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Abstract

Environmental DNA (eDNA) sampling has emerged as a powerful tool to detect and quantify

species abundance in aquatic environments. However, relatively few studies have com-

pared the performance of eDNA-based abundance estimates to traditional catch or survey

approaches in the field. Here, we have developed and field-tested a qPCR assay to detect

eDNA from alewife and blueback herring (collectively known as ‘river herring’), comparing

eDNA-based presence and abundance data to traditional methods of quantification

(ichthyoplankton sampling and adult observations). Overall, the qPCR assay showed very

high target specificity in lab trials, and was successful in detecting river herring for 11/12

Chesapeake Bay tributaries in spring 2015 and 2016, with 106 out of 445 samples exhibiting

positive eDNA hits. We found a strong correlation between eDNA abundance and ichthyo-

plankton count data (Spearman’s Rho = 0.52), and Phi-tests (correlation of presence/

absence data) showed higher correlation between eDNA and ichthyoplankton data (Phi =

0.45) than adult data (Phi = 0.35). Detection probability was significantly lower on western

vs. eastern shore tributaries of Chesapeake Bay, and blueback herring and alewife were

more likely detected on the western and eastern shores, respectively. Temporal patterns of

eDNA abundance over the spring spawning season revealed that alewife were present in

high abundances weeks ahead of blueback herring, which aligns with known differences in

spawning behavior of the species. In summary, the eDNA abundance data corresponded

well to other field methods and has great potential to assist future monitoring efforts of river

herring abundance and habitat use.

Introduction

Accurate information on the abundance and spatial distribution of aquatic species is essential

for understanding their ecology and for their management in increasingly human-impacted

environments. However, capture-based sampling and tracking of mobile species, such as fish,
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are complicated by their movements or migration, which can vary seasonally, daily, or in

response to environmental change [1–5]. For invasive, threatened, or rare species that are at

low densities, accurate estimates of abundance may be even more challenging due to low prob-

ability of encounter in the environment [6–10]. Traditional approaches to assess fish abun-

dance involve relatively invasive capture methods such as electrofishing or net collection,

which vary in their efficiency and precision (e.g. [11–16]), may be challenging to implement in

certain environments (e.g. [17]), and can be harmful to threatened species [18–19]. Other

visual or acoustic-based methods to survey and enumerate fish, such as video capture or active

sonar, present alternative, less invasive approaches that can be quite effective and quantitative

[20–27], but may also be expensive and laborious to deploy over large spatial scales.

Environmental DNA (eDNA) sampling or surveillance has recently emerged as a powerful,

non-invasive alternative to capture-based techniques to detect the presence/absence or abun-

dance of species in their environment (e.g. [28–31]). eDNA sampling is based on the premise

that species (aquatic and terrestrial) leave behind DNA in the environment through the

sloughing of cells, excretion of urine/feces, or release of gametes, which can be detected in soil

or water (after DNA extraction) via highly sensitive molecular approaches like quantitative

PCR [30,32]. eDNA analysis appears to be particularly well-suited to detect rare or elusive taxa

in aquatic environments because of the high sensitivity of the assays (detections down to a few

DNA copies) and the relatively simple sampling protocol (~0.5–3 liters sampled from surface

waters), which allows widespread sampling across a range of field conditions that can be diffi-

cult for traditional survey approaches such as electrofishing [33–35]. Initially developed for

detection of species in freshwater environments (e.g. [33, 35, 36–38]), eDNA analysis has now

been applied extensively in other systems, including marine and estuarine environments [39–

41], detecting and quantifying a number of vertebrate and invertebrate species to answer eco-

logical and conservation questions.

As the field of eDNA analysis has grown and matured, significant advances have been made

in understanding the effect of various environmental and technical factors on the detection of

eDNA, as well as the potential for eDNA abundance data to predict actual abundances in the

environment [31,42]. For example, lab or mesocosm-based studies have explored the role of

temperature on both degradation of eDNA and eDNA shedding rates (e.g. [43–46]), as well as

how light, time, and flow impact eDNA shedding and detection [47–49]. A variety of preserva-

tion and sampling approaches have also been tested (e.g. [50]) and detailed analyses of the

effect of filter material and pore size on eDNA abundance has been conducted [51–52]. Prog-

ress has also been made examining the association between eDNA abundance and actual fish

abundances or biomass. In laboratory, mesocosm, and field studies, eDNA and biomass often

show strong, positive associations (e.g. [33, 36, 44]) using either qPCR (copy number) or high-

throughput metabarcoding data [40, 53]; however, the strength of these associations vary sig-

nificantly, especially in the field [42]. Biomass appears to be a better predictor than abundance

when available, but some debate still exists about how well eDNA data can match actual den-

sity or biomass estimates from more traditional catch-based survey approaches (e.g. [54]) and

environmental factors are known to have a major effect on eDNA detection probabilities in

the field (e.g. [46–47]). Models of detection probability that incorporate expected eDNA degra-

dation (decay) rates and transport under a range of environmental conditions informed by

experimental data may improve the accuracy of abundance inferences from eDNA (e.g. [44,

52]), but more work is needed in this area. Before eDNA can become more widely integrated

into conservation or management programs, additional studies comparing eDNA abundance

with traditional fisheries data are needed.

In this study, we developed and tested an eDNA assay to detect and quantify the abundance

of two anadromous fish species, alewife Alosa psuedoharengus and blueback herring Alosa
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aestivalis, collectively known as river herring, in the Chesapeake Bay watershed. Ranging from

Newfoundland to South Carolina (alewife), and the Gulf of St. Lawrence to the St. Johns River

in Florida (blueback herring), river herring enter freshwater environments in spring to spawn,

and play important roles in coastal food webs as agents of nutrient transfer between marine

and freshwater environments and as prey for coastal birds and fishes [55–57]. One of the oldest

fisheries in North America, river herring landings have declined sharply since the 1970’s [58,

59] due to loss of spawning habitat, overfishing, and degradation of water quality. River her-

ring are currently considered species of concern across their range [59–62]. The mid-Atlantic

stocks of river herring, which include Chesapeake Bay spawning runs, are of particular conser-

vation concern based on declining trends in fishery landings [63] and apparent susceptibility

to by-catch in the Atlantic herring fishery [64]. While long-term stock status information

based on run count data is available in some regions, it is particularly lacking in Chesapeake

Bay [58]. Monitoring efforts in the Chesapeake Region have recently been established using

Dual-frequency Identification Sonar (DIDSON) and electronic fish counters, the former

showing promise for accurately quantifying run strength in turbid, free-flowing streams [27]

and the latter showing promise where fish passage is restricted to a narrow fish passage struc-

ture (Alan Weaver, personal communication). However, these approaches can be costly to

install and maintain and only provide information for the particular locations where they are

installed. Alternative methods to estimate presence or abundance of river herring, such as

eDNA sampling, have been proposed as potentially cost-saving approaches to monitor the

abundance of river herring over a wider geographic scale in the Mid-Atlantic.

Here, we present results on the development of a qPCR assay for river herring and its per-

formance over two years of eDNA field sampling (spring 2015, 2016) across a number of

major tributaries and rivers in Chesapeake Bay (Fig 1). We also examine associations between

abundance estimates based on eDNA data vs. traditional rapid assessment methods (visual/

cast net observation of adults and ichthyoplankton surveys), as well as patterns of eDNA abun-

dance across major tributaries of the Chesapeake Bay and over the spawning season.

Materials and methods

Assay development

Publicly available mitochondrial DNA sequences from river herring and a number of phyloge-

netically similar fish species (e.g. other shad, alosids and clupeids) were collected from NCBI

Genbank and aligned in AliView v.1.18 [65] to examine the suitability of different loci for

designing a qPCR assay. Significant numbers of sequences were available for cytochrome oxi-

dase 1 (hereafter CO1), cytochrome B, NADH2, and 18SrRNA among others, but only CO1

contained regions with sufficient numbers of diagnostic nucleotide differences between river

herring and other closely related alosids for probe design. In particular, relatively low sequence

divergence was found between American shad (Alosa sapidissima) and river herring for many

of the loci screened, which reflects their relatively close evolutionary history (e.g. [66]). Hickory

shad Alosa mediocris is even more closely related to river herring, but fewer mitochondrial

sequences were publicly available, and none for CO1 at the time of assay design. To supplement

alignments of CO1 for design of the probe/assay, unpublished sequences for hickory shad and a

number of other Chesapeake Bay fishes (especially clupeids) were added from the Smithsonian’s

Chesapeake Bay Barcode Initiative (GenBank accession numbers MH570218-MH570250;

sequences in S1 File). In total, 68 sequences from 12 species including all alosine fish present in

Chesapeake Bay were used in the alignment, with a minimum of ~600 bp shared among

sequences (S1 File). A ~50 bp region of CO1 exhibiting ~8–10 sequence differences between

river herring and American or hickory shad (but no polymorphism between alewife and
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blueback herring) was targeted for probe design. Because of the very high sequence similarity

between alewife and blueback herring, the probe and primer set was designed to amplify both

species. Identification to species (alewife or blueback herring) was performed after positive

eDNA (qPCR) detection via Sanger sequencing (see below).

Details of the qPCR assay

Molecular beacon probes (e.g. [67]) and PCR primers were designed in the OligoArchitect

software (Sigma Aldrich) targeting a ~50 bp region within CO1 and requiring that amplicons

be 200 bp or smaller. We chose to design a molecular beacon assay to provide better target

specificity and reduce off-target amplification or hybridization to highly similar shad DNA.

Four primer/probe sets met the software’s design threshold and were ordered from Integrated

DNA Technologies (IDT, Coralville, IA), but only one produced consistent amplification, low

background, and minimal off-target amplification in initial testing with fin-clip DNA samples.

The beacon was dual-labeled with a fluorophore (FAM) and quencher (IOWABlack; see

Fig 1. Map of eDNA and field sampling locations in Chesapeake Bay. Inset shows the focus region (Chesapeake Bay in Red) within the United States of

America.

https://doi.org/10.1371/journal.pone.0205578.g001
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Table 1 for primer and probe information). Quantitative PCR was performed on the BioRad

CFX 96 qPCR instrument (Biorad, Hercules CA) in 20 μl volumes with 10 μl of BioRad 2X

SSO advanced universal probe super mix, 0.7 μl of each primer and probe (10μM), 3.9 μl of

water, and 4 μl of DNA. PCR cycle conditions were as follows: 95˚C for 45 seconds followed by

44 cycles of 95˚C for 5 seconds, 60˚C for 15 seconds, and 72˚C for 10 seconds, with a plate

read after each cycle. Cycle threshold (Cq) values for each sample were determined with the

BioRad CFX Manager software (v3.1) using a single-point threshold set at 100 RFU and the

baseline substitution curve fit for drift correction.

To determine the initial copy number of the CO1 probe region for any given sample, a stan-

dard curve was made using a synthesized oligo (IDT GeneBlocks) of the 164 bp CO1 region.

The stock geneblock oligo (1 ng/μl) was diluted to 300,000 copies based on mass, and then seri-

ally diluted down to 30 copies to complete the standard curve. The five standards (300,000 cop-

ies to 30 copies) plus a water blank (zero copies) were run in duplicate for each qPCR assay (12

standards run on each plate). Cq value, the PCR cycle at which fluorescence rises above back-

ground, was regressed against log copy number to examine the expected fit of the standards:

qPCR plates (samples) which produced an r2 value of less than 0.98 were re-run.

Initial testing of the assay

Initial tests of the assay were conducted using DNA samples of river herring (alewife and blue-

back herring) from Chesapeake Bay and Massachusetts, extracted from fin clips. Tests for

assay specificity and performance were carried out using a wide range of potential non-target

species that included closely related alosids (e.g. hickory shad and American shad), locally

occurring fish in the family clupeidae (of which river herring are members; e.g. atlantic herring

Clupea harengus, bay anchovy Anchoa mitchilli, gizzard shad Dorosoma cepedianum, and

Atlantic menhaden Brevoortia tyrannus) and other co-occurring, but more distantly related

fish (e.g. striped bass Morone saxatilis and Atlantic sturgeon Acipenser oxyrinchus oxyrinchus).
Fin-clips were stored in 70–95% non-denatured ethanol (EtOH) prior to extraction with the

Qiagen DNeasy kit (Valencia CA). The qPCR assay was run on known target (river herring)

and non-target samples along with water blanks to assess amplification and assay performance

in advance of testing for the presence of herring DNA in environmental water samples.

Environmental sampling in Chesapeake Bay

Water samples were collected by wading out from shore or by boat at 196 sites across 12

tributaries in Chesapeake Bay in the spring of 2015 and 2016 (Fig 1, Table 2). Polypropylene

bottles (1 L) were autoclaved before use and filled with approximately 800 mL of water from

sample sites (to leave room for expansion during frozen sample storage). Care was taken to

Table 1. qPCR primers and PCR conditions.

Primer name Sequence Cycle conditions2

CO1_RH-F ATGAGCTTCTGACTACTT 1. 95C for 45 sec

2. 95C for 5 sec

CO1_RH-R GATAGTTAGATCGACGGA 3. 60C for 15 sec

4. 2 C for 10 sec

Beacon_RH1 CGCGATCGGATGAACAGTCTACCCGCCCTTGATCGCG 5.Go to step 2 for 39� cycles

1Beacon synthesized as 100 nm IDT ‘PrimeTime’ probe, labeled 5’ 6-FAM / 3’ IBFQ.
2Plate read on CFX96 after ever cycle See methods for PCR/probe reagents.

�Forty-five cycles were run for initial assay testing, but amplification data was only assessed up to cycle 39 for environmental samples (see methods below, and results).

https://doi.org/10.1371/journal.pone.0205578.t001
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ensure that sample site water flowed directly into bottles without contamination from water

contacted or stirred up by the sample collector, and that the inside of the bottle and cap were

not touched. Randomly selected bottles were filled with deionized water in the lab to serve as

‘cooler blanks’. These control bottles were held in the cooler with sample bottles, and dunked

in the stream (with the top closed) at a site where herring presence was expected. Water sam-

ples were transported in coolers back to the lab at Smithsonian Environmental Research Cen-

ter (SERC) in Edgewater, MD, where they were frozen at -20˚C until being transported to

Horn Point Lab (Cambridge, MD) for filtering and extraction.

Water samples for eDNA analysis were collected as part of a larger habitat use and monitor-

ing study of river herring in Chesapeake Bay, in which parallel monitoring data was generated

for river herring adult presence (and visual identification to species including hickory and

American shad, if possible), and river herring ichthyoplankton abundance. Presence of adult

river herring, hickory shad, and American shad was determined by visual survey of up to a

25-m section of stream, depending on site accessibility. In larger, deeper, or more turbid

streams where the full water column could not be seen, or in smaller streams where river her-

ring or shad were observed, a cast net (1.52-m radius with 9.53-mm mesh) was thrown at least

three times in an attempt to capture individuals for identification to species. Visual assessment

was not intended to be a comprehensive survey, but rather a rapid assessment that could be

done quickly at a large number of sites. Ichthyoplankton were collected using a plankton drift

net (46 cm x 30 cm with 500 μm mesh and a 200 mL cod end) following standard methods

used by Maryland Department of Natural Resources (e.g. [68]). The net was deployed for 5

min, and water velocity was measured using a flow-meter (JDC Electronics Flowatch) for con-

version to sample volume. Contents of the cod end were rinsed into a 500 mL Nalgene bottle

using 80% EtOH, with a goal of sample preservation in ~70% EtOH. Fish eggs and larvae were

sorted, identified, and enumerated under a dissecting microscope following [69, 70]. Identifi-

cation of eggs to species was not possible, with results of COI DNA barcoding of individual

eggs suggesting those considered to be from river herring could also be hickory shad or gizzard

shad (Ogburn, unpublished data). Ichthyoplankton counts were standardized by sample vol-

ume prior to analysis. Ichthyoplankton sampling was conducted under Smithsonian

Table 2. Sampling sites and basic results.

Shore River Num. Sampling Sites eDNA hits1

Eastern Choptank 29 28/77

Eastern Nanticoke 32 19/63

Eastern Northeast 10 6/20

Western Deer Creek 8 1/15

Western Gunpowder 9 2/18

Western James 26 11/42

Western Mattaponi 9 2/17

Western Pamunkey 11 4/30

Western Patapsco 10 10/65

Western Patuxent 16 7/32

Western Piankatank 1 1/1

Western Rappahannock 32 15/63

Western York 2 0/2

Totals 195 106/445

1 number of water samples with positive hits / number of water samples taken in that tributary

https://doi.org/10.1371/journal.pone.0205578.t002
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Environmental Research Center Animal Care and Use Committee Study #03_01_13 and

IACUC permit # D16-00392 (A3655-01). Eggs and larvae were euthanized in a solution of

~70% ethanol. All sampling procedures were approved as part of these permits and no fish

were housed or experimented upon in this study.

Prior to filtering, all water samples were thawed for 4–8 hours at room temperature or over-

night at 4˚C and exact volumes were recorded to adjust eDNA copy estimates of positive

detections (see below). Samples were filtered on autoclaved Pall filter housings using 47 mm

(diameter) Whatman cellulose nitrate filters with 1.0 um pore size. This pore size and filter

retains particles with macrobial eDNA produced by fish (e.g. [71]), yet allows the rapid filtra-

tion of most 1 liter samples onto a single filter disk. Filters were stored at -80˚C in individual

15 ml Falcon tubes until extraction with the Omega Biotek EZNA Water kit (Norcross, GA).

Filters (up to three per sample) were cut into small strips before the lysis step and were

removed just prior to the first centrifugation step. Otherwise, manufacturer specifications

were followed exactly. Extractions were eluted into 100 μl of elution buffer, quantified with the

Invitrogen Qubit 2.0 Fluorometer (High sensitivity DNA kit), and stored at -20˚C until qPCR

assays were run.

Quantitative PCR was run with 4 μl of sample DNA in triplicate, along with the duplicated

standards (300,000 to 30 copies), two water blanks (no template controls), and an inhibition

control for each sample DNA. For the inhibition controls, an additional 300,000 copy standard

was spiked with 1 μl of each unknown to quantify the positive shift (if any) in Cq value due to

inhibitory compounds that may been co-purified with the DNA sample. Samples that pro-

duced Cq values below 39 (see results below for explanation of Cq cut off) in at least two of the

three reactions were considered positive eDNA detections (river herring present) and relative

abundance (in mtDNA copy number) was calculated and reported for each detection. Gene

copy number estimates were adjusted for each sample (i) based on the volume of water filtered

(standardized to 1 Liter):

adjusted copyi ¼ ½1000ml � sample voli ðmlÞ� � eDNA copy numberi:

Because 4 μl of DNA (out of 100 μl eluted) were run in each qPCR reaction (in triplicate), copy

number reported (eDNA copies) represents copies per 40 mL of water sampled.

Validation of qPCR results and species identification via Sanger sequencing

Each eDNA sample that produced a positive qPCR detection (at least 2/3 Cq values lower than

39) was tested for species identity (one of the two river herring species expected) via Sanger

sequencing in re-amplifications of the DNA sample without the probe (e.g. using the forward

and reverse primers only). PCR reactions were performed on the Biorad CFX96 with the 2x

BioRad SYBR Green mastermix, and amplicons were sequenced on an ABI-3730 capillary

sequencer in the forward direction at the Arizona State University DNA lab. Resultant

sequences were then examined by eye with Chromas Pro (v.2.15; Technelysium Pty), com-

pared with known, reference sequences, and confirmed with BLAST searches to the entire

NCBI ‘nt’ database. For sequences that showed multiple peaks at a diagnostic SNP within the

amplicon (amplicon bp 104: T/C, alewife/blueback herring) we used QSVAnalyzer v. 6-12-

2012 [72] to quantify the ratio of the peak heights and infer relative proportion of species DNA

from the raw sequence files. The QSVAnalyzer software examines the heights of the peaks

from the preceding and succeeding 6–10 bases around the SNP and calculates an adjusted

peak height ratio at the focal SNP that corrects for base-specific variation in peak height. We

demonstrated the accuracy of inferring species DNA proportions from nucleotide peak heights

with tests of in vitro mixes of fin-clip extracted DNA from the two river herring species at a
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range of known ratios (e.g. 1:1, 1:2, 1:4, 1:10 alewife:blueback and blueback:alewife DNA),

which were PCR amplified, sequenced, and run through QSVanalyzer. Known proportions of

species DNA (proportion of alewife DNA used) were regressed against DNA proportions

inferred from peak height analyses, using both corrected and uncorrected approaches, to

examine correspondence and accuracy of this approach before applying it to environmental

samples.

Spatio-temporal mapping of eDNA and correlation analysis

Presence or absence and relative abundance of river herring based on the qPCR eDNA data

were characterized across Chesapeake Bay to examine gross spatial patterns of detection and

habitat use during spring of 2015 and 2016. Environmental DNA abundance data (mtDNA

copy number) and PCR inhibition data were mapped spatially across Chesapeake Bay sam-

pling locations. Temporal patterns of eDNA abundance data over the spring months were also

examined. Finally, patterns of eDNA abundance were examined across the two shores of Ches-

apeake Bay (eastern and western) with the Susquehanna River the dividing line between the

two (Fig 1). Spatial and temporal analyses were conducted for river herring as a species group,

and for each species separately, based on the BLAST results of Sanger sequences produced for

each eDNA detection, apportioning copy number (abundance) between the two species based

on the relative peak height ratios produced by QSVAnalyser (see above). Variation in the pro-

portion of samples with inhibition across rivers was assessed using the Marascuilo procedure

[73], which permits simultaneous testing of the differences in proportions among all pairs of

rivers. In order to examine the correspondence of eDNA data to traditional methods of abun-

dance estimation (i.e. visual observations of adults and ichthyoplankton counts at these sites),

non-parametric correlation (Spearman’s Rho) was performed on the quantitative data

(ichthyoplankton count vs. eDNA copy number), and Pearson’s Phi-Coefficients were calcu-

lated to assess correlation between presence/absence (detection or no detection) data for adult

vs eDNA data sets and ichthyoplankton vs eDNA data sets. All statistical analyses were per-

formed in R v. 3.4.3 [74] with maps and figures produced using the ‘ggplot2’ and ‘ggmap’ pack-

ages [75, 76]. River herring abundance data (eDNA, adult, ichthyoplankton) including

location and date information, are deposited in Dryad (doi:10.5061/dryad.n60t8b3).

Results

qPCR assay results and performance

Tests of the molecular beacon assay with fin-clip extracted DNA from river herring and a

number of non-target fishes showed that the assay was highly specific to river herring (Fig 2).

No amplification (no detectable increase in fluorescence after 45 qPCR cycles) was ever

observed for hickory or American shad, which are the two most closely related alosids to river

herring and often co-occur with river herring within river systems in Chesapeake Bay [77].

Most other non-target species also lacked amplification completely; however, inconsistent,

weak (late) amplification was detected for DNA samples from gizzard shad and menhaden,

with one of three samples producing a Cq value as low as 38–39, though other replicates did

not amplify (>45 cycles). This occurred in lab trial qPCR reactions with 50 ng of purified, fin-

clip DNA, and no amplification was observed with less DNA (20–25 ng). In contrast, amplifi-

cation of river herring fin clip DNA was robust, consistent, and much stronger, producing Cq

values of ~18–24, which is similar to the Cq values produced by the 300,000 copy standard of

the synthesized oligo for the 164bp CO1 region (Fig 2). To be conservative, only Cq values 39

or below were considered as true eDNA detections in downstream analyses of environmental

samples (see below). Sanger sequencing of trial qPCR amplifications of river herring DNA
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confirmed that the expected 164 bp region was amplified from river herring (alewife or blue-

back herring).

To explore the potential for estimating relative abundance of alewife or blueback herring

DNA in mixed environmental samples, we examined peak heights at a diagnostic nucleotide

(bp 104: alewife-T, blueback-C) in sequences generated from of a series of ‘mock’, known-

concentration mixes of river herring DNA pools. Sequencing of these mixed DNA pools

Fig 2. qPCR results for lab trials of target and non-target fish. 300K and 3K copy samples are the PCR results for respective synthesized standards on the standard

curve, ‘GzShad’ is gizzard shad, ‘Men’ is menhaden, ‘Hick’ is hickory shad, ‘Amer’ is American shad, and ‘Awife’ and ‘BBack’ are alewife and blueback herring,

respectively. BL is a no template control (blank).

https://doi.org/10.1371/journal.pone.0205578.g002
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revealed a very strong correlation between expected DNA ratios and QSVAnalyzer estimates

of species proportions from peak heights over a range of DNA ratios (1:1 to 1:10). As shown in

S1 Fig, there was high correspondence between the expected proportion of each species DNA

using both the corrected (linear regression P = 1e-10, R2 = 0.968) and uncorrected methods

(linear regression P = 1e-12, R2 = 0.967). Correcting peak heights via proximal base height

averages around the variant site appeared to improve the accuracy of the species composition

estimates slightly, with a slope that was closer to the expected 1. Corrected peak height ratios

were used to estimate the number of eDNA copies from each species in positive detections

with both alewife and blueback herring DNA.

Environmental sampling and eDNA abundance across Chesapeake Bay

Between 2015 and 2016, 462 1-liter water samples were collected from a variety of locations

within river systems on the eastern and western shores of Chesapeake Bay (Fig 1). An addi-

tional 45 water samples were collected as field or “cooler” blanks (deionized water samples

brought to the field and dunked in the sampling stream) that were blind to molecular lab tech-

nicians (sent with normal river/site labels), to test for lab, handling, or transport-based con-

tamination. None of the 45 controls produced any amplification. Of the 462 environmental

samples taken, 445 were processed in the lab for eDNA analysis, 23.82% of which generated

positive eDNA detections (106/445, Table 2). The magnitude of eDNA abundance (starting

copy number) ranged from ~ 1 copy up to 499,066 copies, with a mean of 31,388 copies and

median of 1,771 copies; most (78%) positive detections were under 100,000 copies (Fig 3). The

number of positive eDNA detections was fairly consistent between years (46 out of 201 sam-

ples analyzed in 2015, 60/244 in 2016; Fisher test P = 0.73) despite sampling of different river

systems across years. River herring eDNA was detected across most of the major river systems,

as shown in Fig 4, with multiple, large magnitude (high copy number) detections in the North-

east, Choptank, and Nanticoke rivers on the eastern shore, and the Patapsco, Rappahannock,

and James rivers on the western shore. PCR inhibition, quantified as a three cycle or greater

positive shift in Cq values of the spiked control, was detected in 38.3% of the samples overall,

and differences in the proportion of samples showing inhibition were detected across rivers

(Chi-square homogeneity test, P = 7.5e-06; S2 Fig). Inhibition appeared to be higher in slower-

moving, coastal plain streams that have more dissolved organic matter (e.g. Choptank River,

James River, Nanticoke River, Rappahannock River) compared with faster moving, piedmont

streams (e.g. Deer Creek, Northeast River, Gunpowder River, Patuxent River). Using the Mar-

ascuilo approach for pairwise comparisons of inhibition proportion among rivers [73] signifi-

cant differences were observed for eight river comparisons, all of which were between a

piedmont steam/river (Gunpowder, Northeast, or Deer Creek) and a coastal plain stream/river

(Nanticoke, James, Choptank, Mattaponi—tributary of the York River).

Post-qPCR validation of positive hits (Cq values under 39) with Sanger sequencing pro-

duced readable sequence data for 104/106 samples, with 102/104 showing 100% identity

(NCBI Blast-n; E-values<1e-35) to alewife (N = 53), blueback herring (N = 30) or both (multi-

ple peaks at diagnostic C/T SNP at 104bp; N = 19). Sequences from two samples (no polymor-

phism at 104bp) matched blueback herring at 95–97% identity, and local BLAST searches to

SERC sequences used as part of our assay development revealed 100% match to hickory shad,

which did not have a CO1 sequence published in NCBI Genbank at the time of the analysis.

Using the corrected peak height ratios at the diagnostic C/T SNP permitted calculation of the

number of mtDNA (CO1) copies for each species in multiple-species samples, by multiplying

the relative ratio of the T:C or C:T peak heights by the eDNA copy number for alewife and

blueback herring, respectively. Including these additional data points, spatial and temporal
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comparisons of species-specific patterns of eDNA detections in 2015 and 2016 revealed that

both alewife and blueback herring are found across most rivers, as expected, but with very dif-

ferent detection probabilities on the eastern and western shores of Chesapeake Bay (Fig 5: see

S5 Fig for breakdown by year). On the eastern shore, 46 vs. 12 positive eDNA hits were identi-

fied as alewife and blueback herring respectively, while on the western shore, 26 vs. 37 hits

were identified as alewife and blueback herring respectively, the ratios of which are signifi-

cantly different than expected by chance (Fisher exact test P = 2.09e-05). In general, eDNA

detection probability was much higher on the eastern vs. western shores (53 out of 160 samples

with positive detections on the eastern shore vs. 52 out of 284 samples with positive detections

on the western shore; Fisher exact test P < 2.0e-12). Finally, variation in species-specific

eDNA relative abundance (magnitude) and detection probability showed an interesting tem-

poral pattern, with stronger and more frequent eDNA detections earlier in the season for ale-

wife (March—April 15; Mann-Whitney U test, p = 0.004), versus stronger, more frequent

detections for blueback herring later in the spring (April 15 –mid May; Mann Whitney U test,

p<0.0001; Fig 6). This result follows reported differences in the spawning biology of the two

Fig 3. Histogram of positive eDNA detection copy numbers from 2015–2016. eDNA abundance (copy number) is plotted on a log scale from 1

copy up to 1 million (x-axis), with the count of occurrences (number of samples) within each histogram bin on the y-axis. eDNA copy numbers for

each sample reflect the initial number of mtDNA copies per 40 mL of water filtered.

https://doi.org/10.1371/journal.pone.0205578.g003
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species, in which alewife migrate and spawn at lower temperatures (i.e. earlier in the spring)

than blueback herring [78–80, 27].

Correlation between eDNA and traditional methods of abundance

estimation

While the eDNA data provide interesting patterns of detection probabilities and changes in

river herring abundance over space and time, it is also important to consider how they com-

pare to data from traditional abundance estimation approaches such as ichthyoplankton sam-

pling and adult observations. Data for 361 sampling events were available across all three data

sets (i.e. no missing data on a given date/location for ichthyoplankton, adult, or eDNA data

sets), and were used for subsequent correlation analyses. First, we examined correlation

between data sets based on presence/absence data (i.e. eDNA hit/observation = 1 or no eDNA

hit/observation = 0), which allowed inclusion of the adult observation data set. Summary

cross-tables and pairwise Phi-coefficient estimates are shown in Fig 7. We found statistically

Fig 4. Map of positive river herring eDNA detections across Chesapeake Bay. Size of data points (positive detections) proportional to the magnitude of

amplification (mean mtDNA copies) and are colored by tributary. eDNA copy numbers for each sample reflect the initial number of mtDNA copies per 40

mL water filtered.

https://doi.org/10.1371/journal.pone.0205578.g004
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significant correlations among all three measures (P< 5.0e-12), with highest Phi-coefficient

estimates between eDNA and ichthyoplankton (0.45) and lowest Phi estimates between adult

and eDNA data sets (0.35). We also examined the association between the quantitative eDNA

abundance data (number of mtDNA copies in 1 L of water from a given sample) and ichthyo-

plankton count data, the sum of all eggs and larvae identified as river herring in a given sample,

using Spearman’s-Rho statistic, a non-parametric correlation test appropriate for zero-inflated

data. The Spearman correlation coefficient was high and very significant (Spearman’s

Rho = 0.52, P< 2.2e-16). Moreover, distribution-free permutation tests also confirmed that a

value this high was extremely unlikely to occur by chance (S3 Fig). Regression of log (base 10)

eDNA copy number on log (base 10) ichthyoplankton counts also showed significant depen-

dence or correspondence between the two measures (R2 = 0.40, p = 2e-16; S4 Fig). There is

Fig 5. Map of positive eDNA detections broken down by species (alewife or blueback herring). Size of the point is proportional

to the magnitude of amplification (mean mtDNA copies). eDNA copy numbers for each sample reflect the initial number of

mtDNA copies per 40 mL of water filtered.

https://doi.org/10.1371/journal.pone.0205578.g005
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significant spread around the regression line, but there appears to be a very strong relationship

between these two estimates of river herring abundance.

Discussion

Recent declines in river herring abundances across their US east coast range have prompted

more intensive monitoring efforts and spurred the development of alternative approaches to

Fig 6. Temporal distribution of eDNA copy number (abundance) by species, during spawning. Data for years 2015

and 2016 combined. Multiple data points (filled circles) at the same date (i.e. same x-axis coordinate) reflect samples

taken either on the same day at different sites (same year) or the same date across years.

https://doi.org/10.1371/journal.pone.0205578.g006
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assess run strength and characterize patterns of river herring habitat use across human-medi-

ated landscapes. Environmental DNA (eDNA) sampling represents a promising alternative

approach to detect and quantify river herring abundance in aquatic environments that is

highly sensitive but less invasive and potentially less labor-intensive than traditional capture-

based survey approaches. In this study, we developed and tested a qPCR assay to detect the

Fig 7. Correlation results (Phi coefficients) among the abundance metrics. Panel A shows the summary tables for each pairwise

comparison (0 = no detection, 1 = positive detection); panel B shows a multiple correlation plot displaying Phi-coefficient values, with

filled circles proportional to the magnitude of the Phi coefficient.

https://doi.org/10.1371/journal.pone.0205578.g007
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presence and relative abundance of river herring in tributaries of Chesapeake Bay, with the

goal of providing an additional tool for river herring monitoring. Overall, the eDNA assay

showed very high target specificity, performed well across a range of field samples and envi-

ronments in Chesapeake Bay, recovered interesting spatial and temporal patterns among the

species, and produced abundance (copy-number) and presence/absence data that corre-

sponded well with visual surveys of adults and net counts of larvae and eggs (ichthyoplankton

sampling).

Assay specificity and performance

Lab trials with DNA extracted from a variety of ecologically relevant (co-occurring) or phylo-

genetically similar species (e.g. alosids and clupeids) demonstrated that the herring qPCR

assay had very high target specificity (Fig 2). Observations of late and inconsistent amplifica-

tion in menhaden and gizzard shad (38 or 39 cycles and above) were possibly due to fewer mis-

matches of the probe for these species (e.g. at the probe site, menhaden sequences had one less

nucleotide mismatch compared with hickory shad sequence). The design of the molecular bea-

con probe was focused primarily on excluding closely related alosids (American and hickory

shad), which presented a significant challenge in assay design due to the high similarity in

CO1 sequence (e.g. only ~3–5% divergence over 650 bp of CO1 between river herring and

hickory shad). Amplification of off-target species was only seen for high-concentration fin-clip

DNA templates, and only in the later cycles of the qPCR run (>38 cycles). Moreover, Sanger

sequence validation of positive eDNA detections from the field showed that PCR amplicons

derived from river herring DNA in all but two cases, in which the sequence was identified as

hickory shad. However, it is important to note that the Sanger sequence validation used only

the forward and reverse primers (no probe), and thus was much less specific than the full

probe set, which never amplified hickory shad in lab trials; Fig 2). Overall, the molecular bea-

con assay developed here proved to be highly specific to river herring, and produced reliable,

repeatable eDNA abundance data in lab and field trials.

One of the drawbacks of our single probe qPCR design was that it could not distinguish

between the two river herring species in a single assay reaction, requiring subsequent sequence

validation of each positive eDNA detection to identify which species was present. Though the

sequence validation provided a useful quality check on each positive detection, it added some

additional labor and cost. Our initial attempts to develop a dual-probe assay (one for each

river herring species) were thwarted by the relatively few sequence differences between the two

river herring species (~8 individual base differences across 650bp CO1, ~98.8% similar). In

fact, there are three diagnostic SNPs across the 164 bp amplicon of our probe assay, which

clearly allows discrimination of blueback herring from alewife based on full, Sanger sequence

data, but we were unable to design a suitable qPCR primer/probe set around these particular

nucleotides that also distinguished (lacked complementarity to) hickory and American shad.

A high-throughput metabarcoding approach targeting the CO1 region (e.g. [40, 81]) or other

gene regions would likely solve this, or the design of a qPCR assay for a nuclear marker might

provide better resolution of the two species and facilitate the development of a dual-probe

assay for species discrimination in a single reaction. For now, however, this qPCR assay

appears to be very robust and reliable, and is deployable on a scalable, as-needed basis with

variable throughput (1 or 500 samples), using technology and expertise that should be available

at most molecular labs with a quantitative PCR machine.

Finally, it is important to note that PCR inhibition was observed in a number of field sam-

ples, the frequency of which appeared to vary by river, with coastal plain streams exhibiting

more frequent and sometimes complete PCR inhibition compared to piedmont streams (S2
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Fig), which we speculate could be due to elevated organic matter content. Though the DNA

extraction kit we used is designed for isolating DNA from water samples and includes reagents

that facilitate the removal of potential inhibitors such as humics, going forward, additional

DNA cleanup steps will need to be incorporated into the eDNA pipeline.

Comparison of eDNA detection to traditional catch methods

Correlation and regression analyses using multiple approaches (parametric, non-parametric,

and permutation-based) indicated that relative abundance of river herring estimated via

eDNA copy number from field samples corresponded very well to traditional abundance esti-

mation methods. Pairwise Phi-coefficients calculated among all three datasets for presence/

absence data, revealed higher correlations between eDNA and ichthyoplankton compared

with eDNA and adult observation data (Phi = 0.45 vs 0.35, for eDNA-Ichthyoplankton and

eDNA-Adult data, respectively; P<0.0001 for both comparisons). Adult presence data were

generally more sporadic in their collection due to variable flow conditions, site access issues

(dense vegetation in late spring), or user conflicts (we were not permitted to cast net in Mary-

land at sites with recreational anglers present) that prevented or complicated observation at

certain sampling sites on particular days. Because our adult sampling methods were designed

for rapid assessment rather than comprehensive sampling (e.g. [82]), we expected that the

eDNA assay would detect river herring where adults were present, but would also detect them

in many places where adults may have been present but were not observed in the adult survey.

Sampling adults can be particularly challenging due to the episodic nature of the spawning run

[27]. Ichthyoplankton surveys are likely to be more sensitive as they capture any plankton or

eggs traveling downstream over a certain period of time and don’t require good visibility in

the water, though identification of eggs and even small larvae to species by observation can be

difficult. Correlation analysis using quantitative abundance data revealed very good associa-

tion between ichthyoplankton and eDNA data sets (Spearman’s Rho = 0.52), further solidify-

ing the strong relationship between eDNA and early life-stage abundance data.

The finding of strong correlations between river herring adult and ichthyoplankton obser-

vations and eDNA abundance adds to a small but growing number of studies that have investi-

gated the relationship between animal density metrics and eDNA abundance in field samples

across a range of species. For amphibians, [33, 37, 38] showed significant correlations between

biomass or density and eDNA. For fish, [36] showed significant correlations between biomass

and eDNA in experimental ponds and [35] found that probability of detection increased with

relative abundance of fish species. More recently, [31] reported that eDNA abundance of lake

trout correlated well with gill net catch per unit effort data and [83] reported high correlations

between biomass/density and eDNA abundance of a freshwater fish. Clearly, estimates of envi-

ronmental DNA abundance (e.g. copy number or DNA concentration) can produce accurate

information about animal densities or animal presence/absence that correlate well with esti-

mates from traditional, capture-based approaches.

Despite highly significant correlations between river herring eDNA abundance and

ichthyoplankton counts, the fit of the regression of these variables was rather poor (R2 = 0.40;

S4 Fig) compared to previously published data from freshwater systems or pond/mesocosm

studies (e.g. [83, 36, 37]). This result might indicate that the predictive power of eDNA to esti-

mate river herring abundance in these rivers may be somewhat limited; however, there are a

few factors related to our sampling approach or analyses that might be obscuring this relation-

ship. First, ichthyoplankton collected in nets are often not identifiable to species (especially

not eggs), and thus, positive counts may include species other than river herring. A number of

the ichthyoplankton ‘positive’, eDNA ‘negative’ (no detection) data points could actually be
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true negatives because eggs/larvae collected were from other, morphologically similar species

(e.g. hickory shad). Second, eDNA abundance estimates may be decoupled from ichthyoplank-

ton counts if detections are based on eDNA from adults that are present in the river system.

Adults may enter the system before they spawn or may reside for some time after spawning, so

positive eDNA detections of adult eDNA may appear to conflict with negative ichthyoplankton

counts when in fact they are representing true adult eDNA detections. Finally, variation in

environmental conditions across these rivers (e.g. flow, organic matter, salinity) may also have

contributed to variable eDNA detection. For example, we observed clear differences in PCR

inhibition across rivers and among stream types (piedmont vs. coastal plain; S2 Fig) that may

be related to variation in organic matter content. If samples with evidence of inhibition (i.e.

spiked standard Cq value increased by 3 or more) are removed from the analysis, the Phi-coef-

ficient estimate of correlation between eDNA and ichthyoplankton data actually increases

(from 0.45 to 0.52), as does the Spearmans correlation (0.52 to 0.60) and the log-log regression

r-squared (from 0.40–0.48), indicating that PCR inhibition has had at least some effect on our

analyses. Variable flow conditions also made ichthyoplankton sampling difficult in certain

instances and variable transport speeds or transport distances of eDNA may alter detection

probabilities substantially (e.g. [46, 49]). Few previous studies have examined eDNA abun-

dance across a large spatial range and in such a dynamic tidal river system like Chesapeake

Bay, so it is not clear how comparable these data are to those from previous studies. Future

efforts to refine inferences of animal density or biomass from eDNA concentration will, of

course, require more sophisticated incorporation of environmental data (e.g. temperature,

flow; [46]) into statistical models of detection probability that can adequately address some of

the inherent issues of eDNA sampling (e.g. over-dispersion; [42]).

Given the timing of eDNA sampling during river herring spawning in the spring, the higher

correlation between eDNA and ichthyoplankton data might indicate that the eDNA signal is

coming primarily from gamete, embryo or larval DNA. Gametes are the product of spawning

adults in the river system, so the relatively lower correlation between eDNA and adult data

could simply reflect the reduced quality or prevalence of adult observation data. An important

shortcoming of eDNA sampling is that it is difficult or impossible to know the life stage source

of the eDNA, and in our study, it is impossible to know the relative contribution of eDNA

sources (adult or offspring) to the eDNA data collected. Nevertheless, eDNA sampling during

spawning may be more effective in general (higher detection probability) due to the increased

amount of gamete-derived eDNA or adult-derived eDNA (sloughed cells, feces, mucous) dur-

ing spawning over a geographically restricted area. Indeed, other studies have shown that

eDNA detection is likely influenced by seasonal activity or season-specific behavior of sala-

mander species (e.g. [84]). Sampling of rivers after river herring spawning is complete, as

adults are exiting a particular river system, and comparing detection probabilities to those dur-

ing spawning, may shed light on the relative difference in detection probabilities between

adult vs. gamete eDNA in the environment.

Finally, the temporal pattern of species-specific abundances revealed by the eDNA data fur-

ther demonstrates the ecological relevance of the assay. Alewife eDNA detection probability

and relative abundance was higher in rivers earlier in the spring, when water temperatures

were lower (earlier spawning or migration), while blueback herring eDNA was detected with

greater frequency and magnitude later in the spring (later spawning or migration; Fig 6). This

is a significant result because it demonstrates that the eDNA data alone can recover differences

in species biology (migration or spawning timing) that have been widely observed and

reported in the literature (e.g. [78–80, 85, 27]). Moreover, from a practical standpoint, this

finding suggests that eDNA may be a useful tool for tracking the species-specific patterns of

spawning timing or initiation of migrations up river, which has significant potential
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management use. Overall, based on the correlation results and the observed temporal patterns

of eDNA abundance data that align with known differences in species biology, it is clear that

eDNA-based detection of river herring provides high quality data on presence and relative

abundance that corresponds well to more traditional estimates of presence and density.

Spatial patterns of eDNA detection and abundance

In general, river herring were detected fairly equally across years and across most tributaries in

Chesapeake Bay, but a couple of interesting spatial patterns emerged. First, we found that

eDNA detection probabilities were much more likely on the eastern (33% samples with posi-

tive eDNA detection) vs. western (18% samples with positive eDNA detection) shores. A simi-

lar disparity in detection probability was also observed for the ichthyoplankton data (46% and

17% detection probability of ichthyoplankton on the eastern vs. western shores, respectively;

Fisher exact test P< 2.0e-08), indicating that this was not an artifact of the eDNA method

through PCR inhibition or some other mechanism. At face value, these findings would suggest

that river herring may be more abundant on the eastern shore; however, we stress that this is

only a preliminary observation and more targeted and repeated sampling is needed to confirm

this result. The potential explanations for the observed disparity in river herring detection

between shores are numerous, but one obvious possibility is that habitat or land use might

drive the abundance differences. For example, the eastern shore of Maryland is notably more

rural with a greater proportion of land use dedicated to agriculture, while the western shore is

significantly more developed and urbanized, with more impervious surfaces and reduced

riparian buffers, which can have important consequences for stream ecosystems (e.g. [86]).

Thus, it is possible that rivers in less developed watersheds can support greater abundances of

river herring. However, it could also be argued that watersheds that are heavily influenced by

agriculture production could have reduced water and habitat quality due to fertilizer runoff

and nutrient loading, balancing out the advantages of reduced development. It is also possible

that the eastern shore has historically (i.e. from pre-industrial times) supported more river her-

ring due to any number of physical, biological, or habitat features of the particular rivers that

we sampled, which may be completely unrelated to recent human activities. Genetic differ-

ences between eastern and western shore stocks of both alewife and blueback herring have also

been observed using microsatellite markers [87], adding additional uncertainty in the potential

causes of patterns in abundance.

Another interesting spatial pattern that emerged was that the probability of detecting the

two river herring species differed significantly between the shores of Chesapeake Bay, with ale-

wife more common among eastern shore eDNA detections and blueback herring more com-

mon among western shore detections. This result follows the above-mentioned finding of

relatively lower detection probabilities for river herring on the western shore overall (where

blueback herring are more likely, but detected at lower frequency). Of course, it is not clear

whether land use/habitat features, inherent biological or physical characteristics of rivers that

pre-date major anthropogenic forces, genetic structure, or a combination of these factors are

driving differences in species-specific occupancy rates within rivers or across shores. Again,

we can only speculate about the potential causes of the disparate detection probabilities of the

two species across Chesapeake Bay shores, but this is a very interesting result that, to our

knowledge, has not been documented in previous surveys of river herring abundances in

Chesapeake Bay tributaries. A much more comprehensive and sophisticated modeling of habi-

tat use by river herring that integrates multiple forms of abundance data (including eDNA)

and a full analysis of spatial GIS/landscape variables is required to more completely under-

stand spatial patterns of river herring abundance and distribution, and is the subject of
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ongoing work. However, this preliminary analysis of spatial differences in eDNA detection

probabilities demonstrates the potential power of eDNA sampling for rapid assessment of the

distribution and abundance of river herring or other fish species across broad spatial scales.

Conclusions

Overall, this study demonstrated that our development of a qPCR assay to detect river herring

eDNA in estuarine and freshwater habitats was successful, discriminating the target species in

both lab and field samples. Sampling 196 sites among 12 tributaries of the Chesapeake Bay

revealed interesting and plausible spatio-temporal patterns of eDNA detection that corre-

sponded well with traditional methods of abundance estimation. Environmental DNA surveil-

lance holds great promise as a complementary tool to monitor river herring, which have seen

acute recent declines in the US Mid-Atlantic. This study adds to the growing literature using

eDNA to detect the abundance of fish in the environment, and results suggest, again, that

abundance or detection information derived from eDNA data has high correspondence with

traditional catch or observation-based data.

Supporting information

S1 File. CO1 FASTA format alignment.

(FASTA)

S1 Fig. Comparison of expected alewife/blueback DNA ratios to observed peak height

ratios. Plot of expected species DNA ratios (from 1:10 to 10:1 alewife:blueback DNA added to

PCR) vs. observed DNA ratios inferred from peak height ratio analysis using QSVAnalyser at

the diagnostic SNP at bp 104 (alewife = T, blueback = C) after sequencing the PCR amplicon.

Ordinary least squares (OLS) regression lines are plotted for raw (red) and corrected (blue)

peak height ratios compared to a 1:1 line (dashed) alongside OLS equations and R2 values

(below the curves for the raw peak height ratios, above the curves for the corrected peak height

ratios).

(TIF)

S2 Fig. Box and whisker plots of PCR Inhibition in environmental samples across rivers.

For each river or steam (grouped by type: piedmont, coastal, and mixed) inhibition is plotted

as the number of additional qPCR cycles (Cq values) of the 300,000 copy oligo standard after

spiking it with a given environmental sample. Note the break in the Y axis–samples that pro-

duced no amplification (complete inhibition) are plotted at ‘No Amp’.

(TIF)

S3 Fig. Histogram of permuted Spearman’s correlation estimates. Histogram of Spearman’s

Rho values from 1000 random permutations of the eDNA and ichthyoplankton datasets. The

dashed red line shows the observed estimate of correlation between eDNA and Ichthyoplank-

ton abundance datasets (Rho = 0.52).

(TIF)

S4 Fig. Plot of eDNA abundance vs. ichthyoplankton count. Data are plotted on a log-log

scale. eDNA copy numbers reflect the initial number of mtDNA copies per 40 mL of water fil-

tered.

(TIF)

S5 Fig. Maps of river herring eDNA detections across two years (spring 2015 and 2016) in

Chesapeake Bay, USA. Size of data points (positive detections) are proportional to the magni-

tude of eDNA abundance (mean mtDNA copies) and are colored based on species
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identification from Sanger sequencing: red for alewife and blue for blueback herring. eDNA

copy numbers reflect the initial number of mtDNA copies per 40 mL of water filtered.

(PNG)
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