the Cox model and Firth-corrected Cox model cannot handle mul-

tiple rarefied OTU tables except by manually rarefying and combining the results, while OMi-

SALN cannot be used for presence-absence analysis.

Whenever possible, we also constructed the omnibus test for each method that combined

their results from analyzing the relative abundance data and the presence-absence data (with

all rarefactions). For LDM-m, LDM-d, and LDM-c, we applied LDM-omni3 [25] (an omnibus

test that combines results from analyzing three data scales: relative abundance, arcsin-root-

transformed relative abundance, and presence-absence scales) when analyzing the residuals of

survival times. For permanovaFL-m, permanovaFL-d, and permanovaFL-c, we constructed an

omnibus test based on the Bray-Curtis and Jaccard (using all rarefactions) distances. OMiSA

itself is an omnibus test that combines results of OMiSALN and the omnibus version of MiR-

KAT-S (based on the Bray-Curtis distance and the weighted, unweighted, and generalized

UniFrac [26, 27] distances without rarefaction). The Cox models and MiRKAT-S (original

implementation in [5]) do not provide such omnibus tests; we did not construct a Cox model

omnibus test combining relative abundance and presence-absence analyses since the marginal

performance of the Cox models was so poor.

All test results were summarized in Table 2. The LDM or permanovaFL combination tests

(LDM-c, permanovaFL-c) always tracked the better results obtained using the Martingale

residual and the deviance residual, so we focus on their combination tests hereafter. Among

the different analyses we performed, presence-absence analyses based on all rarefied OTU

tables consistently led to the most significant results for all tests. Specifically, LDM-c detected

17 OTUs associated with the overall survival and 29 OTUs associated with the time to stage-III

aGVHD; the survival functions stratified by the presence and absence status of each detected

OTU (based on a singly rarefied OTU table) were plotted in Figs 4 and 5, which showed a clear

separation in each case. LDM-c, permanovaFL-c, and MiRKAT-S yielded p-values 0.0002,

0.0006, and 0, respectively, for testing the global association of the gut microbiome with the

PLOS COMPUTATIONAL BIOLOGY Testing microbiome associations with survival times

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010509 September 14, 2022 11 / 17

https://doi.org/10.1371/journal.pcbi.1010509


overall survival, and 0.0006, 0.0016, and 0.001 for the global association with the time to stage-

III aGVHD. The substantial difference in results between the rarefied and unrarefied analyses

implied that differences in the library size played an important, although undesired, role in the

unrarefied analysis. Based on the relative abundance data and a nominal significance level

0.05, LDM-c and permanovaFL-c declared a significant global association of the gut micro-

biome with the time to stage-III aGVHD but failed for the overall survival; MiRKAT-S failed

for both outcomes; OMiSA was significant for both outcomes. The omnibus test results

tracked the results of the best-performing data scale in all cases.

Discussion

We have presented an approach that can be used in the LDM and PERMANOVA frameworks

to testing microbiome associations with survival outcomes. This approach is based on a linear

model treating both the Martingale and deviance residuals from the Cox proportional hazards

Table 2. Results in analysis of the aGVHD data.

Relative

abundance

Presence-absence

(unrarefied)

Presence-absence (all

rarefactions)

Omnibus

test

Overall survival Number of detected

OTUs

LDM-c 2 2 17 3

LDM-m 5 10 28 16

LDM-d 0 1 3 1

Cox 0 2 - -

Cox-f 0 2 - -

Global p-value LDM-c 0.0640 0.0456 0.000200 0.000200

LDM-m 0.0565 0.0385 0.000200 0.000200

LDM-d 0.0965 0.0737 0.000400 0.00100

permanovaFL-c 0.0785 0.0376 0.000600 0.000800

permanovaFL-m 0.0665 0.0316 0.000800 0.00140

permanovaFL-d 0.132 0.0411 0.000400 0.000500

MiRKAT-S 0.0581 0.0290 0 -

OMiSA 0.002 - - 0.01

Time to stage-III

aGVHD

Number of detected

OTUs

LDM-c 12 12 29 29

LDM-m 50 15 64 57

LDM-d 0 8 8 4

Cox 0 0 - -

Cox-f 0 5 - -

Global p-value LDM-c 0.0376 0.0365 0.000600 0.00180

LDM-m 0.0315 0.0323 0.000600 0.00160

LDM-d 0.0591 0.0668 0.00180 0.00400

permanovaFL-c 0.0366 0.0411 0.00160 0.00300

permanovaFL-m 0.0310 0.0355 0.00140 0.00260

permanovaFL-d 0.0604 0.0624 0.00260 0.00500

MiRKAT-S 0.0711 0.0300 0.00100 -

OMiSA 0.004 - - 0.012

Note: The OTUs were detected by controlling the FDR at 10% level. The permanovaFL and MiRKAT-S results were based on the Bray-Curtis distance in analysis of

relative abundance data and the Jaccard distance in analysis of presence-absence data. The omnibus tests for LDM combined results from analyzing the relative

abundance, arcsin-root transformed relative abundance, and presence-absence (all rarefactions) data. The omnibus tests for permanovaFL combined results from the

relative abundance scale (using the Bray-Curtis distance) and the presence-absence scale (using the Jaccard distance and averaging over all rarefactions).

https://doi.org/10.1371/journal.pcbi.1010509.t002
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model as continuous covariates. Unlike existing methods which only give community-level

(global) tests, our extension of the LDM gives both community-level and taxon-level associa-

tion tests. Further, we find that the LDM global test and permanovaFL outperform the existing

permutation-based global tests, MiRKAT-S and OMiSA, when there are strong confounders.

Although the analysis of a single type of residuals can make use of existing code of the LDM

or permanovaFL, the test that combines the two, which is recommended over each single test,

does entail additional programming and has been added to the LDM package. Note that the

only additional computational burden for testing survival outcomes in the LDM framework is

the single calculation of the Cox model residuals and the calculation of the combination test,

which is a negligible addition in computation.

Fig 4. Survival functions for the overall survival outcome by the presence (blue) and absence (red) status (based

on a singly rarefied OTU table) of the OTUs detected by LDM-c. The plots were ordered by the adjusted p-values

from LDM-c.

https://doi.org/10.1371/journal.pcbi.1010509.g004
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The gut microbiome data in the aGVHD dataset that we have analyzed here were generated

from 16S rRNA sequencing. Our approach is readily applicable to microbiome data generated

from shotgun metagenomic sequencing, although these data have different error profiles than

16S rRNA sequencing data. In fact, in a recent publication [28], we have applied permanovaFL

using the approach developed here to analyze the shotgun metagenomic sequencing data of

the gut microbiome and the outcome data on progression-free survival that were generated

from a melanoma immunotherapy study [29].

In our simulation studies where the data were generated from the Cox model, we found

that the tests based on the Cox model made many discoveries including excessive false discov-

eries, leading to inflated FDR. Conversely, in our analysis of the aGVHD data, we found that

the Cox model made fewer discoveries and particularly zero discoveries based on the relative

abundance data. This disagreement reflects the fact that the aGVHD data do not follow the

Cox model exactly. Indeed, some survival functions in Figs 4 and 5 showed violation of the

proportional hazards assumption.

Fig 5. See the caption to Fig 4. The outcome is the time to stage-III aGVHD here.

https://doi.org/10.1371/journal.pcbi.1010509.g005
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In this article, we have primarily considered testing hypotheses that are expressed in terms

of relative abundances. Some investigators may prefer to test hypotheses that are expressed in

terms of ratios of counts or relative abundances. To this end, a common approach is to nor-

malize the read count data using methods such as GMPR [30] and CSS [31] and then apply

tests of differential abundance (such as the LDM) to the normalized data. This approach criti-

cally depends on the validity of the normalization method of choice, which may not perform

well in the presence of sparse read count data. In addition, the LDM can be directly applied to

log-ratio data, although some of the appealing features of the LDM such as analyses on multi-

ple scales must be suppressed.
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