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Timescale mediates the effects 
of environmental controls on water 
temperature in mid‑ to low‑order 
streams
Jorge García Molinos 1*, Ishiyama Nobuo2, Masanao Sueyoshi 3,5 & Futoshi Nakamura 4

Adequate management and conservation of instream thermal habitats requires an understanding 
of the control that different landscape features exert on water temperatures. Previous studies have 
extensively explored the influence of spatial scale on these relationships. However, the effect of 
temporal scale remains poorly understood. Here, we use paired air–water mean daily and monthly 
summer temperatures collected over four years from 130 monitoring stations in Japanese mid‑ to 
low‑order streams to investigate whether perceived effects of different environmental controls on 
water temperature are dependent on the timescale of the temperature data, and whether those 
dependencies are related to the spatial scale at which these controls operate. We found a clear pattern 
for the significant cooling effect, high relative importance and strong dominance exerted by the 
riparian forest cover on daily temperatures at the reach scale becoming dampened by concomitant 
increases associated to the proportion of volcanic geology on monthly temperatures at the catchment 
scale. These results highlight the importance of contextualizing the effects of environmental controls 
on water temperatures to the timescale of the analysis. Such dependencies are particularly important 
for the management and conservation of instream thermal habitats in a rapidly warming world.

Increasing thermal stress resulting from human disturbances poses a risk to freshwater biota, given the control of 
temperature on physiological  processes1, prompting them to respond in situ by exploiting local thermal  refugia2 
or by relocating to colder tributaries and upstream  reaches3. As a result, characterizing instream thermal habitats 
and their controlling factors at both local and broader, basin-wide scales is becoming increasingly important for 
the integrated management and conservation of fluvial ecosystems and associated  biota4,5.

Multiple climatological, hydrological, morphological and geological factors influence stream water tempera-
ture across spatial scales through their effect on heat exchange processes occurring at the stream surface and 
streambed  interfaces6. A growing body of literature demonstrates how spatial heterogeneity in the characteristics 
of river networks and their catchments can shape localized responses of stream temperature sensitivity, which 
can vary significantly across space even in regions that are geographically close and climatically  similar7–9. This 
makes the extrapolation of simple air–water temperature relationships beyond monitored sites across river net-
works problematic. Yet predictions of water temperature are needed at scales meaningful to management (i.e., 
catchment scale). Recent modelling efforts try to circumvent this issue by explicitly incorporating the effect of 
landscape and geomorphological characteristics into the prediction of stream water  temperatures10–12.

Thermal regimes are also geographically distinct and scale dependent in the time  domain13. Previous studies 
have shown that air-water temperature relationships vary significantly with the temporal resolution of the data, 
where higher slopes and lower intercepts are usually associated when regressing water on air temperature at 
increasing  timescales6. However, much less is known about how temporal scale can modify perceived effects of 
other environmental controls on stream water temperatures over and above the effect of air temperatures. Using 
spatial stream network models, Steel et al.14 found that relationships between landscape predictors and water 
temperature in the Snoqualmie River changed among temperature metrics defined for different temporal win-
dows and timescales. For example, while increasing elevation correlated strongly with decreasing summer mean 
temperatures, this relationship was reversed for mean daily thermal range and lost for temperature variability 
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defined for multiple daily and hourly timescales. These results are important because the biological and ecologi-
cal relevance of temperature metrics used to represent stream thermal regimes vary with timescale. Short-term 
average temperatures and thermal variability are arguably more relevant to physiological processes and related 
lethal and sublethal responses in  ectotherms15, while temperature aggregated over larger timescales is useful for 
assessing broader ecological patterns and overall distributions of species across geographical  ranges16,17. Manage-
ment of instream thermal environments and associated biodiversity requires, therefore, a better understanding 
of the dependencies between environmental controls and stream temperatures across  timescales18.

Here we use summertime paired air-water temperatures, collected from 130 monitoring sites in Japanese 
mid- to low-order streams, i.e. from headwaters to middle reaches, to explore the temporal dependency of the 
effects of local- and catchment-scale environmental predictors on stream water temperatures after controlling 
for the effects of air temperature. Specifically, we use linear mixed-effect models and dominance  analysis19 to 
identify changes in the relative importance of individual predictors and their dominance relationships. We focus 
our analysis on the control exerted by land use and solid geology, at the catchment scale, and the riparian cover 
and channel elevation, at the reach scale, because these are all predictors frequently used in, and of demonstrated 
importance for, the prediction of stream water  temperatures6. Specifically, we focus on the effect of volcanic rocks, 
abundant in our study catchments (Fig. 1), given their strong contribution towards cold groundwater discharge 
relative to other bedrock  types20. We further make a distinction based on geological age, as young volcanic rocks 
with high porosity and permeability are frequently associated to more prolific unconfined acquirers relative to 
older  formations20. These considerations are supported by results from previous related studies conducted in 
Japanese  streams21,22, including our own work in the study  catchments23.

Material and methods
Study catchments and temperature monitoring networks. We conducted our study at four catch-
ments in Japan (Fig. 1): the Sorachi and the Teshio Rivers in Hokkaido, the Hiji River in Shikoku, and the Kiso 
River in Honshu. Upper sections of these catchments are mostly covered by deciduous and evergreen mature 

Figure 1.  Location of the four study catchments and the paired temperature stations (n = 130) set to monitor 
air and water temperatures. The width of the river lines is proportional to their Strahler order. The distribution 
of volcanic formations grouped by age is shown in the background. Maps created with ArcGIS Desktop 10.7.1 
(https:// www. esri. com).

https://www.esri.com
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forest with a geology dominated by metamorphic, plutonic and extrusive volcanic rocks of mixed ages (Sup-
plementary Figs. S1, S2). Agricultural, paddy field and urban land uses dominate in the fluvial valleys and lower 
sections of the catchments with geologies mostly comprising accretionary complexes, sedimentary rocks and 
unconsolidated sediments. Extrusive volcanic formations, on which we focus this study, are mainly represented 
by felsic (dacite and rhyolite), mafic (basalt and andesite) and, in much lower proportions, volcanic debris and 
pyroclastic flow (pumice and volcanic ash) rocks (Fig. S2).

This study is based on data collected during the summer (June-September) between 2018 and 2021 from 
a total of 130 paired (air-water) temperature monitoring stations (Fig. 1). Stations were allocated across each 
river basin covering as much of their environmental gradients as possible subject to logistic and accessibility 
constraints. The monitored network covers only low- to mid-order streams (Strahler order 1 to 4) due to opera-
tional constraints and the high level of human alteration existing in the larger, non-wadable rivers of these four 
catchments.

Air and water temperatures were recorded at each site using Onset Hobo UA-001-64 (accuracy ± 0.53 °C) 
and Gemini TG-4100 (± 0.5 °C) temperature data loggers. Water loggers were installed in non-turbulent flow-
ing sections of the stream housed in short sections of perforated PVC pipes to facilitate water exchange and 
shield them from direct sunlight. Air loggers on perforated PVC pipes were attached to nearby trees (~ 2 m 
high) in shaded areas by the stream  bank24,25. Loggers were set to record temperatures every hour, which were 
then converted into mean daily and monthly temperatures using the ’timeAverage’ function of the R package 
’openair’26 at a 0.75 unit threshold. In other words, a given day or month was computed from the corresponding 
hourly data if at least 75% of the hours for that temporal unit were available. Otherwise the unit was taken as a 
missing observation. Visual inspection of the temperature series suggested some suspected periods of air expo-
sure of water loggers in a few sites (Fig. S4), which were subsequently treated as missing observations. Missing 
observations occurred also sporadically due to issues such as faulty or lost loggers. Nonetheless, the proportion 
of missing observations within individual series was small across sites (1.79 ± 5.79%), resulting in a final total of 
38,798 daily and 1324 monthly valid paired temperature observations with an average effective series duration 
by site of 10.19 ± 2.46 months (234.85 ± 144.23 days).

Landscape variables. River networks and catchments were derived from the conditioned 10-m grid digital 
elevation model (DEM) form the Geospatial Information Authority of Japan (available from https:// fgd. gsi. go. 
jp/ downl oad/) based on flow accumulating and minimum length thresholds of 5000 (~ 0.5  km2 minimum con-
tributing catchment) and 100 cells (~ 1 km), respectively, using the Spatial Analyst Tools in ArcGIS 10.7.1. River 
network topology and different environmental layers were then queried at each monitored site to extract our set 
of predictor variables (Table 1).

Statistical models. We used linear mixed effects models (LMMs) for prediction of mean daily and monthly 
water temperatures following the general notation:

where Twij and Taij are the i-th observation of mean water and air temperatures for site j; α is the (grand) 
intercept; βXi,j represents the corresponding linear combination of site-specific environmental covariates and 
their corresponding regression coefficients; ϵi,j are the observation-specific residuals; υj,k is a random effect that 
includes a random slope and intercept for air temperature at the site level, accounting for the different air–water 
temperature relationships observed across sites (Fig. S5); and h(sj ,ϕi) is a continuous temporal autoregressive 

(1)Twi,j = α + βairTai,j + βXi,j + ϑj,k + h
(

sj ,ϕi
)

+ ǫi,j

Table 1.  Description of catchment- and reach-scale environmental covariates measured at each monitored site 
including related hydrological and stream heat exchange processes (+ /− symbols indicate expected positive/
negative relationships), and the source and format of the data sets used in this study to derive each variable.

Variable Description Relevance Data source Format

I. Catchment scale

Cultivated area
Proportion of cultivated area (crop and 
paddy field uses) within contributing 
catchment

Surface run−off (+). Catchment 
responsiveness (+) and residence 
time (−)

ALOS/AVNIR−2 High Resolution 
Land Use/Cover map, Japan Aerospace 
Exploration Agency (JAXA)

10 m raster

Quaternary/pre−Quaternary volcanic 
rock

Proportion of formations classified 
as volcanic rocks within contributing 
catchment of Quaternary/pre−Quater-
nary origin

Hydrogeological processes. Ground-
water contribution (+)

Seamless Digital Geological Map of 
Japan, Geological Survey of Japan, 
AIST

1:200,000 vector

II. Riparian buffer

Reach elevation Mean elevation of the 100 m stream 
reach centered on a site

River discharge (−), channel width (−), 
depth (−), and slope (+)

DEM Geospatial Information Author-
ity of Japan 10 m raster

Riparian forest cover

Proportion of forest land use (ever-
green, deciduous and bamboo forest) 
within upstream riparian buffer 
(120 m wide centered on the stream 
line and running 1 km upstream from 
each site). Where channel bifurcations 
where met, the buffer extended on 
all stems

Incident incoming solar radiation (−)
ALOS / AVNIR−2 High Resolution 
Land Use/Cover map, Japan Aerospace 
Exploration Agency (JAXA)

10 m raster

https://fgd.gsi.go.jp/download/
https://fgd.gsi.go.jp/download/
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(CAR) structure of order 1 at site level used in the daily model (see below) to account for temporal correlation in 
model residuals defined by φ, the correlation between two observations one unit of time apart, and s as the time 
covariate grouped by  site27. We initially considered the inclusion of catchment as the highest level of a hierarchi-
cal nested random effect structure. However, we decided to include it as a fixed-effect categorical variable due 
to the limited sample size at the higher hierarchical level (i.e., 4 catchments). A bare minimum of five groups is 
usually considered necessary at the highest hierarchical random effect level to make meaningful estimates of the 
variation among random effects (group-level) in hierarchical mixed-effects  models28,29.

Examination of the normalized residuals by site for the daily model showed a clear, consistent pattern of 
a gradually decaying autocorrelation function and a partial autocorrelation function with a strong significant 
correlation (~ 0.8–0.9) at lag 1 dropping sharply below the significance threshold thereafter (Fig. S6). Therefore, 
we included a continuous autoregressive structure of lag 1 into the daily models, which flexibly allows for the 
existence of gaps in the time series of  records27. These temporal autocorrelation patterns were absent in the 
monthly model (Fig. S6). Therefore, the temporal correlation structure was not added to the monthly model.

Despite the limited number of observations at the site level for the monthly model (10.19 ± 2.46 observa-
tions), simulation studies demonstrate that, when the number of groups is sufficiently large (i.e., 130 sites in 
our case), neither fixed nor random effects estimates are affected by small sample size within groups even in 
extreme  situations30,31. Sample size at site level for the monthly model was hence considered to be sufficient to 
obtain unbiased estimates of the fixed effects for the monthly model at the population level (i.e., across sites), 
which constitute the focus of this study.

Model performance was assessed by mean of the conditional and marginal coefficients of determination 
 R2[,32,33, representing respectively the total variance explained by the model (fixed and random components 
together) and the variance explained by the fixed effects. The root mean square error (RMSE) was also computed 
for each model as a measure of goodness-of-fit. All metrics were computed using the function ’model_perfor-
mance’ from the R package ’performance’34. Covariates were assessed for multicollinearity on the fitted models 
using variance inflation factors (VIFs) with a cut-off value of  1035. All predictors had VIFs well below that 
threshold in both models.

Relative importance of predictors and dominance analysis. We assessed the relative importance of 
each predictor in the models using Dominance Analysis (DA)19,36. DA is a technique to rank-order the predic-
tors in a model in terms of relative importance by comparing the additional contributions from each predictor 
to the variance explained by all subset models containing all possible combinations of the rest of the predictors. 
The additional contribution of a predictor to a given subset model is measured as the increase in the variance 
accounted for by that model after the addition of that predictor. Dominance can then be established among 
any pair of predictors present in the original model, where one predictor is said to dominate over another if its 
additional contribution is greater than that of the other predictor over all subset models not including any of the 
two  predictors19. Azen and  Budescu36 established three types of dominance that are hierarchically related. At the 
highest level, complete dominance of a predictor over another is established if the additional contribution of that 
predictor is consistently greater than the contribution of the other predictor over all possible subset models that 
do not include any of the two predictors. When this is not the case, weaker levels of dominance can still be estab-
lished between pairs of predictors. Conditional dominance occurs when the average additional contribution of 
a predictor for all subset models within each model size is greater than that of another predictor. Finally, general 
dominance, representing the weakest level in the dominance hierarchy, occurs when the additional contribution 
of a predictor averaged across all model sizes is greater than that of the other predictor. Although several other 
related methods for assessing the relative importance of predictors based on an ’all subsets’ approach  exist37, their 
estimations focus only on average contributions over all predictor orderings (i.e., general dominance in DA). 
Therefore, DA provides the additional important insight given by the other relative importance measures (i.e., 
complete and conditional dominance)38.

Given our interest is in assessing the control of environmental predictors on water temperatures, we used a 
model fitting water temperatures to air temperatures plus the catchment effect as a baseline against which relative 
contributions of the environmental predictors were evaluated in terms of changes in marginal  R2 while keep-
ing the random component of the models invariant. This allowed us to assess predictor contribution to explain 
variability in water temperatures after accounting for the effect of air temperatures. All statistical computations 
were done in R version 3.6.339.

Results and discussion
The proportion of variance in water temperatures explained by the models increased with coarser temporal 
resolution with marginal and conditional  R2 of 0.71/0.81 and 0.77/0.93 for mean daily and monthly tempera-
tures, respectively. RMSEs (population-level) showed a reversed trend, with mean deviations of predicted water 
temperatures from observed water temperatures decreasing from 1.83 °C for mean daily temperatures to 1.41 °C 
for mean monthly temperatures. Models at both timescales improved the performance of the baseline model 
 (R2

day = 0.5,  RMSEday = 2.39 °C,  R2
month = 0.57,  RMSEmonth = 1.94 °C) significantly (p < 0.0001 ANOVA based on 

Maximum Likelihood model estimates), demonstrating the utility of the inclusion of environmental variables 
to capture variability in air–water temperature sensitivity across sites.

Air temperature had a highly significant positive effect on water temperature with a regression coefficient 
twice as big in the monthly compared to the daily model (Table 2). Steeper regression slopes and lower intercepts 
often result when increasing the timescale in simple water–air linear regression models because averaging over 
longer timescales decreases the variance in the data by reducing the effect of the time lag or transient response of 
stream water temperatures to changing air temperatures, typically operating on the order of hours to  days40,41. The 
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catchment effect was also significant in both models (Table 2); the southern catchments (Kiso and Hiji) having 
higher water temperatures on average relative to the northern (Sorachi and Teshio) catchments.

Some environmental predictors had consistent significant effects on water temperature irrespective of the 
timescale of the temperature data (Table 2). Increasing proportion of quaternary volcanic rocks within the con-
tributing catchment and higher reach elevation had a highly significant negative effect on water temperatures 
while increasing proportion of cultivated land in the catchment had a significant positive effect. The former two 
variables had also the highest importance in terms of relative contribution to the variance explained by the fixed-
effect component of the model relative to the baseline (Fig. 2a-b), with the proportion of quaternary volcanic 
rocks accounting for a 31.48% and 38.41%, and reach elevation a 27.06% and 26.53% of the total variance in the 
daily and monthly models.

Other predictors, however, showed clear differences in their effects and relative importance between the two 
models (Table 2, Fig. 2a-b). At the reach scale, the cooling effect of riparian cover became weaker with increas-
ing timescale, its effect size halved and shifting from highly significant to marginally non-significant in the 
monthly model (Table 2); its relative importance reduced from 23.52 to 16.93% (Fig. 2a-b). On the other hand, 
at the catchment scale, increasing proportion of pre-quaternary extrusive volcanic formations had a significant 
negative effect on monthly water temperatures that was absent from the daily model (Table 2), while the rela-
tive importance of pre-quaternary and quaternary volcanic rocks increased by 4.65%, and 6.9% in the monthly 
relative to the daily model (Fig. 2a-b).

These results were further supported by dominance analysis (Fig. 2c-d). Despite being the most dominant 
predictor in both models, the proportion of quaternary volcanic rocks experienced a strong weakening of domi-
nance links on other predictors between timescales, changing from exerting complete dominance over all other 
predictors but reach elevation in the monthly model to having only general dominance (i.e., lowest hierarchical 
level of dominance) over riparian forest cover and conditional dominance over the proportion of catchment 
cultivated land in the daily model. On the other hand, riparian forest cover and cultivated land use increased 
both one level in dominance hierarchy over the proportion of pre-quaternary volcanic rocks in the daily relative 
to the monthly model (Fig. 2c-d).

Together, notwithstanding the fact that reach- and catchment-scale covariates remained important at both 
temporal resolutions, these results point towards a clear temporal dependency of the relative importance and 
dominance of environmental controls on stream water temperature. The stronger effects, higher relative impor-
tance and dominance exerted by reach-scale predictors related to controls governing incident solar radiation 
and local heat exchange processes at the stream surface observed at the daily timescale became dampened at the 
monthly timescale by predictors related to catchment-scale hydrological and hydrogeological processes control-
ling the partitioning, storage and routing of water into the streams. These results hint at potential interdependen-
cies between temporal and spatial scales that will be explored in more detail in future studies.

Table 2.  Summary of the results for the linear mixed effects models fitting water temperature to air 
temperature and a suite of landscape and reach scale environmental covariates at the two timescales. 
Significant values are in bold.

Daily Monthly

Predictors Coef SE t p Coef SE t p

(Intercept) 14.425 0.439 32.837  < 0.001 6.647 0.625 10.63  < 0.001

Air Temperature 0.315 0.008 39.311  < 0.001 0.622 0.016 38.835  < 0.001

Catchment:Kiso (contrast Hiji) −0.327 0.343 −0.954 0.342 −0.702 0.504 −1.392 0.166

Catchment:Sorachi −3.922 0.305 −12.846  < 0.001 −1.987 0.455 −4.37  < 0.001

Catchment:Teshio −3.626 0.368 −9.85  < 0.001 −1.544 0.494 −3.122 0.002

Catchment scale

Cultivated area 0.033 0.015 2.272 0.025 0.043 0.015 2.869 0.005

Volcanic Quaternary −0.018 0.003 −6.561  < 0.001 −0.019 0.002 −7.773  < 0.001

Volcanic/Limestone pre-Quaternary −0.002 0.003 −0.64 0.523 −0.008 0.002 −3.153 0.002

Reach scale

Reach elevation −0.044 0.006 −7.483  < 0.001 −0.022 0.006 −3.348 0.001

Riparian forest −0.013 0.004 −3.64  < 0.001 −0.006 0.004 −1.744 0.084

Random Effects

Residual standard deviation (σ) 1.518 0.826

Site (intercept) standard deviation (τ00) 1.081 1.323

Site (AT) standard deviation (τ11) 0.09 0.135

Correlation (WT) at lag 1 (ρ) 0.962 −

Intraclass correlation (ICC) 0.33 0.7

Observations 38,667 1,193

Marginal /Conditional  R2 0.719/0.805 0.775/0.931



6

Vol:.(1234567890)

Scientific Reports |        (2022) 12:12248  | https://doi.org/10.1038/s41598-022-16318-9

www.nature.com/scientificreports/

Cooler daily summer stream temperatures are often associated to the effect of riparian canopy limiting incom-
ing radiation at the water surface resulting in a significant reduction of the net surface heat flux compared to 
open or non-vegetated riparian  zones43–45. Similar effects have also been reported, albeit less frequently, in stud-
ies focusing on coarser timescales (i.e., monthly or annual temperatures)46, perhaps because at these temporal 
resolutions the interest is often on larger spatial scales where the focus is on predictors related to catchment-scale 
processes such as land use  cover47. In any case, our results suggest that riparian cover exerts a larger relative 
control on water temperature at finer than coarser timescales. Riparian vegetation can influence short-term 
(e.g., daily) variation in water temperatures via lateral flow of surface and ground water into the stream channel 
through interception, infiltration and soil saturation processes, particularly in small, steep headwater  streams48,49.

The relative importance and dominance niche left by riparian cover in the monthly model was filled by the 
proportion of solid volcanic geology in the contributing catchment. Although the location, direction and rate of 
groundwater-surface water interactions are controlled by multiple processes that operate over different spatial and 
temporal  scales50, basic information on solid geology at catchment level can be an effective proxy for groundwa-
ter-streambed  interactions51. Together with the type of formation, geological age is important as it relates to the 
processes of weathering, soil development and formation of secondary porosity in underlying rocks, all of which 
are associated to aquifer recharge and surface–groundwater  dynamics20. Young extrusive volcanic formations 
often have high porosity and permeability offering deep, stable aquifers. In our study catchments, young volcanic 
formations comprised primarily mafic basaltic and andesite rocks, both formations capable of forming prolific 
unconfined aquifers in which groundwater flow freely through vesicular and fracture  systems20. On the other 
hand, older extrusive volcanic rocks often experience a decreasing trend in porosity and hydraulic conductivity 
with increasing geological age resulting from the filling of vesicles and fractures by secondary material. In such 
settings, groundwater is largely stored in less stable, shallow aquifers with short flow paths to streams. A study 
conducted at 70 gauging stations across Japan, including sites located in three of our four study catchments, 
found a strong correlation between the type and age of dominant catchment geology and base flows with catch-
ments dominated by quaternary volcanic formations supporting the most abundant flows whereas those under 
older volcanic formations yielded intermediate  flows21. Shorter residence times and shallower storage also mean 

Figure 2.  Relative importance and pair-wise dominance analysis among environmental covariates. (a-b) 
Relative importance for each environmental covariate in the (a) daily and (b) monthly regression models 
measured using the marginal coefficient of determination  R2 and expressed as their overall average contribution 
towards the observed variance in water temperatures explained by the full model after accounting for the effect 
of air temperature (baseline model). (c-d) Chord diagrams showing the pairwise dominance relationships 
between covariates in terms of their relative contribution towards explained variance across all possible subset 
models for the (c) daily and (d) monthly models. Dominance is established from the left side predictors towards 
the right side predictors in the diagrams; the width and colour of the link indicating the dominance level. Three 
hierarchical levels of dominance are established according to the strength of the control of one variable over the 
other, which are in decreasing order: complete dominance (i.e., for all individual subset models), conditional 
dominance (i.e., averaged over subset models for each model size), and general dominance (i.e., averaged across 
all subset models) (see Methods for details). Covariates are colour-coded according to their spatial context at the 
reach (brown) and catchment (blue) scales. Chord diagrams created with the ’circlize’ R package 42.
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warmer groundwater temperature and greater sensitivity to seasonal and long-term changes in air  temperatures52. 
The observed weaker but significant negative effect of old volcanic rocks on monthly water temperatures likely 
reflects to some extent these contrasting conditions.

Catchment cultivated land use had a consistent and significant warming effect on water temperatures irre-
spective of resolution and, together with riparian forest cover, increased in relative importance and dominance 
in the daily model. Agricultural land use is often associated to increased evapotranspiration and surface runoff 
and decreased base flow and water  yield53; all factors that can contribute towards warming of thermal regimes in 
rivers particularly during dry  seasons54,55. Decreased time lag responses between precipitation and streamflow 
associated to agricultural  use56 may have contributed towards the observed higher signature of this predictor on 
mean daily relative to monthly water temperatures.

Conclusions
Our perception of nature, intrinsically dynamic in time and space, is inevitably conditioned by the scales and 
degree of detail we observed it with. Paraphrasing Simon A. Levin “there is no single natural scale at which 
ecological phenomena should be studied; systems generally show characteristic variability on a range of spatial, 
temporal, and organizational scales”57. To understand ecological patterns, and the processes that produce them, 
it is necessary to analyze and compare them across multiple spatial and temporal scales. The role of scale in 
defining patterns and processes is especially important to landscape ecology because landscapes comprise many 
heterogeneous components that interact and show dependence across spatial and temporal  scales58,59.

Previous studies have documented complex temporal and spatial dependencies in the contribution of climato-
logical, topographical and geological controls to hydrological and hydrochemical responses of  streams14,60,61. For 
example, Karlsen et al62 found that catchment soil characteristics correlated significantly with specific discharge in 
a boreal catchment at shorter timescales (monthly to daily), but not when discharge was aggregated into annual 
timescales. In our study, although reach- and catchment-scale covariates remained important in both models, 
we found a clear signal for the strong control exerted by the riparian forest cover on daily water temperatures 
to become dampened by the effect of predictors related to catchment geology in the monthly model. Previous 
studies have documented the strong, direct control exerted by the type and extent of riparian cover on summer 
stream temperature variability over short (hour to daily) temporal scales through their influence on the amount 
of incoming solar radiation received at the stream  surface44. Increasing the time span over which temperatures 
are averaged will effectively reduce this variance. This could reduce the effect size, importance and dominance 
of riparian cover in explaining differences in temperatures across sites between the two models relative to other 
covariates. On the other hand, groundwater-dominated streams, such as those found in catchments dominated 
by extrusive volcanic formations in our study, are characterized by cooler, stable summer thermal regimes 
which signature should be little influenced by the effect of averaging temperatures over increasing time scales. 
This could explain the observed time-dependent trade-offs between the two covariates in terms of their relative 
contribution towards explained variance in the models.

Climate change is altering the abundance, distribution and phenology of species across land and oceans, 
reshuffling biodiversity on a global scale, and modifying ecosystems with dire implications to human well-
being63,64. Species may counter the effects of climate change through phenotypic and evolutionary adaptation 
although evidence suggest such responses are often outpaced and  imperfect65. Freshwater ecosystems are at the 
frontline of these changes because the linear, dendritic nature of hydrological networks constrain biota responses 
and concentrate compounded impacts from climate change and the many human activities associated to the use 
of water as a  resource66. Robust prediction of water temperatures at reach scale across river networks is therefore 
necessary for the development of sound river management practices that are resilient and adaptive to the effects 
of future climate change. Statistical regression models that incorporate heat exchange processes in rivers through 
the incorporation of relevant environmental proxies represent a useful tool to achieve this goal in a simple, flex-
ible  way6. Our results highlight the importance of contextualizing such relationships to the temporal resolution 
of the temperature data informing the models.

Data availability
All data sets used for generating the environmental predictors and hydrological networks are publicly available as 
referenced in Table 1. Air and water temperature data generated by this study is available from the corresponding 
author on reasonable request.
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