

Symbiosis between *Candidatus* Patescibacteria and Archaea Discovered in Wastewater-Treating Bioreactors

🐵 Kyohei Kuroda, ª Kyosuke Yamamoto, ª 몓 Ryosuke Nakai, ª Yuga Hirakata, ^b 몓 Kengo Kubota, ^c Masaru K. Nobu, ^b Takashi Narihiro ª

^aBioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Toyohira-ku, Sapporo, Hokkaido, Japan ^bBioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan ^cDepartment of Frontier Sciences for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, Aramaki, Aoba-ku, Sendai, Miyagi, Japan

ABSTRACT Each prokaryotic domain, Bacteria and Archaea, contains a large and diverse group of organisms characterized by their ultrasmall cell size and symbiotic lifestyles (potentially commensal, mutualistic, and parasitic relationships), namely, Candidatus Patescibacteria (also known as the Candidate Phyla Radiation/CPR superphylum) and DPANN archaea, respectively. Cultivation-based approaches have revealed that Ca. Patescibacteria and DPANN symbiotically interact with bacterial and archaeal partners and hosts, respectively, but that cross-domain symbiosis and parasitism have never been observed. By amending wastewater treatment sludge samples with methanogenic archaea, we observed increased abundances of Ca. Patescibacteria (Ca. Yanofskybacteria/UBA5738) and, using fluorescence in situ hybridization (FISH), discovered that nearly all of the Ca. Yanofskybacteria/UBA5738 cells were attached to *Methanothrix* (95.7 \pm 2.1%) and that none of the cells were attached to other lineages, implying high host dependency and specificity. Methanothrix filaments (multicellular) with Ca. Yanofskybacteria/UBA5738 attached had significantly more cells with no or low detectable ribosomal activity (based on FISH fluorescence) and often showed deformations at the sites of attachment (based on transmission electron microscopy), suggesting that the interaction is parasitic. Metagenome-assisted metabolic reconstruction showed that Ca. Yanofskybacteria/UBA5738 lacks most of the biosynthetic pathways necessary for cell growth and universally conserves three unique gene arrays that contain multiple genes with signal peptides in the metagenome-assembled genomes of the Ca. Yanofskybacteria/UBA5738 lineage. The results shed light on a novel crossdomain symbiosis and inspire potential strategies for culturing CPR and DPANN.

IMPORTANCE One highly diverse phylogenetic group of Bacteria, *Ca.* Patescibacteria, remains poorly understood, but, from the few cultured representatives and metagenomic investigations, they are thought to live symbiotically or parasitically with other bacteria or even with eukarya. We explored the possibility of symbiotic interactions with Archaea by amending wastewater treatment sludge samples that were rich in *Ca.* Patescibacteria and Archaea with an isolate archaeon that is closely related to a methanogen population abundant *in situ (Methanothrix).* This strategic cultivation successfully established enrichment cultures that were mainly comprised of *Ca.* Patescibacteria (family level lineage *Ca.* Yanofskybacteria/UBA5738) and *Methanothrix,* in which we found highly specific physical interactions between the two organisms. Microscopic observations based on transmission electron microscopy, target-specific fluorescence *in situ* hybridization, and metagenomic analyses showed evidence that the interaction is likely parasitic. The results show a novel cross-domain parasitism between Bacteria and Archaea and suggest that the amendment of host Archaea may be an effective approach in culturing novel *Ca.* Patescibacteria.

KEYWORDS Candidate Phyla Radiation (CPR), *Candidatus* Patescibacteria, Archaea, *Candidatus* Yanofskybacteria/UBA5738, symbiosis, fluorescence *in situ* hybridization (FISH), transmission electron microscopy (TEM), shotgun metagenomic analysis

Editor Stephen J. Giovannoni, Oregon State University

Copyright © 2022 Kuroda et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.

Address correspondence to Kyohei Kuroda, k.kuroda@aist.go.jp, Masaru K. Nobu, m.nobu@aist.go.jp, or Takashi Narihiro, t.narihiro@aist.go.jp.

The authors declare no conflict of interest.

Received 20 June 2022 Accepted 16 August 2022 Published 31 August 2022

ne major lineage of the domain Bacteria, Candidatus Patescibacteria (also known as the Candidate Phyla Radiation/CPR superphylum) (1, 2), is a highly diverse group of bacteria that widely inhabits natural (3, 4) and artificial ecosystems (5-7) and is characterized by its small cell and genome sizes (8) and by its poor (genomically predicted) abilities to synthesize cellular building blocks (4), which is suggestive of a symbiotic dependency for cell growth. Most members remain uncultured, leaving major knowledge gaps in the range and nature of their symbioses (i.e., commensal, mutualistic, and parasitic relationships) (3), although a few cultivation-based and microscopybased studies have demonstrated host-specific symbiotic and parasitic interactions between Ca. Patescibacteria and other bacteria; e.g., Ca. Saccharimonadia with Actinomycetota (formerly known as Actinobacteria) (9) and Ca. Gracilibacteria with Gammaproteobacteria (10, 11). This suggested a specialization toward bacteria-bacteria symbioses, especially given the parallels with DPANN, an archaeal analog which has only been observed to interact with other archaea (4, 12); however, one study has reported symbiosis between Ca. Patescibacteria and eukarya (13), indicating that the Ca. Patescibacteria host range reaches beyond bacteria. Here, based on our previous observations of predominant Ca. Patescibacteria members and methanogenic archaea ("methanogens") (6, 7), we hypothesize that some Ca. Patescibacteria may symbiotically interact with archaea and use exogenous archaea to culture potential archaea-dependent Ca. Patescibacteria.

To create conditions conducive to the growth of archaea-dependent Ca. Patescibacteria, we took a strategy similar to that of virus or phage cultivation, in which exogenous methanogenic archaea were grown in the presence of Ca. Patescibacteria that would presumably grow using molecules derived from these active hosts (i.e., through symbiosis and parasitism). We chose acetate-utilizing methanogens as the partners, as they ubiquitously inhabit methanogenic ecosystems (5, 6, 14), form symbiotic interactions with bacteria (14), utilize an energy source (acetate) that is generally noninhibitory to organotrophs (unlike other methanogen substrates, such as H₂ or formate [15]), and conveniently have a highly distinguishable cell morphology/structure that is easily differentiable from those of other organisms (i.e., easily traceable under a microscope). To culture Ca. Patescibacteria that may interact with archaea, we used microbial community samples from a bioreactor ("sludge") that was particularly abundant in Ca. Patescibacteria (7) as starting material and amended them with acetate-utilizing methanogens (Methanothrix soehngenii GP6 and Methanosarcina barkeri MS) as symbiotic partners and acetate as an energy source for the archaea (Text S1). Potential growth factors (yeast extract, various amino acids, and nucleoside monophosphates) were also provided, as Ca. Patescibacteria are known to have poor biosynthetic capacities (4).

In the cultivation experiments, we performed serial dilutions (10⁻¹, 10⁻³, 10⁻⁴, and 10^{-6} , defined as d1-d4) of the sludge-methanogen mixture to help eliminate lowabundance bacteria that may have interfered with the Ca. Patescibacteria growth. In some cultures with confirmed gas production, we detected the enrichment (increased relative abundances up to 12.1% in A-d2 on day 33) of a population of an uncultured clade of Ca. Patescibacteria, namely, Ca. Yanofskybacteria OTU0011, which belongs to class Ca. Paceibacteria (formerly known as Parcubacteria/OD1 [1]) (Fig. 1A), and we also observed many small cells (<1 μ m in diameter) that were consistently attached to cells with a morphology characteristic of *Methanothrix* (long rods of approximately 0.8 μ m in diameter with blunt ends strung together, forming multicellular filaments), with the number of attached cells increasing as the culture aged (Fig. S1A and S1B). To further eliminate other nontarget populations in the culture (i.e., "enrich" the target organisms), we subcultured those abundant in small cells and microscopically confirmed the continued physical attachment of small cells with Methanothrix-like cells (Fig. S1C and S1D). Three independent subcultures (defined as A-d2-d1, B-d1-d1, and C-d2-d1) retaining Ca. Yanofskybacteria (each amended with acetate and/or yeast extract) with high abundance (1.7 to 13.1%) (Fig. 1A) were used for further microscopy observation.

Through fluorescence in situ hybridization (FISH), which allowed for the

FIG 1 (A) Relative abundance of predominant *Candidatus* Patescibacteria and Archaea in the culture systems based on 16S rRNA gene sequence analysis. Micrographs of (B) 4',6-diamidino-2-phenylindole dihydrochloride staining and (C) fluorescence *in situ* hybridization (FISH) obtained from culture system B-d1-d1 on day 23 as well as the (D) counted numbers of *Ca*. Yanofskybacteria cells in 33 micrographs. (C) The microorganisms in the panel were labeled with *Ca*. Yanofskybacteria-targeting Pac_683-Cy3 probe (red) and *Methanothrix*-targeting MX825-FITC probe (green). Blue, yellow, orange, and red arrows in (C) indicate nonattached *Ca*. Yanofskybacteria cells on *Methanothrix*, attached on *Methanothrix* with no fluorescence, attached on *Methanothrix* with weak fluorescence, and attached on *Methanothrix* with clear fluorescence, respectively, and these colors are consistent with those in the bar diagrams of (D). Culture systems were amended with (A) acetate and yeast extract, (B) yeast extract, and (C) acetate for carbon sources. A-d2-d1, B-d1-d1, and C-d2-d1 were subcultures transferred from A-d2, B-d1, and C-d2, respectively.

differentiation of target populations with fluorescence microscopy, we successfully verified that the small cells attached to the surfaces of the *Methanothrix* filaments were indeed *Ca*. Yanofskybacteria (with probes MX825 and Pac_683, respectively) (Fig. 1B and C; also see Fig. S2–S4). Across all subcultures, most *Methanothrix* filaments (59.3 \pm 5.3%) were physically associated with *Ca*. Yanofskybacteria, and, more importantly, nearly all of the *Ca*. Yanofskybacteria cells (95.7 \pm 2.1%) were attached to *Methanothrix* filaments, with none attached to other hosts and only a small fraction remaining (4.2 \pm 2.1%) unattached, showing that the physical attachment and symbiosis are *Methanothrix*-specific (Fig. 1D).

Compared to the *Methanothrix* filaments that were free of ectosymbionts in the cultures, those physically associated with more than 5 *Ca.* Yanofskybacteria cells contained significantly larger areas (P < 0.05 for all cultures) with low ribosomal activity (based on FISH fluorescence) (Fig. S5). Moreover, a major fraction of the *Ca.* Yanofskybacteria cells (18.8 \pm 1.9%) were associated with these low-activity *Methanothrix* cells. Though highly qualitative, many of the *Ca.* Yanofskybacteria cells (39.6 \pm 6.1%) were attached to *Methanothrix* cells with weak fluorescence (e.g., Fig. S2H, S3H, and S4H), which may reflect the negative influence of attachment. Using transmission electron microscopy (TEM), we further observed that *Methanothrix* (sheathed filamentous cells) (16, 17) often had deformed cell walls where submicron coccoid-like cells (presumably *Ca.* Yanofskybacteria; 0.46 \pm 0.13 μ m long and 0.36 \pm 0.07 μ m wide, 0.0377 \pm 0.0200 μ m³ calculated cell volumes) were attached (Fig. 2A–C). The clearly negative influence of *Ca.* Yanofskybacteria implies that the symbiosis between *Ca.* Yanofskybacteria and *Methanothrix* is parasitic.

Through shotgun metagenomic analysis, we successfully recovered a metagenomeassembled genome of Ca. Yanofskybacteria (PMX_810_sub; 0.8 Mb in total) and nearly full-length 16S rRNA gene sequences (Fig. 2D; Fig. S6; Tables S1 and S2). Based on 43 marker genes for Ca. Patescibacteria (1), the completeness and contamination of PMX_810_sub were estimated to be 90.7% and 0%, respectively. Phylogenetic classification based on SILVA v138.1 and GTDB r207 taxonomy confirmed the classification of the Ca. Yanofskybacteria (99.7% similarity with FPLM01004990) (Fig. S6; Table S2) and the Ca. Patescibacteria family UBA5738 of the order Paceibacterales (Fig. 2D; Table S1). The metagenome-assembled genome PMX_810_sub lacks many biosynthetic pathways (e.g., those for the biosynthesis of amino acids and fatty acids) (Table S3), suggestive of a host-dependent or partner-dependent lifestyle, as was also observed for other Ca. Patescibacteria members (4). Previously, gene arrays that contain small signal peptides have been found in pathogenic bacterial genomes and in Ca. Patescibacteria (18), which may be related to their parasitic potential (19). Indeed, all of the metagenome-assembled genomes that were affiliated with Ca. Yanofskybacteria/UBA5738 contained genes for protein secretion systems (e.g., SecADEFGY) (Table S3) and universally conserved three unique gene arrays that contained multiple genes with signal peptides that could be recognized by the aforementioned systems (and one additional gene array conserved in the two deep-branching genomes) (Fig. 2D and E). Interestingly, all of the genes included in these arrays encode hypothetical proteins, suggesting that, if these genes are involved in interactions with the host, the mechanism is unrelated to known forms of parasitism. Further investigation using transcriptomics and proteomics is necessary to clarify the mechanisms behind the parasitism by this organism and lineage.

In total, through the first successful cultivation and enrichment of the *Ca*. Patescibacteria class *Ca*. Paceibacteria (to which *Ca*. Yanofskybacteria/UBA5738 belongs), we discovered that *Ca*. Patescibacteria/CPR can symbiotically interact with the domain Archaea. The obtained results suggest that the observed interaction between *Ca*. Yanofskybacteria/UBA5738 and *Methanothrix* is a host-specific parasitism. Although the host range and the preference of *Ca*. Yanofskybacteria/UBA5738 remain unclear, the observed ability of *Ca*. Patescibacteria to interact with methanogenic archaea, a central group of organisms in an aerobic ecosystems, warrants further investigation into how parasitism may influence ecology and carbon cycling. As the presented archaea cocultivation strategy was effective in culturing *Ca*. Patescibacteria that were inhabiting methanogenic environments, we

FIG 2 (A–C) Transmission electron micrographs of small coccoid-like submicron cells attached on the *Methanothrix*-like cells in culture system A-d2 on day 40. S indicates sheath structures of the *Methanothrix*-like cells. (D) Phylogenetic tree of order *Ca.* Paceibacterales based on concatenated phylogenetic marker genes of GTDBtk 2.0.0 (ver. r207). The phylogenetic position of the metagenomic bin PMX_810_sub is shown in pink color. (E) Gene arrays containing multiple genes with signal peptides in *Ca.* Yanofskybacteria/UBA5738 and the family level uncultured lineage GCA-002779355. P and S indicate the sec signal peptide and the pilin signal peptide, respectively. The pink colored circles indicate a BLASTP-based homology (threshold of $\leq 1e-10$) with metagenomic bin PMX_810_sub. No annotated genes are hypothetical proteins (based on the annotation using BlastKOALA in Table S3). Abbreviated locus tags are shown in (E) (e.g., "PMX_810_sub_00331" as "00331" in the row of PMX_810_sub.).

anticipate that the further refinement of cocultivation combined with gene and protein expression will allow for the characterization of the details of the symbiosis between *Ca*. Patescibacteria and Archaea, the determination of the diversity of archaea-dependent *Ca*. Patescibacteria, and, ultimately, the elucidation of the influence of these organisms' interactions on anaerobic ecology.

SUPPLEMENTAL MATERIAL

Supplemental material is available online only. TEXT S1, PDF file, 0.2 MB. FIG S1, JPG file, 1.2 MB. FIG S2, JPG file, 1.7 MB. FIG S3, JPG file, 2 MB. FIG S4, JPG file, 1.9 MB. FIG S5, JPG file, 1.2 MB. FIG S6, JPG file, 1.4 MB. TABLE S1, XLSX file, 0.03 MB. TABLE S2, XLSX file, 0.02 MB. TABLE S3, XLSX file, 0.2 MB.

ACKNOWLEDGMENTS

This study was partly supported by the Japan Society for the Promotion of Science KAKENHI JP16H07403 and JP21H01471, a matching fund between the National Institute of Advanced Industrial Science and Technology (AIST) and Tohoku University, and by research grants from the Institute for Fermentation, Osaka (G-2019-1-052 and G-2022-1-014). We thank Riho Tokizawa, Yuki Ebara, and Tomoya Ikarashi at AIST for their technical assistance.

K. Kuroda and T.N. designed this study. K. Kuroda performed the sampling, cultivation, microscopy, and sequence analysis. K. Kuroda, K.Y., R.N., K. Kubota, M.K.N., and T.N. interpreted the data. K. Kuroda, M.K.N., and T.N. wrote the manuscript with input from all coauthors. All authors have read and approved the manuscript submission.

We declare no conflict of interest.

REFERENCES

- Brown CT, Hug LA, Thomas BC, Sharon I, Castelle CJ, Singh A, Wilkins MJ, Wrighton KC, Williams KH, Banfield JF. 2015. Unusual biology across a group comprising more than 15% of domain Bacteria. Nature 523: 208–211. https://doi.org/10.1038/nature14486.
- Parks DH, Chuvochina M, Waite DW, Rinke C, Skarshewski A, Chaumeil PA, Hugenholtz P. 2018. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat Biotechnol 36: 996–1004. https://doi.org/10.1038/nbt.4229.
- He C, Keren R, Whittaker ML, Farag IF, Doudna JA, Cate JHD, Banfield JF. 2021. Genome-resolved metagenomics reveals site-specific diversity of episymbiotic CPR bacteria and DPANN archaea in groundwater ecosystems. Nat Microbiol 6:354–365. https://doi.org/10.1038/s41564-020-00840-5.
- Castelle CJ, Brown CT, Anantharaman K, Probst AJ, Huang RH, Banfield JF. 2018. Biosynthetic capacity, metabolic variety and unusual biology in the CPR and DPANN radiations. Nat Rev Microbiol 16:629–645. https://doi .org/10.1038/s41579-018-0076-2.
- Mei R, Nobu MK, Narihiro T, Kuroda K, Muñoz Sierra J, Wu Z, Ye L, Lee PKH, Lee P-H, van Lier JB, McInerney MJ, Kamagata Y, Liu W-T. 2017. Operationdriven heterogeneity and overlooked feed-associated populations in global anaerobic digester microbiome. Water Res 124:77–84. https://doi .org/10.1016/j.watres.2017.07.050.
- Narihiro T, Nobu MK, Bocher BTW, Mei R, Liu WT. 2018. Co-occurrence network analysis reveals thermodynamics-driven microbial interactions in methanogenic bioreactors. Environ Microbiol Rep 10:673–685. https://doi .org/10.1111/1758-2229.12689.
- Kuroda K, Narihiro T, Shinshima F, Yoshida M, Yamaguchi H, Kurashita H, Nakahara N, Nobu MK, Noguchi TQP, Yamauchi M, Yamada M. 2022. Highrate cotreatment of purified terephthalate and dimethyl terephthalate manufacturing wastewater by a mesophilic upflow anaerobic sludge blanket

reactor and the microbial ecology relevant to aromatic compound degradation. Water Res 219:118581. https://doi.org/10.1016/j.watres.2022.118581.

- Nakai R. 2020. Size matters: ultra-small and filterable microorganisms in the environment. Microbes Environ 35. https://doi.org/10.1264/jsme2 .ME20025.
- He X, McLean JS, Edlund A, Yooseph S, Hall AP, Liu SY, Dorrestein PC, Esquenazi E, Hunter RC, Cheng G, Nelson KE, Lux R, Shi W. 2015. Cultivation of a human-associated TM7 phylotype reveals a reduced genome and epibiotic parasitic lifestyle. Proc Natl Acad Sci U S A 112:244–249. https://doi.org/10.1073/pnas.1419038112.
- Yakimov MM, Merkel AY, Gaisin VA, Pilhofer M, Messina E, Hallsworth JE, Klyukina AA, Tikhonova EN, Gorlenko VM. 2022. Cultivation of a vampire: 'Candidatus Absconditicoccus praedator'. Environ Microbiol 24:30–49. https://doi.org/10.1111/1462-2920.15823.
- Moreira D, Zivanovic Y, López-Archilla AI, Iniesto M, López-García P. 2021. Reductive evolution and unique predatory mode in the CPR bacterium Vampirococcus lugosii. Nat Commun 12:2454. https://doi.org/10.1038/ s41467-021-22762-4.
- Dombrowski N, Lee J-H, Williams TA, Offre P, Spang A. 2019. Genomic diversity, lifestyles and evolutionary origins of DPANN archaea. FEMS Microbiol Lett 366:1–12.
- Gong J, Qing Y, Guo X, Warren A. 2014. "Candidatus Sonnebornia yantaiensis", a member of candidate division OD1, as intracellular bacteria of the ciliated protist Paramecium bursaria (Ciliophora, Oligohymenophorea). Syst Appl Microbiol 37:35–41. https://doi.org/10.1016/j.syapm.2013.08.007.
- Saha S, Basak B, Hwang J-H, Salama E-S, Chatterjee PK, Jeon B-H. 2020. Microbial symbiosis: a network towards biomethanation. Trends Microbiol 28:968–984. https://doi.org/10.1016/j.tim.2020.03.012.
- Nobu MK, Narihiro T, Mei R, Kamagata Y, Lee PKH, Lee P, McInerney MJ, Liu W. 2020. Catabolism and interactions of uncultured organisms shaped

mBio

by eco-thermodynamics in methanogenic bioprocesses. Microbiome 8: 111. https://doi.org/10.1186/s40168-020-00885-y.

- Touzel JP, Prensier G, Roustan JL, Thomas I, Dubourguier HC, Albagnac G. 1988. Description of a new strain of Methanothrix soehngenii and rejection of Methanothrix concilii as a synonym of Methanothrix soehngenii. Int J Syst Bacteriol 38:30–36. https://doi.org/10.1099/00207713-38-1-30.
- 17. Dueholm MS, Larsen P, Finster K, Stenvang MR, Christiansen G, Vad BS, Bøggild A, Otzen DE, Nielsen PH. 2015. The tubular sheaths encasing

Methanosaeta thermophila filaments are functional amyloids. J Biol Chem 290:20590–20600. https://doi.org/10.1074/jbc.M115.654780.

- McLean JS, Bor B, Kerns KA, Liu Q, To TT, Solden L, Hendrickson EL, Wrighton K, Shi W, He X. 2020. Acquisition and adaptation of ultra-small parasitic reduced genome bacteria to mammalian hosts. Cell Rep 32: 107939. https://doi.org/10.1016/j.celrep.2020.107939.
- 19. Méheust R, Burstein D, Castelle CJ, Banfield JF. 2019. The distinction of CPR bacteria from other bacteria based on protein family content. Nat Commun 10:4173. https://doi.org/10.1038/s41467-019-12171-z.