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Abstract

Overexpression of the transcription factor Spi-1/PU.1 by transgenesis in mice induces a maturation arrest at the
proerythroblastic stage of differentiation. We have previously isolated a panel of spi-1 transgenic erythroleukemic cell lines
that proliferated in the presence of either erythropoietin (Epo) or stem cell factor (SCF). Using these cell lines, we observed
that EpoR stimulation by Epo down-regulated expression of the SCF receptor Kit and induced expression of the Src kinase
Lyn. Furthermore, enforced expression of Lyn in the cell lines increased cell proliferation in response to Epo, but reduced cell
growth in response to SCF in accordance with Lyn ability to down-regulate Kit expression. Together, the data suggest that
Epo-R/Lyn signaling pathway is essential for extinction of SCF signaling leading the proerythroblast to strict Epo
dependency. These results highlight a new role for Lyn as an effector of EpoR in controlling Kit expression. They suggest
that Lyn may play a central role in during erythroid differentiation at the switch between proliferation and maturation.
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Introduction

Erythropoiesis is critically regulated by a number of growth

factors acting through specific receptors, among which erythro-

poietin (Epo) and stem cell factor (SCF) are essential factors [1].

SCF, the ligand for the Kit receptor, is mainly involved in the

survival and proliferation of immature erythroid progenitors,

whereas Epo is the predominant regulator preventing apoptosis at

the CFU-E/proerythroblast stage of differentiation. The impor-

tance of the SCF/Kit pathway during erythropoiesis was

highlighted in mice with inactivating mutation in the SCF (Sl/Sl

mice) or Kit gene (W/W mice) [2,3]. Mutant mice die in utero

between day 14–16 of gestation with anemia and a profoundly

reduced number of erythroid progenitors in fetal liver demon-

strating the proliferative function mediated by Kit during early

stages of erythropoiesis. Likewise, mice with null mutations in the

genes encoding either Epo or EpoR die at midgestation with a

severe anemia. Fetal livers from these mice contain BFU-E and

CFU-E progenitors, although in reduced number, indicating that

the Epo/EpoR pathway is crucial in regulating survival,

proliferation and terminal differentiation of CFU-E [4]. Thus,

Epo and SCF are growth factors working synergistically to support

erythropoiesis, with SCF exerting a predominant role to expand

early progenitors, while Epo is acting later on to sustain

maturation.

Signaling induced by Epo/EpoR and SCF/Kit is determined

by the temporal and spatial expression of their cognate receptors

at the surface of responsive cells. Kit is expressed from the earliest

committed erythroid progenitor up to the basophilic erythroblastic

stage of differentiation [5,6]. EpoR expression arises at the BFU-E

stage, reaches a maximum at the CFU-E and proerythroblast

stages and declines thereafter [7,8].

In an attempt to dissect the signaling determinants controlling

the expression of EpoR and Kit, we used proerythroblastic cell

lines isolated during the preleukemic step of erythroleukemia

developing in spi-1 transgenic mice [9]. The spi-1 gene encodes the

ETS transcription factor Spi-1/PU.1, a main player regulating the

commitment of multipotent hematopoietic progenitors and the

development of the B lymphoid and monocytic lineages [10–13].

Germline overexpression of the spi-1 transgene induces a

differentiation arrest in the erythroid lineage at the CFU-E/

proerythroblast transition leading to severe anemia [9,14]. In

response to anemia, Epo production is up-regulated [15] causing a

massive expansion of proerythroblasts in the hematopoietic tissues

of diseased mice. It is likely that SCF expressed by stromal cells in

spleen and marrow microenvironments also contributes to the

expansion of these proerythroblasts. Indeed, spi-1 transgenic

proerythroblasts express both Epo and SCF receptors and can

be expanded in vitro in the presence of Epo or SCF.

Using cell lines established from the spleen of various diseased

mice, we observed that each of these cell lines exhibited a

particular growth rate in response to either Epo alone or SCF

alone, and expressed EpoR and Kit in a ratio modulated by the

cytokine used to sustain their proliferation. Starting from this

observation, we investigated the molecular mechanisms control-

ling the expression of Kit and EpoR. We show that Epo down-
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regulated Kit expression and induced expression of the Lyn kinase.

When ectopically expressed in spi-transgenic proerythroblasts, Lyn

favored cell proliferation in response to Epo, but not to SCF.

These biological effects are consistent with the ability of Lyn to

induce a down-regulation of Kit expression. Our findings reveal a

novel aspect of signaling crosstalk between Kit and EpoR and

highlight a central role for Lyn in SCF signaling extinction at the

CFU-E/proerythroblast stage.

Materials and Methods

Cell lines and proliferation assays
The spi-1-transgenic proerythroblastic cell lines (633, 663, 812)

have been previously described in details [9]. Cells were grown in

alpha MEM medium supplemented with 10% fetal bovine serum

(FBS) and SCF or Epo or both cytokines in combination at the

indicated concentrations. Cells were plated at 26105 cells/mL and

the number of living cells was monitored at 48 hours by Trypan

blue exclusion using a Vi-Cell analyzer (Beckman Coulter,

Villepinte, France). For cytokine switching experiments, exponen-

tially growing cells were washed 3 times in MEM and then plated

at 26105 cells/mL in culture medium with the cytokines indicated.

AG490 (Calbiochem, Strasbourg, France) and JAK inhibitor1

(Calbiochem, Strasbourg, France) were used at a concentration of

10 mM and 20 nM, respectively.

Flow cytometry and antibodies
Untreated cells were incubated for 30 min at 4uC with

Phycoerythrin (PE)-conjugated anti-CD117 (c-Kit) or PE-conju-

gated IgG2b control monoclonal antibodies (BD Pharmingen,

Strasbourg, France). After washing, cells were analyzed on a

FACsortH with the Cellquest software package (Becton Dickinson,

Meylan, France).

DNA constructs and transfection
The wild-type (WT) Lyn cDNA was amplified by RT-PCR from

mRNAs prepared from 663 cells. The Myc epitope (MT) was

added at the cDNA C-terminus by PCR and the MT-LynWT

construct was cloned into the pEF-BOS expression vector by

standard cloning procedures. The mutant LynY397F cDNA was

generated by mutagenesis of the MT-LynWT construct using the

quickchange site-directed mutagenesis system (Stratagene, La

Jolla, CA) according to the manufacturer’s recommendations.

Cells were nucleofected with 5 mg of plasmid using an Amaxa

nucleofector (Amaxa Biosystems, Köln, Germany). Stable trans-

fectants were selected in growth medium containing 800 mg/mL

G418 (Invitrogen, Cergy, France) and Epo (1 U/mL).

Western blotting and antibodies
Whole cell extracts were fractionated by SDS-PAGE, blotted

and visualized as previously described [16]. The following primary

antibodies were used: rabbit anti-Kit antibodies provided by P.

Dubreuil (Inserm, Marseille, France) [17] or from Cell Signaling

(Beverly, MA), anti-EpoR, anti-Lyn and anti-Stat5 antibodies from

Santa Cruz Biotechnology (Santa Cruz, California), anti-phos-

photyrosine 4G10 clone from Upstate Biotechnology (Lake Placid,

NY), anti-phospho-c-Kit (Tyr719) and anti-phospho-Stat5

(Tyr694) from Cell Signaling (Beverly, MA), anti-b actin antibody

from Sigma-Aldrich (St Louis, MO) and anti-myc (epitope 9E10)

from Roche Diagnostics (Mississauga, Ontario, Canada).

Semiquantitative RT-PCR
RNAs were prepared as previously descibed [9]. RNAs were

reverse transcribed using Superscript II reverse transcriptase

(Invitrogen). cDNAs were amplified by RT-PCR with specific

primers for Kit, EpoR and Lyn: Kit-fw59-TCCTCgCCTCCAA-

gAATTg-39 and Kit-rev 59-ggAAgCCTTCCTTgATCATC-39,

EpoR-fw 59- ggCTCCgAAgAAcTTCTgTg-39 and EpoR-rev 59-

CCAggAgCACTACTTCATTg-39, Lyn-fw 59-GATCCAGAG-

GAACAAGGTGA-39 and Lyn-rev 59-TGACATCACCATGCA-

TAGGG-39.

Results

Kit expression is modulated by cytokines
The three proerythroblastic cell lines (633, 663, 812) used in this

study were derived from erythroleukemic spleens of three

individual spi-1 transgenic mice [9]. The cells were continously

amplified in vitro in the presence of either Epo (1 U/mL) or SCF

(100 ng/mL) [18]. Each cell line exhibited characteristic prolifer-

ation rates that were reproducibly observed over times. In

response to either Epo or SCF, 633 cells were highly proliferative,

663 cells showed an intermediary proliferation rate and 812 cells

proliferated at a low rate (Figure 1A). To gain insights into the

possible causes leading to proliferation rate disparity, we analyzed

the expression level of receptors for Epo (EpoR) and SCF (Kit) by

immunoblotting. Different levels of EpoR expression were

detected in each cell line, but these levels were comparable

whether the cells were cultured with Epo or SCF (Figure 1B).

Unexpectedly, the highest EpoR levels were seen in 812 cells that

proliferated poorly in response to Epo. To check for EpoR activity,

we analyzed Stat5 phosphorylation [19,20]. Phosphorylated Stat5

(P-Stat5) was detected in the 3 cell lines grown with Epo with the

highest level seen in 812 cells that exhibited the highest EpoR

expression level. P-Stat5 was undetectable in cells grown with SCF

(Figure 1B). Next, we analyzed Kit expression levels in the 3 cell

lines grown under the 2 cytokines conditions. Clearly, Kit levels

were high in cells exhibiting a robust proliferative response to SCF

(cell lines 633 and 663). As a read out for Kit activity, detection of

the phosphorylated-Y719-Kit form was performed by immuno-

blotting. P-Y719-Kit was clearly seen in all cells grown with SCF,

but not in Epo-cultured cells (Figure 1B). Strikingly, total Kit

expression levels were significantly higher in cells grown with SCF

compared to cells grown with Epo. Modulation in Kit expression

was also detected at the surface of cells grown with Epo or SCF by

flow cytometry analysis. The mean Kit-specific fluorescence (MFI)

level was increased about 2.5 fold in 663 and 812 cells cultured

with SCF compared to cells grown with Epo (Figure 1C). Similar

results were obtained for 633 cells (data not shown). Collectively,

these data suggested that cytokines could modulate Kit expression

levels in leukemic proerythroblastic cells, while no major effect

were seen on Epo-R expression.

Kit expression is under Epo control
Next, we compared the EpoR and Kit expression levels in the

cell lines cultured in a combination of Epo+SCF (SCF was added

in Epo-cultured cells for 5 days) to cells cultured with either Epo

alone or SCF alone. On Western blotting, Kit expression levels

were high with SCF alone, but significantly reduced when Epo was

present (Figure 2A). Similarly, cell surface modulation of Kit

expression was also detected by flow cytometry analysis with a Kit-

specific MFI higher in cells grown with SCF alone than in cells

expanded with Epo+SCF (Figure 2B). These data were evocative

of a modulation of Kit expression by Epo. To check this

hypothesis, we investigated the effects of AG490 and JAK

inhibitor 1, both inhibiting Jak2 kinase activity. P-Stat5 was used

as a read out for the inhibitory effects of AG490 and JAK inhibitor

1. Both inhibitors had similar effects and only data with AG490

Down-Regulation of Kit by Epo
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were shown. After a 48 hrs exposure to AG490 (10 mM), P-Stat5

was undetectable on Western blotting in cells cultured with Epo

(1 U/mL), although total Stat5 levels were unchanged (Figure 2C).

Strikingly, inhibition of EpoR signaling in AG490-treated cells was

accompanied by an increase in Kit expression as compared to

untreated cells. The Kit increase was also detected at the cell

surface of AG490-treated cells by flow cytometry analysis

(Figure 2B). Altogether, these data indicated that the modulation

of Kit expression was dependent on Jak2 activity and suggested

that activation of EpoR could act as a repressor of Kit expression.

We next assessed whether the modulation of Kit expression by

Epo affected the proliferation of cells cultured in the presence of a

combination of Epo+SCF (Figure 2D). When Epo (1 U/mL) was

combined with SCF (100 ng/mL) cell growth was similar to that in

the presence of Epo (1 U/mL) alone (Figure 1A), indicating that

Epo and SCF did not cooperate for cell proliferation. In contrast, a

cooperative effect on proliferation was observed when SCF

(100 ng/mL) was combined to Epo at a limiting dilution

(0.1 U/mL) (Figure 2D) since cell growth was comparable to

Epo alone (1 U/mL) (Figure 1A). These data indicated that the

low expression of Kit was the reason why Epo at high dose did not

cooperate with SCF.

To learn more about the molecular mechanisms involved in the

Epo-dependent regulation of Kit protein expression, we first

investigated whether this process was associated to variations in Kit

transcription. The expression level of kit transcripts was analyzed

by semi-quantitative RT-PCR using RNAs extracted from cells

cultured in the presence of either Epo or SCF (Figure 2E). The

expression level of EpoR transcripts was similarly investigated.

Amplification of Kit transcripts was elevated in SCF-cultured cells

but was poorly efficient in Epo-cultured cells whereas EpoR

transcript levels were not affected by cytokines. These data

strongly suggested that the regulation of Kit expression by Epo was

dependent on a transcriptional process.

Figure 1. Proliferation of spi-1 transgenic proerythroblasts and expression of EpoR, Kit and Stat5. A: Cells were continuously cultured in
the presence of Epo (1 U/mL) or SCF (100 ng/mL). Number of living cells was monitored at 24, 48 and 72 hours using the Trypan blue exclusion
staining and a Vi-Cell analyzer (Becton Coulter). Mean number of living cells and standard deviations were determined from 3 independent
experiments performed in duplicate. B: Representative Western blot of lysates from cells grown with Epo (1 U/mL) or SCF (100 ng/mL). Antibodies
raised against the proteins are indicated on the left of the panel. P-Stat5 and P-Kit antibodies detect Stat5 and Kit phosphorylated forms. The blot was
probed with an anti-b-actin antibody to visualize the protein loading. The membrane was exposed in an Imager, and the resulting signal was
quantified using the ImageGauge software package (Fuji, Paris, France). Values were normalized to b actin expression. The fold change in Kit
expression between Epo or SCF-cultured cells is indicated at the bottom of each cell line. C: Representative diagram of flow cytometry analysis
showing cell surface expression of Kit in 663 and 812 cells cultured with Epo (dotted line) or SCF (black line). Control IgG profile is shown in grey. The
table indicates the mean fluorescence intensity (MFI)6SD of positive cells from four independent experiments.
doi:10.1371/journal.pone.0005721.g001
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Reversible down-regulation of Kit in response to Epo
The above data were obtained with cells continously cultured

with Epo or SCF. Thus, we cannot exclude that they reflected the

abilities of Epo and SCF to favor some cell selection rather than a

genuine process of response to cytokines. Thus, we investigated

whether Kit levels could be reversibly modulated in response to a

change in cytokines. 663 and 812 cells cultured in the continuous

presence of Epo (1 U/mL) were extensively washed and then

switched to SCF (100 ng/mL). 48 hrs later, cell extracts were

analyzed by immunobloting with an anti-Kit antibody. Switching

from Epo to SCF induced a marked increase in Kit level

(Figure 3A). Reciprocally, Kit levels were decreased when cells

were switched from SCF to Epo for 48 hrs (Figure 3B). These

variations in Kit expression were also detected at the cell surface

by flow cytometry analysis. The Kit-specific MFI was increased

when cells were switched from Epo to SCF and conversely was

decreased after switching from SCF to Epo (Figures 3A, 3B).

When cells continuously grown with SCF were switched to various

concentrations of Epo for 48 hrs, Kit expression levels were

reduced in an Epo-dose dependent manner (Figure 3C). The rapid

Figure 2. Down-regulation of Kit expression by Epo. A: Kit and EpoR expression were studied in the 633, 663 and 812 cells grown continuously
in the presence of either Epo (1 U/mL) or SCF (100 ng/mL) or a combination of Epo (1 U/mL)+SCF (100 ng/mL). Whole cell lysates were subjected to
Western blot analysis with antibodies directed against Kit, EpoR and b-actin as a loading control. Western blots are from a representative experiment.
The membrane was exposed in an Imager, and the resulting signal was quantified using the ImageGauge software package (Fuji, Paris, France).
Values were normalized to b actin expression. The fold change in Kit expression between SCF-cultured cells and either Epo or Epo+SCF-cultured cells
is indicated under Kit immunoblotting. B: Representative diagram of flow cytometry analysis showing Kit membrane expression in cells cultured with
SCF (100 ng/mL; black line) or Epo+SCF (dotted line). Control IgG profile is shown in grey. The table indicates the mean fluorescence intensity
(MFI)6SD of four independent experiments. C: AG490 inhibits the down-regulation of Kit by Epo. Cells were cultured for 48 hrs in a medium
containing 10% FBS, 1 U/mL Epo and in the presence or absence (-) of AG490 (10 mM). Representative Western blot analysis of whole cell lysates with
antibodies directed against Kit, Stat5 and phosphorylated Stat5. b-actin was used as loading control. The fold change in Kit expression between
AG490-treated and untreated cells is indicated under Kit immunoblotting. Representative diagram of flow cytometry analysis showing Kit membrane
expression in 663 and 812 cells cultured with Epo and treated (black line) or not (dotted line) with AG490 (10 mM) for 48 hrs. Control IgG profile is
shown in grey. The table indicates the mean fluorescence intensity (MFI)6SD of positive cells in three independent experiments. D: Cells were
cultured for 24, 48 and 72 hrs in the presence of a combination of Epo (1 U/mL)+SCF (100 ng/mL) or Epo (0.1 U/mL)+SCF (100 ng/mL) and viable
cells were numbered. Data are mean6SD of five experiments, each performed in duplicate. E: The regulation of Kit expression is transcriptional: RT-
PCR analysis of Kit and EpoR transcripts in 633, 663 and 812 cells cultured in the presence of either Epo (1 U/mL) or SCF (100 ng/mL). cDNAs were
amplified with specific primers for Kit, EpoR or gapdh as control.
doi:10.1371/journal.pone.0005721.g002
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up or down modulation of Kit levels in response to cytokine

changes, the absence of cell death (data not shown) during

cytokine changes and the reversibility of the phenomenon

indicated that they did not result from a selection process. We

thus concluded that activation of Epo-R could mediate a fine

regulation on Kit expression.

Lyn is a downstream Epo-R effector expressed in
response to Epo

The next issue was to identify the effectors downstream of EpoR

that may participate in the regulation of Kit expression. According

to the known function of Src kinases in signaling from growth

factors receptors [21], we investigated the expression of Src kinases

in 633, 663 and 812 cells when cultured either in the presence of

Epo or SCF. The expression of Lyn, Lck and Src could be

detected in these cells. We found that Lyn expression was different

according to the cytokines added in the culture medium.

Immunoblotting with the anti-Lyn antibody in Figure 4A showed

that Lyn was expressed in cells cultured with Epo but not with

SCF. In contrast, no differences in Lck and Src expressions were

observed that cells were cultured with either Epo or SCF (data not

shown). Of note, Lyn expression profiles differed in each cell lines

and correlated with EpoR expression levels. Thus, we investigated

whether Epo could regulate Lyn expression. SCF-cultured cells

were extensively washed in culture medium with no cytokine and

then cultured for 48 hrs in the presence of increasing Epo

concentrations. Immunoblotting of cell extracts with the anti-lyn

Figure 3. Reversible down-regulation of Kit in response to Epo. Switch from Epo to SCF (A) and switch from SCF to Epo (B): 663 and 812 cells
continuously cultured with Epo (1 U/mL) or SCF (100 ng/mL) were extensively washed with medium without cytokine and then expanded for 48 hrs
with SCF (100 ng/mL) or Epo (1 U/mL), respectively. Whole cell lysates were subjected to Western blot analysis with antibodies directed against Kit,
EpoR and b-actin as a loading control. The fold change in Kit expression following the switch in cytokines is indicated under Kit immunoblotting.
Representative diagrams of flow cytometry analysis showing Kit expression on the surface of cells expanded with Epo (dotted line) or SCF (black line).
Control IgG profile is shown in grey. The tables indicate the mean fluorescence intensity (MFI)6SD of positive cells in at least four independent
experiments. C: Switch from SCF to various concentrations of Epo. 663 cells cultured with SCF (100 ng/mL) were extensively washed with medium
without cytokine and then expanded for 48 hrs with Epo at doses indicated. Whole cell lysates were subjected to Western blot analysis with
antibodies directed against Kit, EpoR and b-actin as a loading control. The fold decrease in Kit expression following the switch from SCF to various
doses of Epo is indicated under Kit immunoblotting. Western blots are from a representative experiment repeated 3 times.
doi:10.1371/journal.pone.0005721.g003
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antibody revealed that Lyn expression was induced in a dose

dependent manner with levels readily detectable at 0.25 U/mL of

Epo (Figure 4B). Likewise, P-Stat5 activation levels increased with

Epo concentration. Thus, Epo induced both Lyn expression and

Stat5 activation in a dose-dependent manner. To conclusively

confirm the role of EpoR activation in the modulation of Lyn

expression, the effect of AG490 on Lyn expression level was

investigated by Western blotting (Figure 4C). Lyn expression was

abolished when AG490 (10 mM) was added in the culture medium

containing Epo, which indicated that Lyn expression was

dependent on EpoR/Jak2 activation. Together, these data

demonstrated that Lyn expression is under Epo control in spi-1

transgenic proerythroblasts.

To determine whether the variations in Lyn protein expression

were associated to variations in the expression level of Lyn

transcripts, RT-PCR analyses of RNAs prepared from cells

continuously cultured with either Epo or SCF were performed.

Lyn transcripts were only detected in Epo-cultured cells (Figure 4E)

suggesting that Epo might transcriptionally control Lyn expression.

Lyn down-regulates Kit expression
To explore whether Lyn was a link between EpoR activation

and Kit down-regulation, we used an enforced expression strategy.

An expression vector encoding Lyn tagged with a Myc epitope

(MT) at the C-terminus (MT-LynWT) and the neomycine

resistance gene (NeoR) was stably transfected in Epo-cultured

663 cells. Control cells were transfected with an empty vector

encoding NeoR. G418-selected clones were selected in the

presence of Epo and then amplified in the presence of Epo or

SCF. Among those, two MT-LynWT and two control clones were

studied in details and gave similar results. Only data with one

clone are shown herein. Expression of exogenous MT-LynWT was

detected by Western blotting with an anti-MT antibody and Lyn

global expression was measured with an anti-Lyn antibody

Figure 4. Epo controls Lyn expression. A: Lyn and EpoR expression were studied in 633, 663 and 812 cells continuously grown in the presence of
either Epo (1 U/mL) or SCF (100 ng/mL). Whole cell lysates were subjected to Western blot analysis with antibodies directed against Lyn, EpoR and b-
actin as a loading control. B: Switch from SCF to Epo induces the expression of Lyn. 663 and 812 cells cultured with SCF (100 ng/mL) were extensively
washed with medium without cytokine and then expanded for 48 hrs with Epo at the indicated doses. Whole cell lysates were subjected to Western
blot analysis with antibodies directed against Lyn, Stat5, phosphorylated-Stat5 and b-actin as loading control. C: AG490 inhibits the expression of
Lyn. 663 and 812 cells were cultured for 48 hrs in a medium containing 10% serum in the presence or absence of AG490 (10 mM) and in the presence
of Epo (1 U/ml). Whole cell lysates were subjected to Western blot analysis with antibodies to Lyn, EpoR and b-actin. Western blots are from a
representative experiment. D: RT-PCR analysis of Lyn transcription in 633, 663 and 812 cells cultured in the presence of either Epo (1 U/mL) or SCF
(100 ng/mL). DNAs were amplified with specific primers for Lyn or gapdh as control.
doi:10.1371/journal.pone.0005721.g004

Down-Regulation of Kit by Epo
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(Figure 5A). Whether transfected cells were cultured with Epo

(1 U/mL) or SCF (100 ng/mL), Kit expression levels were

markedly decreased in cells overexpressing LynWT (compare

663-LynWT to 663-neo cells, Figure 5A). In contrast, EpoR

expression was not affected. Next, we generated a vector encoding

a dominant-negative form of Lyn (mutant Y397F) [22] tagged in

its C-terminus (MT-LynY397F) to inhibit Lyn function. Stable

G418-resistant transfectants were selected and amplified in the

presence of Epo. As illustrated in Figure 5B, expression of MT-

LynY397F detected by immunoblotting with the MT antibody was

associated with an increase in Kit level in the Epo-cultured cells.

Thus, Lyn inactivation by a dominant-negative mutant allowed an

up-regulation of Kit expression.

The biological consequences of Lyn overexpression were

examined by studying cell proliferation over a 48 hrs period.

Transfected cells continuously maintained in Epo before and

during the selection process remained strictly Epo dependent since

no growth occurred in the absence of Epo. At the three Epo

concentrations tested, the number of living 663-LynWT cells was

approximately 2-fold increased compared to control 663-neo cells

indicating that overexpression of Lyn was associated with a growth

advantage (Figure 5C). In contrast to cells overexpressing LynWT

Figure 5. Expression of LynWT and LynY397F in 663 cells. (A) A clone of 663 cells stably transfected with pEF-neo LynWT or pEF-Neo empty
vector was expanded in the presence of Epo (1 U/mL) or SCF (100 ng/mL). Whole cell extracts were subjected to Western blot using anti-MT, anti-Lyn,
anti-EpoR, anti-Kit antibodies and anti-b actin as a loading control. The fold increase in Lyn expression and the fold decrease in Kit expression
between pEF-Neo and pEF-neo LynWT transfected cells are indicated under Lyn or Kit immunoblotting. (B) 663 cells were transfected with pEF-neo
LynY397F or pEF-Neo empty vector. Proliferation of 663 cells expressing LynY397F and cultured in the presence of Epo (1 U/mL). Whole cell extracts
were subjected to Western blot using an anti-MT, anti-Lyn, an EpoR, an anti-Kit and an anti-b actin antibody as a loading control. The fold increases in
Lyn and Kit expressions between pEF-Neo and pEF-neo LynY397F transfected cells are indicated under Lyn or Kit immunoblotting. C: Transfected 663-
neo and 663-LynWT cells were plated at 26105 cells/mL in medium containing Epo or SCF at concentrations indicated or with no cytokine. Viable cells
were scored after 48 hours. Data are mean6SD of five independent experiments performed in triplicate. *indicates statistical significance by student t
test: P,.05 compared with the control neo-cells. D: Transfected 663-neo and 663-LynY397F cells were plated at 26105 cells/mL in the presence of
increasing concentrations of Epo and viable cells were scored after 48 hours. Data are mean6SD of five independent experiments performed in
triplicate. Results are shown for one 663-LynWT clone and one 663-LynY397F clone. Experiments were performed with another clone in each category
and similar results were obtained. *indicates statistical significance by student t test: P,.05 compared with the control neo-cells.
doi:10.1371/journal.pone.0005721.g005
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and grown with Epo, the growth of 663-LynY397F cells in the

presence of Epo was reduced compared with control cells

indicating that the dominant negative Lyn mutant was able to

counteract the ability of Lyn to favor Epo-induced proliferation

(Figure 5D). An opposite effect of Lyn was seen when cells were

grown with SCF. Indeed, the growth rate of 663-LynWT cells in

the presence of SCF was reduced compared to 663-neo cells

(Figure 5C). Thus, the intracellular presence of Lyn was not

compatible with the expansion of proerythroblastic cells in the

presence of SCF. This result is consistent with the ability of Lyn to

down-regulate Kit expression.

Discussion

During erythropoiesis, SCF and Epo tightly control the pool size

of erythroid progenitor cells that will survive, divide or

differentiate. From CFU-E to erythroblasts, the subtle balance

between Epo and SCF responses results from a gradual decline of

Kit expression associated to an increase in EpoR expression.

However, the signaling mechanisms underlying the down-

regulation of Kit and the up-regulation of EpoR are poorly

understood, mainly because of the poor accessibility, the rarity and

the transience of the CFU-E. The spi-1 transgenic proerythroblasts

no longer undergo differentiation and are arrested at the CFU-E/

proerythroblast transition, but these cells retain their dependency

to Epo or SCF for survival and proliferation. This experimental

system, in which expansion is uncoupled from maturation, was

used to examine the mechanisms controlling the proliferative

responses of proerythroblasts to Epo or SCF. We show that Epo

down-regulates Kit expression and that Lyn kinase behaves as a

mediator of SCF signaling through controlling Kit expression.

The proerythroblastic cell lines derived from the spleen of

diseased spi-1 transgenic mice are morphologically [9] and

cytologically (our unpublished data) similar, and resemble CFU-

E/proerythroblastic cells. They have intrinsic proliferative capac-

ities and express Kit and EpoR at different levels. This

heterogeneity may reflect subtle differences in the level at which

the maturation arrest provoked by the overexpression of the spi-1

transgene occurred and/or to genetic or epigenetic variability in

the cell lines.

We took advantage of this heterogeneity to investigate the

molecular processes involved in the control of Kit and EpoR

expression in response to their cognate ligands. Each cell line (six

were studied and three are shown) had a proliferation rate in the

presence of SCF that was correlated with the level of Kit

expression. However, we observed that Kit levels were modulated

by the cytokine used to expand the cells (Epo versus SCF) and that

this modulation was rapidly reversible by a change in cytokine.

Modifications in Kit levels were detected both in whole cell

extracts and at the cell surface indicating that they in fine may lead

to a modified response to SCF. The variations in surface

expression of Kit analyzed by flow cytometry were significantly

lower than that of total amount of cellular Kit analyzed by SDS-

PAGE. These differences might be a consequence of the

occurrence of Kit receptor internalization following SCF-induced

activation [23,24]. Because of the unavailability of EpoR

antibodies for flow cytometric analysis, determination of the cell

surface expression of EpoR was not performed. However, no

obvious variation in EpoR expression could be detected in whole

cell extracts whether cells were stimulated with Epo or SCF. The

high Kit level in SCF-cultured cells was reminiscent of a

mechanism involving SCF as a modulator of its own receptor

expression as described for IL-3, CSF-1 and GM-CSF [25]. In

contrast, we observed that Kit expression was down-regulated by

Epo and that this down-regulation was inhibited by AG490, an

inhibitor of EpoR signaling.

During hematopoiesis, Kit is expressed in immature and lineage

progenitors and is down-regulated upon terminal erythroid

differentiation. Accordingly, SCF enhances proliferation and

retards differentiation of the erythroblasts and forced expression

of Kit in erythroid precursors impairs their maturation [26,27].

Different mechanisms leading to attenuation of Kit signaling have

been reported. A mechanism involves SCF binding to Kit that

induces a rapid internalization of the ligand-receptor complex and

its degradation through an ubiquitination process [28,29].

Another process refers to the down-regulation of Kit activation

by negative effectors such as the SH2-containing protein tyrosine

phosphatase SHP1 [30]. Such mechanisms can be ruled in our

system since Kit down-regulation was seen in the absence of SCF,

when cells were grown with Epo. Others mechanisms involve a

regulatory control at the Kit transcriptional level. In erythropoiesis,

transcription factors such as Tal-1 [31] and GATA-1 [27,32] are

repressors of Kit transcriptional expression. Our RT-PCR

experiments revealed evident differences in Kit transcripts levels

in cells cultured with Epo compared to cells cultured with SCF, a

higher expression of Kit transcripts being detected in SCF-cultured

cells. Though changes in mRNA stability are an alternate

mechanism to explain a variation in mRNA amount, it is

attempting to speculate that a transcriptional mechanism is most

probably involved in the regulation of Kit expression in

proerythroblastic cells. More investigations are required to

characterize such a mechanism. Our findings of the down-

regulation of Kit expression by Epo in the context of a late

erythroid progenitor at the transition CFU-E/proerythroblast

highlight that Epo is capable to switch off the expression of Kit in

maturing erythroblasts. This process may also limit the cooper-

ation between the two cytokines for proerythroblast proliferation

and survival.

Several laboratories have described synergistic features between

Kit and EpoR co-signaling to maintain the growth and survival of

erythroid progenitors in vitro [33–37]. One mechanism involves

EpoR as a direct downstream effector of Kit signaling through

transphosphorylation induced by SCF. More indirectly, Kit

signaling contributes to the sustained expression of Stat5 protein

which can then be activated by Epo [38]. Target gene products of

the EpoR-activated Stat5 axis can also contribute to enhance Kit

signaling [39]. Finally, in the human hematopoietic stem cell-like

cell line HML/SE, stimulation of Kit by SCF activates transcription

of the EpoR gene making the cells responsive to Epo [40]. Similarly,

we observed a cooperative effect between Epo and SCF for the

survival and proliferation of spi-1 transgenic proerythroblasts. It

should be noted that cooperation was seen only at a limiting Epo

concentration when Kit expression was up-regulated. In contrast,

when Epo was used at a suboptimal concentration (1 U/mL) in

combination with SCF, Epo was the only player in controlling cell

proliferation. It is reasonable to propose that the down-regulation of

Kit expression leads to the loss of SCF responsiveness. In this

regard, SCF and Epo cooperation would be restricted to early stages

of erythropoiesis when Kit level is high. This agrees with data

localizing the physical interaction of Kit and EpoR before or at the

CFU-E stage [34] and with results indicating that elevated levels of

Epo abolish the requirement for SCF-mediated signals in in vivo

erythropoiesis [41].

Our findings add to our knowledge of Lyn action in

erythropoiesis. Analyses of Lyn-deficient mice revealed that

CFU-E exhibited a reduced proliferative capacity associated with

attenuated responses to Epo and SCF and that erythroblasts

presented defects in survival and maturation [42–44]. It was thus

Down-Regulation of Kit by Epo

PLoS ONE | www.plosone.org 8 May 2009 | Volume 4 | Issue 5 | e5721



proposed that Lyn was involved in the expansion of late erythroid

progenitors and the development of mature erythroblasts. Lyn has

been described as a downstream effector of Epo in promoting

erythroid differentiation [22,45]. Then, Lyn participates in Stat5

activation and phosphorylation of EpoR [46]. Our findings show

that Lyn sustains the Epo-dependent proliferation agreeing with a

role of Lyn in the proliferation of late erythroid precursor cells.

Furthermore, ectopic Lyn overexpression in SCF-cultured cells

resulted in a reduction in Kit expression making cells poorly

responsive to SCF. This observation underlines a dual role for Lyn

as a positive effector in Epo signaling and a negative effector in Kit

signaling and presents Lyn as a major mediator of the balance

between Epo and SCF responsiveness during proliferation of

proerythroblastic cells.

Stat5 phosphorylation is induced by Epo in erythroid cells

[19,47] and this activation depends on kinases associated with

EpoR: the Jak2 kinase [48] and tyrosine kinases of the Src family

such as Lyn in murine [22,46] and Src in human erythroblasts

[49,50]. Although the activation of Stat5 downstream of SCF/Kit

has been reported in the myeloid MO7e cells [51], it remains

infrequent. Indeed, Stat5 is not activated by SCF in the erythroid

cell lines HCD57 [35] and G1E-ER2 [38] as well as in primary

erythroid progenitors [52,53,54]. Similarly, we found that Stat5

was not activated by SCF in spi-1 transgenic proerythroblasts. In

contrast, Stat5 was activated by Epo. Because phosphorylated

Stat5 levels in cells cultured under Epo paralleled the expression

level of Lyn, a prediction could be that Stat5 was an effector

downstream of Lyn in Epo-dependent proliferation of cells.

Though Stat5 has been characterized as a direct substrat for

Lyn during Epo-induced differentiation of the J2E cell line [22], it

is not determined whether Lyn induces similar signaling during

cell proliferation in response to Epo. Alternatively, Lyn was an

Epo-responsive gene and could be a Stat5 transcriptional target

gene. Induction of Lyn protein expression by Epo was associated

to induction of RNA expression. Further investigation is required

to know whether Stat5 controls the transcription of Lyn through

direct binding to its transcriptional promoter.

In conclusion, our findings on the down-regulation of Kit

expression by the EpoR/Lyn pathway in the context of a late

erythroid progenitor cell (CFU-E/proerythroblast transition)

provide some insights into the mechanisms leading to Kit

extinction in maturing erythroblasts. We postulate that the control

of Kit expression during erythroid development results from

interference between Epo and SCF signaling where activation of

the EpoR/Lyn pathway would lead the proerythroblast to the

strict Epo dependency through mediating extinction of Kit

expression. In this light, it will be interesting to determine if such

a down-regulation of the activity of a cytokine active on early

multipotent progenitors by a cytokine active later on the

maturation of a lineage specific progenitor illustrates a general

process in the hematopoietic development.
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