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A B S T R A C T   

Background: Sepsis complicated by ARDS significantly increases morbidity and mortality, 
underscoring the need for robust predictive models to enhance patient management. 
Methods: We collected data on 6390 patients with ARDS-complicated sepsis from the MIMIC IV 
database. Following rigorous data cleaning, including outlier management, handling missing 
values, and transforming variables, we conducted univariate analysis and logistic multivariate 
regression. We employed the LASSO machine learning algorithm to identify risk factors closely 
associated with patient outcomes. These factors were then used to develop a new clinical pre-
diction model. The model underwent preliminary assessment and internal validation, and its 
performance was further tested through external validation using data from 225 patients at a 
major tertiary hospital in China. This validation assessed the model’s discrimination, calibration, 
and net clinical benefits. 
Results: The model, illustrated by a concise nomogram, demonstrated significant discrimination 
with an area under the curve (AUC) of 0.711 in the internal validation set and 0.771 in the 
external validation set, outperforming conventional severity scores such as the SOFA and SAPS II. 
It also showed good calibration and net clinical benefits. 
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Conclusions: Our model serves as a valuable tool for identifying sepsis patients with ARDS at high 
risk of in-hospital mortality. This could enable the implementation of personalized treatment 
strategies, potentially improving patient outcomes.   

1. Background 

Sepsis, a life-threatening condition, remains a leading cause of mortality among critically ill patients worldwide [1–3]. Approxi-
mately 30 % of patients diagnosed with sepsis go on to develop Acute Respiratory Distress Syndrome (ARDS), which significantly 
increases mortality rates compared to other complications [4,5]. 

Clinical predictive models are innovative tools for risk assessment, estimating the likelihood of present conditions or future patient 
outcomes through specific formulas. These models deliver intuitive and evidence-based information to both healthcare professionals 
and patients [6]. Various models have been developed to evaluate the prognostic risks associated with sepsis and its complications. For 
instance, studies utilizing stepwise logistic regression have analyzed independent risk factors for sepsis-related liver injury, demon-
strating the models’ effectiveness through ROC curves with promising results [7]. Similarly, predictive models for sepsis-associated 
acute kidney injury have shown strong predictive performance in both training and validation cohorts, especially in elderly pa-
tients [8]. While numerous scoring models predict the severity and mortality associated with sepsis in the elderly, reports on models for 
in-hospital mortality, specifically in patients with sepsis-related ARDS, are limited. 

The Medical Information Mart for Intensive Care (MIMIC) database is a vast, openly accessible repository containing de-identified 
health data from thousands of patients treated in intensive care units at Beth Israel Deaconess Medical Center from 2001 to 2019 
[9–11]. This database offers detailed data on demographics, vital signs, lab results, procedures, medications, caregiver notes, imaging 
reports, and mortality outcomes. Utilizing the extensive clinical data from the MIMIC database provides robust and reliable support for 
predicting the prognostic risks in patients with sepsis complicated by ARDS [12]. 

This study aimed to address a research gap by analyzing data from the MIMIC database to identify patients with sepsis and ARDS 
and analyze the associated risk factors for in-hospital mortality. We utilized a combination of multivariate logistic regression modeling 
and machine learning algorithms to select key prognostic indicators of clinical relevance. Based on these indicators, we constructed a 
predictive model to estimate the risk of in-hospital mortality in patients with sepsis-associated ARDS, which was then internally 
validated. 

Additionally, we retrospectively collected de-identified data from patients with sepsis and ARDS at a tertiary hospital in Liaoning 
Province, China. The newly developed predictive model was applied to this dataset, followed by external validation to assess its clinical 
applicability and value. 

By leveraging comprehensive clinical data from the MIMIC database and conducting rigorous internal and external validations, this 
study aimed to develop a robust and clinically valuable predictive model for assessing the risk of in-hospital mortality in patients with 
sepsis-associated ARDS. 

2. Methods 

2.1. Database and study population 

All clinical data for this study were obtained from two distinct sources: the MIMIC IV v2.0 [13] and the ICU of a large tertiary 
hospital in Liaoning Province, China. These two datasets are completely independent. Clinical data from the MIMIC database were 
used to construct and internally validate predictive models. Conversely, data from the ICU of the large tertiary hospital in Liaoning 
were used for external validation of the predictive model. 

Access to the MIMIC IV database requires passing a qualifying test and obtaining approval from the MIMIC IV administration staff. 
Following the successful completion of the related training course, one author (Zong J) received permission to extract data for research 
purposes (certification number: 50766047). The Medical Ethics Committee of the hospital approved the data used for external vali-
dation of the model (PJ-KS-KY-2023-304). 

Data from both the MIMIC and external validation datasets were selected based on the same inclusion and exclusion criteria. The 
external validation dataset was obtained from a tertiary hospital in Liaoning Province, China, between January 2016 and September 
2022. Adult patients who met the criteria for sepsis-3 and ARDS were included in this study. The inclusion criteria were as follows: (1) 
diagnosed with sepsis-3 and ARDS, (2) first intensive care unit admission, and (3) age ≥18 years. The exclusion criterion was an ICU 
stay duration of less than 24 h. 

2.2. Data extraction 

We collected patient data that met the inclusion criteria, organized into the following categories: basic information (admission and 
ICU admission times, date of death if applicable, gender, age), vital signs (heart rate, respiratory rate, body temperature, systolic and 
diastolic blood pressure, mean arterial pressure), disease scores (SOFA, SAPS II [14], Charlson Comorbidity Index, CCI [15,16]), and 
laboratory tests (white blood cell count, hemoglobin, hematocrit, platelet count, bicarbonate, blood urea nitrogen, serum creatinine, 
sodium, potassium, blood glucose, prothrombin time, activated partial thromboplastin time, international normalized ratio, pH, 
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oxygen saturation, arterial oxygen and carbon dioxide pressures, urine output). Additionally, we documented comorbidities 
(myocardial infarction, congestive heart failure, peripheral vascular disease, cerebrovascular disease, dementia, chronic lung disease, 
rheumatic disease, peptic ulcer disease, liver disease, diabetes, paralysis, kidney disease, malignancy, AIDS) and interventions (use of 
vasopressors, renal replacement therapy (RRT). 

To ensure the accuracy and reliability of the data analysis, all variable values were selected based on the first measurements taken 
upon ICU admission. This approach was adopted to eliminate the potential effects of any interventions that occurred after ICU 
admission on the variable values. 

2.3. Missing values and outlier handling 

The first step involved assessing the extent of missing data within each variable. Variables that had more than 20 % of their ob-
servations missing were completely removed from the dataset. This threshold was set to maintain data integrity and ensure the 
robustness of the statistical analysis. 

For variables where the missing data constituted less than 20 % of the observations, multiple imputation was employed to manage 
the missing entries [17–19]. Multiple imputation involves creating several different plausible imputations by replacing missing values 
with estimated values based on the other available data. The visualization and handling of missing values were conducted using the 
VIM and mice packages in R (Supplementary Fig. 1). 

Next, we conducted outlier detection and processing. We examined the data distribution of each indicator and presented them 
using quartiles, minimum and maximum values, as well as mean ± standard deviation(Supplementary Table 4). To mitigate the impact 
of outliers on data analysis, we retained data within the range of 1 %–99 % for indicators with significant extremely high or low values. 

2.4. Data processing 

We transformed continuous variables exhibiting nonlinear relationships with prognosis into categorical variables based on their 
data distribution types and clinical significance. The variables that underwent this transformation included heart rate, mean arterial 
pressure (MAP), respiratory rate, body temperature, pH, urine output, and blood glucose. 

Next, we split the clinical data obtained from the MIMIC database randomly, following a 7:3 ratio. The training set comprised 70 % 
of the total samples and was utilized for multiple regression analysis and model construction. The remaining 30 % of the case data 
constituted the internal validation set, used to validate the developed predictive model. Additionally, we employed de-identified data 
from sepsis patients with ARDS from a tertiary hospital in Liaoning Province, China, as the external validation set to further validate 
the predictive model using independent external data. 

2.5. Variable selection and model construction 

Patients were divided into two groups based on in-hospital mortality, and variables between the groups were compared. Sample 
size was evaluated based on the 10 events per variable (EPV) principle [20,21]. 

In the variable selection phase, univariate analysis was performed on all variables, using a threshold of p < 0.1 to select variables 
associated with in-hospital mortality. These selected variables were further included in Logistic regression models for multivariable 
analysis. Multiple Logistic regression models were constructed using the full model, forward selection, backward elimination, and 
stepwise regression methods, based on the Akaike information criterion (AIC) [22]. Variables were selected with a threshold of p <
0.05. 

Additionally, LASSO machine learning algorithm was used for variable selection. Finally, considering the clinical significance of the 
selected variables, the final set of variables was chosen for constructing the predictive model. 

Internal and external validation of the model was conducted using receiver operating characteristic curves (ROC) area under the 
curve (AUC), calibration curves, and decision curve analysis (DCA) to evaluate the clinical usefulness and net benefit of the model with 
the best diagnostic value. Furthermore, a comparative analysis of the predictive performance was performed among the newly 
developed predictive model, SOFA score model, and SAPS II score model. 

2.6. Statistical analysis 

Normally distributed continuous variables were summarized as mean ± standard deviation, while non-normally distributed 
continuous variables were summarized as median. Normality of continuous variables was assessed using the Kolmogorov-Smirnov test. 
For non-normally distributed continuous data, Student’s t-test, or Kruskal-Wallis H test were used for comparisons. Categorical var-
iables were expressed as numbers or percentages, and assessed using the chi-square test or Fisher’s exact test, depending on sample 
sizes. All analyses were conducted using R software, with a significance level of p < 0.05, except for the univariate regression analysis 
where a threshold of p < 0.1 was used for variable selection. 
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3. Results 

3.1. Baseline characteristics 

A total of 6390 patients from the MIMIC IV database who met the inclusion and exclusion criteria and had complete data were 
included in the study. Among these, there were 1880 in-hospital deaths and 4510 survivors. Comparative analysis of baseline char-
acteristics revealed significant statistical differences (P < 0.05) between the two groups in terms of age, heart rate, respiratory rate, 
mean arterial pressure (MAP), Sequential Organ Failure Assessment (SOFA) score, Simplified Acute Physiology Score (SAPS) II, 
Charlson Comorbidity Index (CCI), white blood cell count (WBC), hemoglobin, hematocrit, platelet count, bicarbonate, blood urea 
nitrogen (BUN), serum creatinine, sodium, potassium, international normalized ratio (INR), prothrombin time (PT), activated partial 
thromboplastin time (APTT), pH, oxygen saturation (SaO2), urine output, peripheral vascular disease, cerebrovascular disease, dia-
betes mellitus, malignant tumors, use of vasoactive medications, and renal replacement therapy (RRT). However, no statistically 
significant differences were observed for the other variables. Fig. 1 presents a flowchart of the model development and validation 
processes used in this study, while Table 1 compares the baseline characteristics between the two groups. 

3.2. Feature selection combined logistic regression and LASSO 

Based on the training set data, we conducted univariate analysis by including each variable in the model with in-hospital mortality 

Fig. 1. Flowchart for patient selection and data processing analysis.  
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Table 1 
Baseline parameters comparisons of patients with sepsis and ARDS.   

Death Survival P-value 

Number (sample size) 4510 1880  
Baseline characteristics 

Gender (male) 2566 (56.9 %) 1048 (55.7 %) 0.413 
Age (year, mean ± SD) 64.2 ± 16.7 69.4 ± 15.3 <0.001 

Vital signs 
Heart rate (times/min)    

Normal (60–100) 3281 (72.7 %) 1211 (64.4 %) <0.001 
Moderate (101–120) 931 (20.6 %) 515 (27.4 %)  
Severe (<60 or >120) 298 (6.6 %) 154 (8.2 %)  

Respiratory rate (times/min)    
Normal (15–20) 1990 (44. 1 %) 645 (34.3 %) <0.001 
Moderate (<15 or 21–25) 1881 (41.7 %) 808 (43.0 %)  
Severe (>25) 639 (14.2 %) 427 (22.7 %)  

Temperature (◦C)    
Normal (36~37.3) 2922 (64.8 %) 1270 (67.6 %) 0.0122 
Moderate (34~35.9 or 37.4–38.2) 1418 (31.4 %) 525 (27.9 %)  
Severe (<34 or >38.2) 170 (3.8 %) 85 (4.5 %)  

Mean Arterial Pressure (mmHg)    
Normal (65–110) 4162 (92.3 %) 1621 (86.2 %) <0.001 
Abnormal (<65 or >110) 348 (7.7 %) 259 (13.8 %)  
Disease indice 

SOFA ((mean ± SD)) 3.86 ± 2.14 4.58 ± 2.63 <0.001 
SAPS II (mean ± SD) 42.7 ± 13.9 53.0 ± 15.4 <0.001 
Charlson Comorbidity Index (mean ± SD) 5.53 ± 2.92 6.58 ± 2.78 <0.001 

Laboratory parameters 
WBC (10 × 109/L, mean ± SD) 16.0 ± 8.52 17.4 ± 10.2 <0.001 
Hemoglobin(g/dl, mean ± SD) 11.6 ± 2.30 11.2 ± 2.28 <0.001 
Hematocrit (%, mean ± SD) 35.6 ± 6.80 34.6 ± 6.89 <0.001 
Platelet (10 × 109/L, mean ± SD) 237 ± 116 222 ± 133 <0.001 
Bicarbonate (mmol/L, mean ± SD) 24.5 ± 5.06 23. 1 ± 5.47 <0.001 
BUN (mg/dl, mean ± SD) 32.9 ± 24.0 41.7 ± 27.3 <0.001 
Creatinine (mg/dl, mean ± SD) 1.74 ± 1.46 2.05 ± 1.48 <0.001 
Sodium (mmol/L)    

Normal (135–145) 3306 (73.3 %) 1169 (62.2 %) <0.001 
Abnormal (<135 or >145) 1204 (26.7 %) 711 (37.8 %)  

Potassium (mmol/L)    
Normal (3.5–5.5) 3659 (81.1 %) 1448 (77.0 %) <0.001 
Abnormal (<3.5 or >5.5) 851 (18.9 %) 432 (23.0 %)  

Glucose (mmol/L)    
Normal (3.9–7.8) 2334 (51.8 %) 921 (49.0 %) 0.0471 
Abnormal (<3.9 or >7.8) 2176 (48.2 %) 959 (51.0 %)  

INR (mean ± SD) 1.64 ± 1.05 2.08 ± 1.45 <0.001 
PT (s, mean ± SD) 17.9 ± 10.8 22.5 ± 15. 1 <0.001 
APTT (s, mean ± SD) 44.5 ± 30.7 53.3 ± 36.0 <0.001 
pH    

Normal (7.35–7.45) 2358 (52.3 %) 887 (47.2 %) <0.001 
Moderate (7.25–7.34 or 7.46–7.55) 1971 (43.7 %) 834 (44.4 %)  
Severe (<7.25 or >7.55) 181 (4.0 %) 159 (8.5 %)  

SaO2 (%, mean ± SD) 97.0 ± 2.27 96.3 ± 3.36 <0.001 
PaO2 (mmHg, mean ± SD) 200 ± 122 197 ± 120 0.314 
PaCO2 (mmHg, mean ± SD) 49.2 ± 15.5 48.8 ± 16.6 0.473 
Urine output (ml)    

Normal (1500–2500) 1276 (28.3 %) 344 (18.3 %) <0.001 
Moderate (500–1499 or 2501–3500) 2333 (51.7 %) 903 (48.0 %)  
Severe (<500 or >3500) 901 (20.0 %) 633 (33.7 %)  

Comorbidities 
Myocardial infarct 677 (15.0 %) 341 (18. 1 %) 0.0021 
Congestive heart failure 1404 (31. 1 %) 595 (31.6 %) 0.706 
Peripheral vascular disease 445 (9.9 %) 231 (12.3 %) 0.00478 
Cerebrovascular disease 651 (14.4 %) 326 (17.3 %) 0.0037 
Dementia 207 (4.6 %) 80 (4.3 %) 0.602 
Chronic pulmonary disease 1409 (31.2 %) 578 (30.7 %) 0.718 
Rheumatic disease 128 (2.8 %) 68 (3.6 %) 0.117 
Peptic ulcer disease 122 (2.7 %) 58 (3. 1 %) 0.451 
Liver disease 640 (14.2 %) 463 (24.6 %) <0.001 
Diabetes 1448 (32. 1 %) 538 (28.6 %) 0.00869 
Paraplegia 207 (4.6 %) 88 (4.7 %) 0.926 
Renal disease 1006 (22.3 %) 419 (22.3 %) 1 

(continued on next page) 
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as the outcome measure. Only a few demographic variables, a subset of blood test results, blood gas indicators, and some comorbidities 
did not reach statistical significance. However, significant statistical differences (P < 0.05) were observed in age, heart rate, respi-
ratory rate, MAP, SOFA score, SAPS II, CCI, WBC, hemoglobin (Hb), hematocrit (HCT), platelet count (PLT), bicarbonate, BUN, serum 
creatinine (Cre), sodium, potassium, INR, PT, APTT, pH, SaO2, and urine output. These significant differences indicated a strong 
association between abnormalities in these indicators and the risk of in-hospital mortality in patients with sepsis complicated by ARDS. 
Additionally, the presence of peripheral vascular disease, cerebrovascular disease, diabetes mellitus, malignant tumors, the need for 
vasoactive medications, and RRT was associated with a significantly higher risk of in-hospital mortality (P < 0.05) (Supplementary 
Table 1). 

Further multivariate logistic analysis (Table 2) revealed a strong correlation between in-hospital mortality and several factors in 
patients with sepsis complicated by ARDS. These factors include age, respiratory rate, SAPS II, Hb, BUN, Cre, sodium, PT, APTT, SaO2, 
urine output, cerebrovascular disease, liver disease, diabetes mellitus, malignant tumors, the use of vasoactive medications, and RRT 
(P < 0.05). 

Machine learning algorithms offer unique advantages in large-scale variable selection. The LASSO machine learning algorithm was 
utilized for this purpose, revealing significant results. Variables identified as independent risk factors for in-hospital mortality in 
patients with sepsis complicated by ARDS include age, respiratory rate, MAP, SAPS II, CCI, Hb, HCT, BUN, sodium, PT, APTT, SaO2, 
urine output, cerebrovascular disease, liver disease, diabetes mellitus, malignant tumors, the use of vasoactive medications, and RRT 
(Fig. 2A–B). 

In addition to the LASSO algorithm, we also employed the Random Forest algorithm for variable selection, obtaining results similar 
to those previously achieved (see Supplementary Fig. 2 and Supplementary Table 5). 

3.3. Model construction 

Based on the selection of variables using logistic regression and the LASSO machine learning algorithm and considering their 
clinical significance, the following variables were chosen to construct the Clinical Prediction Model (CPM): age, MAP, Hb, pH, sodium, 
SaO2, bicarbonate, PT, cerebrovascular disease, liver disease, diabetes mellitus, and malignant tumors. After these variables were 
fitted into the model and further analyses were conducted, the coefficients and detailed information are presented in Supplementary 
Table 2. 

The constructed CPM is represented by the following equation: CPM = 0.025 × Age +0.343 × MAP - 0.0045 × Hb + 0.149 × pH +
0.424 × Sodium - 0.094 × SaO2 - 0.043 × Bicarbonate +0.018 × PT + 0.502 × Cerebrovascular Disease +0.683 × Liver Disease - 
0.333 × Diabetes Mellitus +0.734 × Malignant Tumors +7.113. Additionally, a corresponding visualization using a nomogram (Fig. 3) 
was developed to illustrate the model. 

Table 1 (continued )  

Death Survival P-value 

Malignant cancer 567 (12.6 %) 420 (22.3 %) <0.001 
AIDS 38 (0.8 %) 13 (0.7 %) 0.642 

Interventions 
Vasopressor 636 (14. 1 %) 767 (40.8 %) <0.001 
Renal replacement therapy, RRT 368 (8.2 %) 393 (20.9 %) <0.001  

Table 2 
Multivariate logistic regression analysis of predictors for patients with sepsis and ARDS.   

SE OR 95%CI Z P 

Age 0.003 1.02 1.01–1.02 6.435 0 
Heart rate 0.061 1.09 0.97–1.23 1.444 0.149 
Respiratory rate 0.054 1.24 1.12–1.38 4.032 0 
Mean Arterial Pressure 0.12 1.21 0.95–1.53 1.568 0.117 
SAPS II 0.003 1.02 1.01–1.03 6.238 0 
Hemoglobin 0.017 0.96 0.93–0.99 − 2.504 0.012 
BUN 0.002 1.01 1.01–1.01 4.194 0 
Creatinine 0.041 0.83 0.76–0.9 − 4.614 0 
Sodium 0.079 1.34 1.14–1.56 3.668 0 
PT 0.003 1.01 1~1.02 3.359 0.001 
APTT 0.001 1.00 1~1.01 2.883 0.004 
SpO 2 0.015 0.96 0.93–0.99 − 2.742 0.006 
Urine output 0.058 1.2 1.08–1.35 3.195 0.001 
Cerebrovascular disease 0.102 1.91 1.57–2.33 6.322 0 
Liver disease 0.1 1.84 1.52–2.24 6.137 0 
Diabetes 0.083 0.7 0.6–0.82 − 4.307 0 
Malignant cancer 0.098 2.00 1.65–2.42 7.08 0 
Vasopressor 0.091 2.58 2.16–3.08 10.456 0 
CRRT 0.128 1.42 1.11–1.83 2.733 0.006  
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Fig. 2. A–B Further screening of risk factors for sepsis patients complicated by ARDS using the LASSO machine learning algorithm. At log(lambda) 
= − 4.398, 19 variables were selected as survival-associated factors (age, respiratory rate, MAP, SAPS II, CCI, Hb, HCT, BUN, sodium, PT, APTT, 
SaO2, urine output, cerebrovascular disease, liver disease, diabetes mellitus, malignant tumors, use of vasoactive medications, and RRT). 

Fig. 3. Visual nomogram constructed based on repeatedly selected risk factors. The vertical axis represents the selected risk factors, and the 
horizontal axis represents the risk of mortality. A total score is obtained by calculating the corresponding scores for each risk factor, which is further 
used to assess the in-hospital mortality risk in sepsis-associated acute respiratory distress syndrome (ARDS) patients. 
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3.4. Internal validation and comparison with SOFA and SAPS II 

Next, the model’s predictive performance was validated using an internal validation dataset from the MIMIC IV database. The 
model’s clinical discrimination, calibration, and net benefit were assessed using ROC curves, calibration plots, and decision curve 
analysis (DCA), respectively. The results, presented in Fig. 4, show good clinical discrimination with an AUC of 0.715 for the training 
set (Fig. 4A–C) and 0.711 for the validation set (Fig. 4D–F). The predicted probabilities closely aligned with the ideal line, indicating 
good model calibration. Additionally, the model exhibited favorable clinical applicability and net benefits. 

The SOFA and SAPS II scores have long been classic tools for assessing the severity of sepsis. We compared the newly developed 
predictive model (AUC = 0.715) with the SOFA (AUC = 0.577) and SAPS II (AUC = 0.688) scores to evaluate its performance and 
potential applications. The results revealed that the newly constructed model demonstrated significantly higher discriminative ability 
than the other two methods, as shown in Fig. 5, Table 3 and Table 4. 

3.5. External validation of models 

In addition to using the MIMIC IV data as training and internal validation sets, we collected and compiled de-identified data from 
patients with sepsis and ARDS at a tertiary hospital in Liaoning Province, China. This dataset included 225 patients who met the 
inclusion and exclusion criteria and provided complete information between January 2016 and September 2022. Among these pa-
tients, 117 died during hospitalization, and 108 survived (Supplementary Table 3). This dataset was used to independently validate the 
newly developed predictive models. 

The results, as shown in Fig. 6, indicate that the model demonstrated good clinical discrimination, with an AUC of 0.771 in the 
external validation set (Fig. 6 A). Furthermore, the model exhibited favorable calibration (Fig. 6 B), clinical applicability, and net 
benefits (Fig. 6C). 

4. Discussion 

Sepsis complicated with ARDS is associated with high mortality and significant morbidity [23,24]. Therefore, early identification 
and appropriate management can improve patient outcomes [25,26]. However, predictive models for this population are currently 

Fig. 4. Performance evaluation of the newly developed clinical prediction model. A-C represent ROC analysis, calibration curve analysis, and DCA 
of the training set, respectively. D-F represent ROC analysis, calibration curve analysis, and DCA of the internal validation set, respectively. 
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Fig. 5. Comparison of the discrimination performance between the newly developed prediction model and SOFA and SAPS II. The new model shows 
an AUC value of 0.715, while SOFA has an AUC value of 0.577, and SAPS II has an AUC value of 0.688. 

Table 3 
Model performance comparison with SOFA and SAPAS II.  

Models AUC 95%CI Accuracy Sensitivity Specificity 

New model 0.714 0.698–0.731 0.680 0.607 0.711 
SOFA 0.577 0.559–0.595 0.557 0.570 0.552 
SAPAS II 0.688 0.671–0.705 0.644 0.642 0.645  

Table 4 
Delong’s test for comparison different models.  

Comparison Z P AUC (NewModel) AUC (SOFA) AUC (SAPSII) 

New Model vs SOFA 12.067 <0.001 0.714 0.577  
New Model vs SAPSII 2.838 0.005 0.714  0.688 
SOFA vs SAPSII − 10.521 <0.001  0.577 0.688  

Fig. 6. External validation of the newly developed clinical prediction model. A-C represent ROC analysis, calibration curve analysis, and DCA of the 
external validation set, respectively. 
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lacking. In this study, we developed and validated a new clinical prediction model using the MIMIC IV database and independent 
external data from a tertiary hospital in Liaoning Province, China. Our model demonstrated superior discriminatory ability compared 
to existing assessment tools, offering a potential strategy for identifying high-risk patients and guiding personalized treatment 
decisions. 

Machine learning algorithms provide unique advantages in selecting variables from large samples [24,27,28]. In addition to 
traditional multivariable logistic regression, we employed the LASSO machine learning algorithm to enhance the accuracy and reli-
ability of our variable selection. The selected variables, including age, MAP, Hb, pH, sodium, SaO2, bicarbonate, PT, cerebrovascular 
disease, liver disease, diabetes, and malignancy, represent a range of patient characteristics, physiological parameters, and clinical 
conditions commonly assessed in patients with sepsis and ARDS. This underscores the clinical applicability of the model, as the data 
used were readily obtainable. Each variable in the model contributes unique information about the patient’s current condition and 
interacts synergistically within the model. Consideration of each variable, along with adjustments for others in the multivariate 
analysis, ensures the accuracy and clinical relevance of our model. Furthermore, the use of multiple data sources for internal and 
external validation demonstrates the robustness and generalizability of our model across different populations. 

Age is a critical factor in the model, and numerous studies have identified it as an independent risk factor for prognosis in patients 
with sepsis-ARDS [29,30]. Advanced age is linked to decreased organ reserves and an increased susceptibility to infections [31,32]. In 
elderly patients, even minor insults can precipitate immune dysfunction, potentially exacerbating the development of ARDS and 
multiple organ dysfunction syndrome (MODS), leading to worsened clinical outcomes and increased mortality [33]. 

MAP, a critical indicator of cardiovascular function and blood perfusion, has been associated with reduced mortality when it 
reaches or exceeds a threshold of 65 mmHg [34,35]. 

In patients with septic shock, decreased Hb levels are frequently observed and are attributed to a systemic inflammatory response 
that suppresses erythropoiesis, along with hemolysis and bleeding [36]. Patients with reduced Hb levels are more prone to tissue 
hypoxia, and their systemic inflammatory responses tend to be more severe than those in patients with normal Hb levels [37]. 
Therefore, Hb-related indicators require further investigation. 

PT is a significant independent risk factor, indicating impaired coagulation function, which also influences prognosis. Sepsis- 
induced complement activation can cause endothelial damage, leading to the activation of inflammatory and microthrombotic 
pathways, resulting in disseminated intravascular coagulation [38,39]. Sepsis-associated coagulation dysfunction (SAC) significantly 
affects patient outcomes, with higher mortality rates observed in patients with sepsis and severe SAC [40]. 

pH, which reflects metabolic disturbances and patient responses to treatment, is not only an early indicator of metabolic dysre-
gulation but is also associated with patient outcomes [41,42]. 

In our study, patients with cerebrovascular disease, liver disease, diabetes, malignancy, and those requiring vasopressor support or 
RRT had significantly worse outcomes. Patients with sepsis-ARDS and underlying comorbidities have been reported to have poorer 
prognoses and higher mortality rates. Having three or more underlying comorbidities and advanced age were identified as inde-
pendent risk factors for poor prognosis. Elderly age and the presence of multiple comorbidities greatly increase mortality risk in 
patients with sepsis. 

A nomogram is a visual representation that simplifies a complex regression equation, making the results of the clinical prediction 
model more accessible for interpretation. It assists clinicians in making individualized decisions regarding the treatment and man-
agement of patients with sepsis, thereby reducing the risk of mortality [43,44]. We created a nomogram to visualize the model, with 
each variable represented by a line segment labeled with the corresponding scale indicating the range of values. The contribution of 
each factor to the outcome event is represented by the length of the line segment. The final row represents the total score obtained by 
adding the scores for each individual variable. The predicted probability of in-hospital mortality in patients with sepsis and ARDS is 
calculated based on the total score. This visual tool is concise and practical, facilitating its clinical application. Each variable in the 
model provides unique information about the patient’s current condition and works together within the model. Consideration of each 
variable, including adjustments for other variables in the multivariate analysis, ensures the accuracy and clinical relevance of the 
model. Furthermore, the use of multiple data sources for internal and external validation demonstrates the robustness and general-
izability of our model across different populations. 

In our prediction model, we considered several variables, including age and interventions. Age is a fundamental factor in assessing 
disease risk and prognosis and is widely accepted for use in clinical decision support. However, the causal relationship between age and 
outcomes is not direct and may be influenced by various underlying factors such as overall health status, comorbidities, and lifestyle. 
Without a full understanding of how these factors interact, simply using age as a predictor could lead to bias in the model. Furthermore, 
the choice of intervention is often based on clinical judgment and the specific needs of patients, with complex and variable causal 
mechanisms underlying these decisions. For instance, in our model, the application of specific intervention (such as Vasopressor or 
CRRT) is closely related to the expected clinical outcomes. Understanding how these interventions affect the recovery process requires 
a deep knowledge of the pathophysiological changes before and after treatment, which is where causal inference methods, especially 
marginal structural models, can play a crucial role. Within the framework of causal inference, we can more systematically analyze how 
these variables affect the clinical pathways of patients. For example, by using methods such as Marginal Structural Models (MSM) and 
Inverse Probability Weighting (IPW), we can control for the influence of confounding variables, thereby more accurately estimating 
the causal effects of specific treatments on outcomes [45]. 

However, we acknowledge certain limitations in predicting the in-hospital mortality rate of specific individuals using our model. 
These limitations primarily include differences in clinical data among patients from different countries or regions. Although we 
standardized the data from different units, variations in measurement values due to different reagents used for testing were inevitable. 
Moreover, the external validation dataset had a smaller sample size than the previous MIMIC IV dataset, and there were differences in 
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the matching of clinical indicators. Additionally, due to data limitations, other important factors that may influence patient outcomes, 
such as treatment strategies, infection control measures, and other nursing interventions, were not considered. Therefore, our model 
should be regarded as a supplementary tool that requires consideration of these factors rather than as the sole decision-making tool. 

5. Conclusions 

The clinical prediction model we developed offers a valuable tool for identifying sepsis patients with ARDS who are at high risk of 
in-hospital mortality. This may contribute to enhancing the management of sepsis, especially in patients with concurrent ARDS, by 
facilitating the implementation of personalized treatment strategies and improving patient outcomes. 
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