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Abstract: To understand how proteins function on a cellular level, it is of paramount importance to
understand their structures and dynamics, including the conformational changes they undergo to
carry out their function. For the aforementioned reasons, the study of large conformational changes in
proteins has been an interest to researchers for years. However, since some proteins experience rapid
and transient conformational changes, it is hard to experimentally capture the intermediate structures.
Additionally, computational brute force methods are computationally intractable, which makes it
impossible to find these pathways which require a search in a high-dimensional, complex space. In
our previous work, we implemented a hybrid algorithm that combines Monte-Carlo (MC) sampling
and RRT*, a version of the Rapidly Exploring Random Trees (RRT) robotics-based method, to make
the conformational exploration more accurate and efficient, and produce smooth conformational
pathways. In this work, we integrated the rigidity analysis of proteins into our algorithm to guide
the search to explore flexible regions. We demonstrate that rigidity analysis dramatically reduces the
run time and accelerates convergence.

Keywords: protein conformations; conformational pathways; rapidly exploring random trees algo-
rithm; rigidity analysis

1. Introduction

Proteins take part in nearly all biological functions in the cell. For this reason, it is of
paramount importance to understand how they function. A protein’s biological function
is dictated by its 3-dimensional structure and its interaction with other molecules. From
the structures of proteins, we have derived our understanding both of the functions of
individual proteins, and the general principles of protein structure and dynamics. Proteins
fold into unique 3D shapes, and as they are dynamic molecules, they may change their
shapes as a consequence of environmental changes or binding to other molecules. The
rearrangement of a protein’s tertiary structure in response to environmental changes,
external factors, or binding of a ligand from one conformation to another is called the
conformational change. For these reasons, in order to fully elucidate the functionality
of proteins, characterizing these conformational changes, which are significant factors in
protein properties, has been a continuing hotspot for research [1–4].

However, one of the main challenges is that these conformational changes are transi-
tory and that often makes it hard to characterize the intermediate structures. Researchers
have used computational methods to try to capture these computational changes and
the paths the proteins take when they transition from one conformation to another. For
instance, Molecular Dynamics (MD) simulations [5] can examine protein dynamics up
to the microsecond level though they are still not fast enough to capture conformational
transitions that take place over larger timescales-milliseconds or more. Methods such as
targeted, biased, or steered MD, umbrella sampling, replica exchange, activation relaxation,
conformational flooding, swarm methods, and others attempt to lower the computational
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demands of MD-based approaches [6–9], and Multiscale Molecular Dynamics Simulation
methods [10]. Some methods focus on deforming a trivial conformational path (obtained,
for instance, through morphing) to improve its energy profile. MD-based approaches tend
to produce one path, depending on the starting conditions. Another class of methods sam-
ples the conformational space efficiently by perturbing the molecular structure at certain
degrees of freedom and using geometric and biophysical constraints to guide the search.
The search is done using various techniques such as normal mode analysis (NMA) [11,12],
elastic network [13,14], robotic motion [15] planning, and more. These methods are usually
faster than MD but do not result in physical pathways due to randomness in the search
and the approximations being used [16]. Therefore, further processing should often be
applied to extract biologically meaningful information. Several motion-planning methods
were developed in the past to sample the conformational space of proteins using prior
knowledge [17] or multi-scale sampling [18–20]. A brief review of adaptive sampling meth-
ods is in [21]. Efficient and accurate sampling of protein conformational pathways helps
to better identify intermediate states which also correspond to local energy minima. The
SPIRAL method described in [22] tries to solve the same problem of simulating molecular
motion but is computationally expensive. A novel evolutionary algorithm that aims to
sample regions of interest in the conformational space is presented in [23]. It presents
a promising research direction in improving decoy generation for template-free protein
structure prediction. A similar approach is proposed in [24] by using a highly parallelized
version of RRT called Transition-based RRT. This algorithm also aims at identifying the
most probable conformations of a class of highly flexible biomolecules such as Intrinsically
Disordered Proteins (IDPs).

In [18], the authors combined methods originating from robotics and computational
biophysics to model protein conformational transitions. To reduce the dimension of
the problem, normal modes are computed for a coarse-grained elastic network model
built on short fragments of three residues. This added bias helps to efficiently sample
conformational search space. While the incorporation of a suitable bias towards the goal
has an impact on the accuracy of the simulation, structure forces reduce dwell time in a
given stable or meta-stable state, the bias possibly sacrifices a more expansive view of
possibly different transition trajectories to the goal structure. This is typically addressed by
repeating the simulation to obtain many transition trajectories, which taken together can
cover the transition ensemble in the absence of correlations between trajectories. A brief
review of the current methods and their comparison can be found in [25].

A different class of methods focus on computing a sequence of conformations (a con-
formational path) with a credible energy profile. The working assumption is that credible
conformational paths can then be locally deformed with techniques that consider dynamics
to obtain transition trajectories. Methods in this category adapt sampling-based search
algorithms [26] developed for the robot motion-planning problem which bears strong
analogies to the problem of computing conformations along with a structural transition.
There are some unique challenges offered up by molecular systems. First, molecular sys-
tems typically have an exceptionally high number of degrees of freedom. Second, the
energy surface of a single protein is highly complex with many local minima. The methods
developed in algorithmic robotics to address the robot motion planning problem fall under
either the roadmap-based or tree-based category. Roadmap-based methods [22] are limited
by the steering problem, which means, if one has two sampled conformations, it may not be
possible to find a constraint-satisfying path steering the system from one conformation to
another. This method uses a low-dimensional projection of the sampled conformations to
approximate coverage of the conformational space.
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1.1. RRT, RRT*, and Adaptive Sampling

The Rapidly Exploring Random Tree (RRT) algorithm [27] is a robotics-based method
that builds a tree at the start configuration by randomly exploring the search space. The
algorithm was presented in our previous work, extended by this journal submission [28].
The algorithm is outlined here for clarity.

• Create a random new sample qr (a new molecular conformation).
• Find qr’s nearest neighbor (qnear) on the tree.
• Try to connect qr and qnear by an edge. To do this, we incrementally rotate the neigh-

bor’s relevant backbone dihedral angles in the direction of the new conformation.
• Stop when you reach an obstacle (a high energy barrier) or when you reach the newly

created sample. The stopping point is qnew
• Add qnew to the tree with qnear as its parent.
• Stop when you reach an RMSD threshold distance from the goal or when the maximum

number of iterations was reached.

RRT is known for its ability to rapidly explore the workspace. However, due to its
randomness, it expands to all areas of the search space, which means that it does not always
converge fast, especially in high-dimensional search spaces like the protein conformational
landscape. It also makes the resulting paths from start to goal jagged and “zigzagged”.

RRT* [29] is an optimized version of RRT. Due to the random nature of the orig-
inal RRT’s node selection and connection, it does not always produce smooth or opti-
mized paths. RRT* modifies the original algorithm to deliver significantly less ragged and
smoother paths to the goal. The optimization is done through a heuristic cost function
as follows:

• For every node we also record the tree distance from the root. After finding the nearest
neighbor on the tree, we examine the neighborhood of the new node in a fixed radius.
If there is a node with a cheaper overall cost, it becomes the node’s parent instead of
the original nearest neighbor.

• After adding the new node to its cheapest neighbor, the paths are rewired: The
neighbors are checked if being rewired to the newly added vertex will decrease their
overall cost.

• If the cost indeed decreases, the neighbor is rewired to the newly added vertex. This
step makes the path smoother and less jagged looking.

Figure 1 illustrates the process.

Figure 1. Illustration of RRT* best (least-cost) parent search and the rewiring process. (a) A new node is added to the tree
and nearest neighbors are highlighted. (b) The best parent is chosen among nearest neighbors. (c) Costs of rewiring are
checked and the tree is rewired.
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1.2. Rigidity Analysis

The analysis of rigid residues in proteins can help predict which groups of atoms are
more likely to move together in a coordinated way (which are called rigid clusters), and
need more energy in order to be destabilized and deformed. These rigid areas of proteins
are more likely to stay together during the conformational changes of proteins since
structural changes tend to happen around flexible hinges in the protein. Rigidity analysis
methods [30,31] use only inter-atomic connectivity and interaction information and do not
rely on energy calculations. In our work, we used the Kinari software [30,32] where the
rigidity analysis of a protein is done in the following way: During data input and curation
(first phase), a PDB file is retrieved from the Protein Data Bank site or uploaded by the
user, chains and atoms to be retained are selected, and chemical interactions are calculated
and can be removed, added, or modified. During the second phase, modeling options are
specified, rigidity analysis is performed, and the results are explored with a script-enhanced
Jmol-based (http://www.jmol.org, accessed on 1 March 2021) 3D visualizer.

The Kinari software is written in C++, and its library (KINARI-Lib) implements
the pebble game algorithm. It also provides support for bar-joint and body-bar-hinge
mechanical models. Pebble game rigidity analysis is an efficient method for extracting
rigidity and flexibility information of biomolecules without having to perform costly
molecular dynamics simulations [33]. This algorithm works on a multigraph associated
with a mechanical model that is constructed from an arbitrary atom-bond network. In
the Kinari software, the authors have developed a faster and more robust variation of the
pebble game algorithm tailored to the specificities of biopolymers.

1.3. Our Previous Work

In our previous work we implemented a biased Monte Carlo tree search, to explore the
conformational space of medium and large proteins [28,34]. In order to decrease the search
time and at the same time increase the convergence of the search, we added an optional
input argument to allow the algorithm to use a list of residues to manipulate during the
search. These residues are assumed to either be co-evolving or otherwise important to the
protein structure, function, or dynamics. If no such information is given, any residue may
be selected for modification.

At the next step, our goal was to enhance the convergence time even more, as it was
still time-consuming for large proteins, and also to generate smooth, even, and least-cost
pathways. To do so, we incorporated the RRT* algorithm, the improved and optimized
version of the robotics-based Rapidly Exploring Random Tree algorithm, and introduced
three key methods, nearNeighbors, chooseParent, and rewire [28]. The nearNeighbors
method will look for a set of nearest neighbors that lie within an RMSD of at most 1 Å
from each anew generated node. Then comes the chooseParent method that selects the
least-cost node amongst the near neighbors to be the parent of the newly created node.
We used an A*-based heuristic cost function to determine the cost of each node (neighbor)
and choose the least-cost one. Then the rewire method was called to check if we can refine
the paths we already had in the tree and make them more straight, as was the goal in
RRT*’s creation for robot motion planning [29]. These methods helped the algorithm to
generate smoother and less jagged pathways with minimum accumulated costs. At the
end, when the tree expands beyond a certain size (dependent on the number of residues),
the algorithm prunes the tree by removing the nodes that are within a threshold distance
to one another to decrease redundancy.

1.4. This Contribution

This contribution is an extension of our conference paper described in [28]. Instead
of using an optional list of residues for manipulation, our goal is to focus explicitly on
flexible residues. In this work, we use rigidity analysis to steer and guide the algorithm
towards manipulating flexible hinges that are more likely to undergo large-scale changes.
Rigidity analysis represents the protein as a set of rigid clusters, connected by flexible

http://www.jmol.org
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residues. This can assist the algorithm to reduce the randomness of choosing dihedral
angles to perturb, and instead, focus on the flexible residues of the protein and select
those for perturbing and creating new conformations. Since the proteins undergo large-
scale conformational changes, their rigidity properties may change too. Therefore, we
run rigidity analysis several times during the search and modify our criteria for selecting
residues to manipulate.

2. Materials and Methods
2.1. Description of Algorithm

The input to the algorithm is two PDB coordinates representing conformations of the
same protein, denoted as start and end conformations. The goal is to start with the source
node, which represents the start conformation, and get as close to the target node, which
we denote the end conformation. The algorithm produces pathways made of successive
conformations, simulating the path that the protein takes when transitioning between
the conformations. The algorithm continues to generate conformations until it reaches a
conformation whose RMSD to the end conformation is less than a pre-determined threshold
or until a maximum number of iterations is reached. The path is returned as output. An
additional input source that we focus on in this work is a list of flexible residues. The list
of flexible residues generated by the Kinari software [32] (details mentioned in the next
subsection) is used when the algorithm wants to select certain bonds for manipulation. We
use semi coarse-grained protein structural representations. Proteins are represented using
their backbone chain and C-β atoms (except for Gly, which does not have a C-β atom).
The degrees of freedom for each protein molecule are the φ and ψ angles around the C-α
atoms. This way of representation of the proteins hits a balance between accuracy and
speed efficiency.

The algorithm description follows:
During each iteration, a conformation is chosen from the RRT tree to be perturbed.

The tree at the beginning only contains the start conformation. We use a biased variable
so that one-third of the time the conformation to be perturbed is selected out of the k best
conformations. By best, we mean the closest, in terms of RMSD, to the end conformation.
In this work, we chose k = 20. The rest of the time the conformation is selected from the
general pool of nodes, which has all the nodes that are possible to create by manipulating
the dihedral angles of molecular structure. The general pool of nodes represents the
sampled conformations so far. Once a node is selected for expansion, the algorithm
perturbs the molecular conformation of this node at numerous, randomly chosen, φ and ψ
angles in order to generate a new conformation. These angles are randomly chosen from all
the angles of the selected conformation but with the constraint that each particular angle’s
difference from its counterpart in the end, aka target, conformation is larger than a certain
threshold (In this work threshold = 5 degrees). Generally, these angles are selected from all
the residues of the conformation, and that’s what we did in our previous work. However,
in this work, we set aside the rigid residues of the conformation and instead give the
algorithm a list of flexible residues to choose these angles from. Since these are the residues
that are not part of any rigid clusters, they are more likely to be different in the target
conformation and hence are good candidates to be perturbed. After generating the new
random conformation by perturbing the angles of flexible residues, it undergoes k steps
of steepest descent energy minimization in order to relax local clashes while not altering
the structure of the conformation a lot. The constants that we use in this work are k = 10
for the steps of steepest descent, and 5 ∗ thenumbero f residues as a threshold for acceptable
energy. If the new conformation has an energy value above the acceptable threshold after
the steps of steepest descent, it is accepted as a new node to our pool of conformations
based on a Monte-Carlo criterion. Next, in the nearNeighbors method, the algorithm looks
for a set of nearest neighbors (as the RRT* algorithm suggests to find neighbors that exist at
a certain distance from the new node) which in our case are the nodes that exist within an
RMSD of at most 1 Å from the newly added node. In case there are no other nodes within
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this RMSD, the nearest existing node would be the only node selected to create this set of
nearest neighbors. Among these nearest neighbors, the best (defined by our cost method)
least-cost node is selected to be set as the parent of this new node in the tree. The cost of
each node is calculated using an A*-based heuristic cost function. The cost function used
here is

cost(n) = g(n) + h(n), (1)

where g(n) is the summation of the g(parent(n)) and the RMSD of n from the start con-
formation, and h(n) is the RMSD of n from the end conformation. We implemented this
cost function to estimate the cost of the cheapest (least-cost) path from the newly generated
conformation to the end conformation. The least-cost node is chosen in the chooseParent
method and is set as the parent of the new node and added to the main tree. The tree goes
through a rewiring procedure afterward, where we check if the newly added node to the
tree is a better parent for its neighbors than their current ones. That means, for each node in
the set of nearest neighbors, we check if the cost to get that node is less through our newly
added node than its current parent. Furthermore, if so, we replace the current parent with
the new node.

After multiple iterations, the pool of conformations that we have tends to get larger
and larger and it becomes both space and time-wasting to look through all these confor-
mations. Therefore, we go through the pool to find “redundant” nodes, and by that we
mean the nodes whose RMSD from each other is 10% or less than their RMSD from the end
conformation, and only keep the one closer to the end conformation. This pruning process
happens first when the size of the pool tree is equal to the protein molecule’s number of
residues and then every time it is multiplied by a constant (we chose 3 experimentally).
The potential energy function that we use to calculate the energy of a new conformation, in
order to decide whether to accept it or not is as follows [35]:

Etotal = EHB + Eburial + Ewater + Ebond + Eangle + EVdW (2)

The first three terms represent hydrogen bonds, burial, and water-mediated interaction
terms taken from [35]. The three remaining terms EVdW, Ebond, and Eangle came from the
AMBER f f 03 force field [36]. The EVdW is a Lennard Jones potential that was slightly
adapted to tolerate soft collisions between atoms, as a result of the lower resolution. These
terms were used to test for clashes and deformities in the structure. A new molecule’s
potential energy must be smaller than a particular threshold, i.e., k* the number of residues
in the molecule, to be accepted to the pool. In this paper, we set k = 5. If the energy was too
high, we attempted to minimize it using up to 10 steps of gradient-descent minimization
on the bond, angle, and VdW terms. If the minimization failed to bring the conformation
to within the threshold, it was discarded. If the potential energy was below the threshold,
the conformation was accepted to be added to the tree.

The new conformation is now accepted and the next step is to make a new branch
(path of conformations) towards it. We do this considering the below criteria:

lRMSDnew < lRMSDparent (3)

r < e(−
lRMSDnew−lRMSDparent

lRMSDnew .a ) (4)

where r is a random number in [0,1), and a is a previously-defined constant. a is defined
as 0.01 in this work. To avoid getting stuck in the potential local minima, with a small
possibility, we allow conformations with lower scores to be accepted.

The iterative sampling of new conformations proceeds until either the score of the
generated conformation is below the preset score threshold or the minimum score achieved
by the conformations in the pool does not reduce for M = 500 iterations. We measure
the score of each conformation by its lRMSD with respect to the goal conformation, and
the threshold value that we set for this score is within 1.7 and 3.65 based on the protein
size and the difficulty of the pathway. This range is a realistic lower bound we found for
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our tested proteins since achieving a lower lRMSD is challenging because of sampling
errors and variations of the protein molecules The very last step is to extract a path from
the tree, from the start conformation to the goal conformation when the threshold lRMSD
is reached.

2.2. Integrating Rigidity Analysis

The highlight of this contribution is integrating the rigidity analysis of the protein into
our algorithm to steer the algorithm when it selects dihedral angles to manipulate during
the search. The information regarding rigidity analysis can be gathered from computational
analysis [37,38], experimental information, co-evolution, or rigidity analysis tools such as
Kinari [30,32]. For each protein, We used Kinari [30] to obtain the rigid clusters of residues
and then extract the flexible residues to be manipulated by our algorithm. The output from
Kinari contains the atoms that belong to rigid clusters of any size. In order to avoid very
small rigid clusters which may contain noise, we set a threshold for the cluster sizes to be
considered. We experimented with thresholds of 6, 7, and 8 atoms. Any residue with atoms
not in a rigid cluster was considered flexible. We investigate the effectiveness of using
rigidity analysis to guide the residue-selecting procedure in two ways. One approach is to
incorporate rigidity analysis only at the beginning of the algorithm as described below:

• We generate the start conformation’s rigid clusters of atoms, using a specified threshold
for the minimum number of atoms per rigid cluster.

• The flexible residues are then produced using the rigid clusters extracted from the
previous step.

• The list of flexible residues of the start conformation is given to the algorithm to be
used as candidate residues for perturbation of their φ and ψ dihedral angles.

In the above description rigidity analysis is only run once in the beginning, but since
the protein undergoes large conformational changes, its rigid clusters may change during
the run. The second approach is to use rigidity analysis not only at the beginning but also
throughout the algorithm to account for these changes. We hypothesized that feeding the
algorithm with the results of rigidity analysis would make the algorithm produce smoother
pathways and eventually converge faster. We found that the optimal number of rigidity
analysis recalculations was when the conformation changes by more than 2 Å after the
previous run. This results in approximately 2–7 runs in the test cases studied here.

2.3. Using the Kinari Software

The Kinari software gets the PDB ID and the chain ID of a protein and returns the
set of rigid clusters of atoms. Each rigid cluster is shown as a list of atom numbers. Small
clusters with very few atoms (defined by a lower limit) are disregarded because they might
represent for example a Benzene ring whose rigidity is of no interest because of the inherent
planarity of such structures. We used three different values as the lower limit of atoms in a
rigid cluster, 6, 7, and 8, and ran our algorithm for all of these values to see whether this
lower limit has a genuine impact on the convergence or the runtime of the algorithm. For
instance, by choosing 6 as the lower limit, all of the rigid clusters discovered with fewer
than six atoms were not considered.

2.4. Implementation Details

In our previous work, we tested our algorithm on different proteins by submitting
jobs on UMass Boston compute cluster, Chimera. Chimera is a heterogeneous distributed
memory high-performance compute cluster. However, we were incapable of running the
Kinari software on Chimera by submitting jobs through the job scheduler and had to run
the algorithm on a new operating system on Chimera without using the job scheduler.
Because of this change, we re-ran our previous algorithm [28] on our test cases on the same
new OS as the current implementation to be able to compare the results and runtimes
properly. Each test case was run ten times and the results were averaged. We used the
same RMSD threshold for all runs, and the RMSD results were approximately the same per
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protein in all implementations regardless of rigidity analysis. Table 1 shows the comparison
of three versions of our algorithm. Furthermore, Table 2 estimates the memory usage by
comparing the resulting tree size.

Table 1. Performance and comparison of the results.

Molecule Path Init. RMSD † min RMSD Time a Time b Time c

CaM 1CLL→ 1CTR 14.85 2.94 92.20 118.2 63.02
1CTR→ 1CLL 14.85 2.93 59.75 67.43 29.19

2F3Y → 1CFD 9.93 3 58.67 49.01 37.80
1CFD → 2F3Y 9.93 3.57 45 40.38 32

AdK 1AKE→ 4AKE 7.14 2.59 411.67 212.2 182.73
4AKE→ 1AKE 7.14 2.68 307 186.75 142.69

CVN 1L5E→ 2EZM 15.92 2.93 73.5 68.4 56
2EZM→ 1L5E 15.92 2.87 33 32.67 29.82

RBP 2DRI → 1URP 4.08 2.37 26.33 6.67 4.33
1URP→ 2DRI 4.08 2.42 23 5.75 4.33

† The distances are in Å and the time in minutes. a Runtime without rigidity analysis (our previous algorithm).
b Runtime with rigidity analysis of the start conformation only at the beginning. c Runtime with rigidity analysis
throughout the algorithm.

Table 2. Comparison of memory usage, size of the trees created.

Molecule Path Tree Size †a Tree Size b Tree Size c

CaM 1CLL→ 1CTR 2209 2700 2137
1CTR→ 1CLL 1597 1708 1166

2F3Y → 1CFD 1738 1603 1488
1CFD → 2F3Y 1432 1410 1354

AdK 1AKE→ 4AKE 2398 1661 1829
4AKE→ 1AKE 1526 1491 1473

Cvn 1L5E→ 2EZM 3279 2886 3059
2EZM→ 1L5E 1921 1680 1867

Rbp 2DRI → 1URP 100 91 84
1URP→ 2DRI 109 84 63

† Number of nodes in the RRT tree generated. a without rigidity analysis (our previous algorithm). b with rigidity
analysis of the start conformation only at the beginning. c with rigidity analysis throughout the algorithm.

3. Results

Below we detail the test case we used and we elaborate on the results for each system
separately. Table 1 shows the comparison of three versions of our algorithm: One denoted
by (a) for our previous work [28], one denoted by (b) for the version that runs rigidity
analysis once in the beginning and one, denoted (c), which runs rigidity analysis throughout
the algorithm (see Methods for details). In all cases, the run time improved considerably
in implementation (c) with respect to (a). In all but the Calmodulin implementation (b),
which performed one rigidity analysis, improved the run time considerably. The memory
consumption, measured in the size of the tree, also improved when running rigidity
analysis, but the difference is less marked, possibly due to the tree pruning procedures
discussed above. Below we detail the results for each protein.
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3.1. Test Cases
3.1.1. Calmodulin (CaM)

Calmodulin is a highly conserved, calcium-modulated protein that is found in all
eukaryotic cells. It is the most adaptable member of its family, the family of calcium-binding
proteins. It acts as a receptor for the Ca2+ signal [39]. Calmodulin modulates many cellular
effects such as regulation of changes in the concentration of cytosolic calcium ions that
control biological processes [40]. It is a relatively small protein consisting of 148 amino
acids. Calmodulin has two globular domains that are relatively symmetrical. Each of these
domains contains a pair of EF-hand motifs (the EF-hand is a motif that has a helix-loop-
helix topology, in which the Ca2+ ions are coordinated by ligands within the loop, and it
is found in a large family of calcium-binding proteins), and the N- and C-domain motifs
that are separated by a flexible linker region. This would make a total of four Ca2+ binding
sites in this protein.

We considered two Calmodulin pathways for our simulations. First, we simulated
the pathway between an open conformation (PDB: 1CLL) and a closed conformation
(PDB:1CTR) The RMSD between the two conformations is 14.83 Å. We ran our simulations
in both directions, from the open conformation to the closed conformation and then the
other way around. Figure 2a,b show the closed (1CTR) and open (1CLL) conformations,
respectively. Furthermore, Figure 3 shows the superimposition of the simulated conforma-
tion and the actual conformation of the protein molecule. The flexible residues detected
by rigidity analysis are also represented in Figure 2 in blue. As expected, the flexible
residues are predicted to be mostly on the linker region between the two EF-hands of
the protein. The predicted flexible residues are not exactly the same as the real changed
residues when the algorithm gets to the end conformation, but they mostly cover the main
flexible parts and guide the algorithm to converge faster towards the end conformation.
Table 1 shows a comparison of the results of from our previous work [28], the version that
uses the flexible (non-rigid) residues of the start conformation throughout the run, and our
current work that uses rigidity analysis to create flexible residues several times throughout
the simulation as explained in Section 2.2. For this pathway, when the algorithm calls
the Kinari software several times throughout the run, we get the fastest convergence. For
instance, for 1CTR → 1CLL our runtime average is 30.56 min faster than our previous
work (Table 1), and for 1CLL→ 1CTR, the new runtime is 29.18 min faster. Table 2 displays
the size of the RRT tree for our three scenarios. By comparing columns a and c, we can
see in all cases, the size of the tree is reduced when we incorporate rigidity analysis a
couple of times throughout the algorithm. This denotes a decrease in memory usage. For
1CTR→ 1CLL, RRT tree size changed from 1597 to 1166 and for 1CLL→ 1CTR, RRT tree
size changed from 2209 to 2137 nodes. Figure 4 shows an instance of the conformational
path from 1CTR to 1CLL simulated by the algorithm, with intermediate conformations
taken at approximately equal spaces.
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Figure 2. Open and closed conformations of sample proteins. Rigid residues produced by the Kinari software are shown
in red, and flexible residues are shown in blue. (a) CaM Closed conformation, 1CTR. (b) CaM Open conformation, 1CLL.
(c) AdK Closed conformation, 4AKE. (d) AdK Open conformation, 1AKE. (e) CVN closed conformation, 2EZM. (f) CVN
closed conformation, 15LE. (g) RBP closed conformation, 2DRI. (h) RBP open conformation, 1URP.

Figure 3. Superimposition of the simulated structure (red) and the original structure (blue). (a) 1CTR, (b) 1CLL, (c) 1AKE,
(d) 4AKE, (e) 2EZM, and (f) 1L5E.

Figure 4. The simulated conformational path for CaM, from 1CTR (a) to 1CLL (f). Conformations (b–e) are the intermediate
conformations for this path, taken at approximately equal spaces.
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The second pathway that we explored for the Calmodulin protein consisted of the
Calcium-free form of Calmodulin (PDB: 1CFD) and Calmodulin/IQ domain complex
(PDB: 2F3Y) conformations. Compared to our previous implementation, the algorithm is
on average 13 min faster for 1CFD → 2F3Y, and 20.87 minutes for 2F3Y → 1CFD. The
average tree size changed from 1737 to 1488 for 2F3Y → 1CFD, and from 1432 to 1353 for
1CFD → 2F3Y (Table 2).

3.1.2. Adenylate Kinase (AdK)

AdK is a phosphotransferase enzyme (an enzyme that catalyzes phosphorylation
reactions), responsible for catalyzing the phosphoryl transfer between two ADP (adenosine
diphosphate) molecules to produce ATP (adenosine triphosphate) and AMP (adenosine
monophosphate) [41]. The reason AdK is an important molecule when it comes to confor-
mational changes is that it is a signal-transducing protein, and in order to regulate protein
activity, there should exist a balance between conformations [42].

AdK consists of 214 amino acids and has two small domains, LID and NMP, and
a CORE domain [43]. The CORE contains residues 1-29, 68-117, and 161-214, the LID
domain in residues 118-167, and the NMP domain in residues 30-67. Research suggests
that AdK has two relevant conformations; open conformation in the unbound structure,
1AKE, and a closed conformation 4AKE, shown in Figure 2d,c, respectively. During the
conformational transition from the open conformation to the closed one, the most extensive
change happens in LID and NMP domains, while the CORE domain stays relatively
rigid. The initial lRMSD between the two conformations is 7.14 Å. We consider the two
pathways for the two conformations of AdK; 1AKE → 4AKE, and 4AKE → 1AKE. The
average runtime for the 1AKE→ 4AKE path is 228.94 min faster than our previous work
(Table 1, refer to Section 2.4 for details on runtime analysis). The average run time for
4AKE→ 1AKE is 164.31 min faster. Figure 5 shows the progression of lRMSD towards the
end conformation. The conformational path created by our current algorithm is smoother
than our previous one since we attempt to reduce the randomness by focusing on flexible
regions. This helps the algorithm to generate more realistic intermediate conformations and
converge faster. In Figure 5 the evolution of lRMSD is shown for one example (calculated
with and without rigidity analysis) and is not an average. In our future studies, we intend
to perform an error analysis to evaluate our method more rigorously. Table 2 depicts how
integrating rigidity analysis has downsized the RRT tree from having 1526 nodes to 1473
for the 4AKE → 1AKE path, and from 2398 to 1829 for the 1AKE → 4AKE. The latter
shows a significant amount of memory usage reduction.

3.1.3. Cyanovirin-N (CV-N)

Cyanovirin-N (CV-N) is a potent antiviral fusion inhibitor of HIV and many other
viruses [44]. It contains 101 amino acids and has two domains with a 30% sequence identity.
The domain-swapped dimer has a higher antiviral affinity than the monomer. With a
high energy transition barrier, the two forms can be in a solute dissolved into a solvent.
Specific mutations can have an effect on the energy barrier and on stabilizing alternative
conformations. We attempt to mimic the unpacking of these repeat domains, from the
intertwined monomeric conformation to the domain-swapped dimer conformation, for a
single chain. 1L5E is the domain-swapped dimer of CV-N in solution, and 2EZM is the
solution NMR structure of Cyanovirin-N. The closed and open conformations of CVN are
displayed in Figure 2e,f, respectively, with the rigid parts of protein shown in red. The two
conformations have an initial lRMSD of 15.92 Å. For the 2EZM→ 15LE path, the updated
algorithm runs on average 3.18 min faster, and for the 15LE→ 2EZM path, it runs 17.5 min
faster on average (Table 1). The evolution of lRMSD towards the end conformation is
shown in Figure 5. Like AdK, the new path is smoother.
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Figure 5. Evolution of lRMSD towards the goal for CaM and AdK. (a) 1CTR → 1CLL, (b) 1CLL → 1CTR, (c) 1AKE →
4AKE, (d) 4AKE → 1AKE, (e) 2EZM → 1L5E, (f) 1L5E → 2EZM, (g) 1URP → 2DRI, and (h) 2DRI → 1URP. The blue
line shows the paths obtained by our updated algorithm using rigidity analysis and the red line shows the paths obtained
by our previous work based on RRT* algorithm.
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3.1.4. Ribose Binding Protein (RBP)

In order to function correctly, conformational changes are essential in bacterial periplas-
mic receptors in chemotaxis and transport. These conformational changes allow ligands to
enter and exit and enable correct interactions of ligand-bound proteins. We considered two
conformations of the Escherichia coli ribose-binding protein, for which the small backbone
moves only happen in the hinge region. The secondary structure elements in the two
domains and the amino acids in the binding pocket are relatively rigid.

The open (PDB: 1URP) and closed (PDB: 2DRI) conformations have dissimilar sur-
faces in the regions known to be of importance in chemotaxis and transport, that will
change their interactions with the membrane components. Conformational changes are
necessary for the function of bacterial periplasmic receptors in chemotaxis and transport.
Here, we used two conformations of the protein from Escherichia Coli (E.coli). In E.coli
RBP (Ribose Binding Protein) small-scale backbone movements are restricted to the hinge
region, whereas the secondary structure elements in the two domains and the amino acids
in the binding pocket adopt essentially the same conformations [45]. It seems certain that
the conformational path that links the forms described here is that followed during ligand
retrieval, and in ligand release into the membrane-bound permease system.

The closed and open conformations of RBP are displayed in Figure 2g,h, respectively,
with rigid parts shown in red. For the 2DRI → 1URP path, the updated algorithm runs
on average 21 min faster, and for the 1URP → 2DRI path, it runs 18.67 min faster on
average (Table 1).

4. Discussion

In this project, we present and compare different approaches to using rigidity analysis
in order to find proteins’ conformational pathways. The use of flexible parts helps us get
better results in terms of time, and in most cases, memory usage Table 2. We examine
three scenarios. The first one is the same as our previous work (without using rigidity
analysis results). For the second one, we start our algorithm with flexible residues as an
input to the algorithm to use instead of all the residues. Furthermore, in the last scenario,
our algorithm not only uses the flexible residues at the beginning but also a few times
during the process. Based on the yielded average of runtimes and tree sizes, the third
scenario provides us with the best results concerning runtime and memory. By providing
the flexible residues to our algorithm, we help decrease randomness and search mostly
among suitable candidates instead of randomly chosen protein residues to manipulate.
Consequently, this approach yields smoother paths that are less randomized in a faster
time. In our future studies, we aim to compare the intermediate conformations and the
conformational pathways that our algorithm generates with available experimental results.
We intend to investigate how close these pathways are to actual conformational pathways
and how we can improve them.
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