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Simple Summary: The potential transmission of the bacterium ‘Candidatus Liberibacter solanacearum’
from infected carrot plants to citrus plants by the African citrus psyllid (Trioza erytreae) should be
considered and therefore studied, because this psyllid is an efficient vector of citrus huanglongbing
disease (associated to bacteria from the same genus). The aim of this study was to assess the bacterium
transmission by three different ways: dodder, grafting and the African citrus psyllid. Additionally,
the feeding behavior and oviposition of this psyllid were also evaluated. The bacterium was only
transmitted from carrot plants to citrus plants through dodder, although the infection was not
established. The African psyllid could settle and oviposit in carrot plants, but it was not able to
complete its life cycle on them. This psyllid acquired and transmitted the bacterium from carrots to
carrots but was not able to transmit it to citrus plants. In conclusion, after having assessed all relevant
possibilities by experimental transmissions from infected carrot plants to citrus plants, the bacterium
was transmitted but not established. Our data suggest that the bacterium transmission to citrus plants
by the African citrus psyllid is unlikely.

Abstract: Bacteria belonging to ‘Candidatus Liberibacter spp.’ are associated with various severe
diseases in the five continents. The African citrus psyllid Trioza erytreae (Hemiptera: Triozidae) is an
efficient vector of citrus huanglongbing-HLB disease, absent in the Mediterranean basin. This psyllid
is currently present in the islands and mainland Portugal and Spain, where the prevalence of ‘Ca.
Liberibacter solanacearum’ (CaLsol) associated to a carrot disease is high. Trioza erytreae normally
feeds on citrus plants but has also been observed on other crops. It would be a great concern
to the Mediterranean citrus industry if T. erytreae could transmit this bacterium from carrots to
citrus and cause disease; therefore, the transmission of CaLsol from carrot plants to citrus plants
was experimentally assessed. Although CaLsol was initially detected on receptor citrus plants in
transmission assays by dodder and budding, the infection was not established. The feeding behavior
by electrical penetration graphs and oviposition of T. erytreae on carrot plants versus citrus plants was
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evaluated. Trioza erytreae only reached the phloem in citrus plants. However, it was able to acquire
CaLsol from infected carrots but unable to transmit it to citrus plants. CaLsol was detected in some
carrot plants immediately after 7 and 14 days (inoculation access period), but it was not detected
after one month. Trioza erytreae was unable to complete its life cycle on carrot plants. In conclusion,
the efficient vector of bacteria associated to huanglongbing was unable to transmit CaLsol from
carrot to citrus plants, but it acquired and transmitted the bacterium from carrot to carrot plants with
low efficiency.

Keywords: vector behavior; psyllids; transmission vector-plant-pathogen interactions; EPG;
oviposition; dodder; budding; feeding

1. Introduction

‘Candidatus Liberibacter solanacearum’ (CaLsol) is a phytopathogenic bacterium associated with
aggressive diseases in Solanaceae and Apiaceae crop species. This bacterium was reported for the
first time in potato (Solanum tuberosum L.) associated to zebra chip disease in the USA as ‘Candidatus
Liberibacter psyllaurus’ [1] and then in New Zealand as CaLsol [2,3]. This bacterium also affects
tomato (Solanum lycopersicum L.) [1], pepper (Capsicum annuum L.), Berlandier’s wolfberry (Lycium
berlandieri Dunal), tamarillo (Solanum betaceum Cav.), eggplant (Solanum melongena L.) [4], tobacco
(Nicotiana tabacum L.) [5], dulcamara (Solanum dulcamara L.), Solanum elaeagnifolium Cav., golden berry
(Physalis peruviana L.), Solanum americanum Mill. and goji berry (Lycium barbarum L., L. chinense Mill.) [6].
In Europe, this bacterium was associated for the first time with carrot (Daucus carota L.) disease
in Finland [7] and then in Spain [8,9]. It has since been found in celery (Apium graveolens L.) [10],
parsnip (Pastinaca sativa L.), parsley (Petroselinum crispum Mill.) [11], chervil (Anthriscus cerefolium
Hoffm.) and fennel (Foeniculum vulgare Mill.) [12].

The bacterium is naturally transmitted by psyllid (Hemiptera: Triozidae) vector species.
Eight different haplotypes of CaLsol have been found in different areas. Haplotype A and B is
transmitted by the psyllid Bactericera cockerelli (Šulc, 1909) and affects Solanaceae in North and Central
America and New Zealand (only haplotype A) [4–6,13]. Haplotype C is transmitted by Trioza apicalis
Foerster, 1848, generally affecting carrot crops in North Europe [5,7,14,15], but it has been found in
symptomless field-grown potato in Finland [16] and in Trioza anthrisci Burckhardt 1986 [17]. Haplotype
D and E is transmitted by Bactericera trigonica Hodkinson and affects Apiaceae in South Europe and
North Africa [11,12,15,18–22]. Haplotype U was detected in Trioza urticae (Linné, 1758) in Finland [23],
haplotype F was found in one potato tuber in the USA [24], and haplotype G and haplotype H are the
most recently discovered in USA and Finland, respectively [25,26].

To date, B. cockerelli, T. apicalis and B. trigonica are the main insect host vector species of CaLsol
associated to several diseases [1,3,7,9]. However, other psyllid species, such as Bactericera nigricornis
(Foerster, 1848) could be potential vectors of CaLsol to new host [27–29]. Trioza erytreae (Del Guercio,
1818) has been found on other plant species, such as overwintering plants, food plants or casual plants,
on which it can survive, feed or land [30]. In fact, although Rutaceae species (mainly Citrus spp.)
are the main hosts of T. erytreae, it has been frequently seen visiting and landing in carrot crops and
vineyards in the Canary Islands (Supplementary Material, Figure S1 and Video S1), among other crops
and weeds.

Moreover, the most destructive citrus disease, Huanglongbing (HLB), is associated to the genus
‘Candidatus Liberibacter spp.’ specifically the species ‘Ca. L. africanus’ (CaLaf), ‘Ca. L. americanus’
(CaLam) and ‘Ca. L. asiaticus’ (CaLas). The African citrus psyllid (T. erytreae) is one of the main
vectors of HLB disease. Although this psyllid species has been present in Madeira [31] and the
Canary Islands since 2002 [32] and along the North-western and central Atlantic coast of Portugal
and in North-western Spain, in the Iberian Peninsula, since 2014 [33], HLB has never been detected in



Insects 2020, 11, 514 3 of 15

Europe [34]. The spread of this psyllid species to the main citrus-producing areas is one of the greatest
concerns of the economically and socially important Spanish and Mediterranean citrus industry. In fact,
in Spain, three national contingency plans were published to avoid the entry and spread of the main
psyllid vector species Diaphorina citri Kuwayama, 1808 (Hemiptera: Liviidae) and T. erytreae, as well as
the bacteria associated with HLB (mentioned above) [35–37]. In addition, the Mediterranean region is
the largest citrus-producing area in Spain, where this crop coexists with other vegetable crops such as
carrots, frequently with a high prevalence of CaLsol [8,9,15,28,29,34,36,37].

The study of potential vectors of CaLsol and its transmission to new hosts is essential in order to
answer key questions related to epidemiology. Such as: Could CaLsol be spontaneously transmitted
to citrus plants? Are there any potential psyllid vector species that can transmit the bacterium from
frequently infected carrot to citrus plants? The consequences of the hypothetical transmission of CaLsol
to citrus are unknown, but the economic losses caused by ‘Candidatus Liberibacter spp.’ associated with
HLB, which is well established in affected countries, must be taken into account since the rapid and
aggressive spread of HLB has disrupted the citrus industry in recent decades [38,39]. This possibility
could put the main citrus-producing areas of Europe and Mediterranean basin at risk. It is uncertain
whether T. erytreae can occasionally feed on CaLsol-infected carrot plants, acquire the bacterium and
transmit it to citrus plants or even if CaLsol is able to thrive on rutaceous plants.

In this work, the transmission of CaLsol to citrus plants was studied through three experimental
and natural ways of transmission: dodder, grafting by budding and by the psyllid T. erytreae. In addition,
the oviposition and feeding behavior of T. erytreae was evaluated in order to assess the probability of
transmission of CaLsol from infected carrot plants to citrus plants.

2. Materials and Methods

2.1. Source of Insects

All the individuals used in the different studies belong to the ad hoc colony established in
the insect-proof facilities of the Instituto Canario de Investigaciones Agrarias (ICIA). Individuals
of Trioza erytreae were originally collected from sweet orange trees in the municipality of Tegueste
(Tenerife, Canary Islands). This colony was maintained on two-year-old pesticide-free citrus plants:
lemon (cv. Eureka grafted on Citrus macrophylla) and sweet orange (cv. Lane Late IVIA 188 on Citrange
Carrizo). Plants growing in pots (Ø = 20 cm) and grown under controlled conditions (20 ± 5 ◦C,
RH > 70%, 16:8 h (L:D) photoperiod). These citrus plants were regularly pruned to stimulate the
emergence of new shoots. Adults from this colony were often tested by real-time PCR [10] to confirm
the healthy status in relation to CaLsol.

2.2. Plant Material

Plant material of each assay was certified pesticide-free and was kept in pots under controlled
conditions (20 ± 5 ◦C, RH > 70%, 16:8 h (L:D)) inside a mesh cage on insect-proof facilities. Plants were
analyzed by real-time PCR according to the protocol designed by Teresani et al. [10].

Carrot Bangor F1 was the cultivar used in all assays and plants were obtained from seeds
(Bejo Iberica S.L.U. LOT 1098592).

2.2.1. Donor Plants

CaLsol inoculum (donor plants) were symptomatic infected carrots (CaLsol haplotype E) collected
from the field (same locality as above) (except budding transmission). CaLsol positive citrus plants
from dodder transmission assay (see below Section 2.4) were used in budding transmission studies
(see below Section 2.5).
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2.2.2. Receptor Plants

In the experimental transmission studies through dodder (see below Section 2.4), the receptor
plants were carrots (10–15 leaf stage) and two-year-old sweet orange (Citrus sinensis), Mexican lime
(C. aurantifolia) and rose periwinkle (Catharanthus roseus).

In the transmission studies by budding (grafting) (see below Section 2.5), the receptor plants were
two-year-old sweet orange (cv. Pineapple) and Mexican lime.

Young sour orange seedlings (Citrus x aurantium) (7–10 leaf stage) were used in feeding behavior
assay (see below Section 2.6).

Carrots (5–10 leaf stage) and two-year-old sour orange plants were used in CaLsol transmission
studies by T. erytreae (see below Section 2.7).

2.2.3. Plant Material in Setting and Oviposition Studies

Sour orange plants from seeds (eleven-week-old) and carrots (six-week-old) in pots (Ø 5 cm) were
used in setting and oviposition assays.

2.3. DNA Extraction, Detection and Haplotyping of CaLsol

Samples of leaves or plant shoots were collected and stored at 4 ◦C and/or −20 ◦C until analysis.
The plant samples were homogenized using a Homex 6 homogenizer (Bioreba, Reinach, Switzerland,
CH) in PBS extraction buffer at 1:10 (w/v) (pH 7.4). Total DNA was obtained from 200 µL of
crude plant extracts using a modified cetyl-trimethylammonium bromide (CTAB) protocol without
β-mercaptoethanol [40]. The extracted DNA was preserved until use at −20 ◦C.

Recently captured insect specimens or those previously preserved in 70% ethanol, were individually
squashed on membranes and subsequently dried [10]. The membranes harbouring squashed psyllids
were carefully cut out around the area where the psyllid was squashed (immobilized on the membrane)
and placed into a 1.5 mL microtube with 100 µL of distilled water, vortexed and centrifuged [10].
Three microlitres of this extract were used directly for real-time PCR analysis.

A real-time PCR complet kit, CaLsol/100 (Plant Print Diagnòstics S.L. Valencia, Spain), was used for
the detection of CaLsol according to the manufacturer’s instructions in conjunction with recommended
standards by EPPO-PM 7/143 [40]. Nine µL of the prepared master mix provided by the kit were
transferred to each PCR tube or microplate well, and 3 µL of the DNA extracts sample from plants
or insects, obtained as indicated above, were added for the amplification. A StepOne Plus Real-time
PCR thermocycler (Applied Biosystems) was used. Healthy plants, CaLsol noncontaminated psyllids,
PCR master mix and virgin pieces of the membrane were simultaneously processed and analyzed as
negative controls.

The CaLsol haplotype was determined according to Nelson et al. [5] and Bertolini et al. [41].

2.4. CaLsol Transmission Studies by Dodder

Vascular connections using dodder (Cuscuta campestris) were kept for 60 days between donor and
receptor plants, according to Bertolini et al. [41], in a P2 containment level greenhouse. Five receptor
plants from each species were used. The dodder was also grown on the same receptor plant species as
the healthy controls. Visual inspection of symptoms was performed on a monthly basis. Samples of
leaves from shoots that were not connected to dodder were collected every 30 days until six months
after connection and subsequently tested for CaLsol as described previously (Supplementary Material,
Figure S2).

2.5. CaLsol Transmission Studies by Budding Grafting

Budding assays were made according to standard procedures [42,43]. Two buds per plant in five
replicates of each species were used (total 10 replicates). Buds were collected in receptor plants from
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transmission assays by dodder, in the immediate proximity of the leave that tested positive sixteen
hours after the CaLsol detection (Supplementary Material, Figure S3).

The grafted plants were grown in a P2 greenhouse during 12 months postbudding inoculation,
in order to monitor potential symptoms (fortnightly) and analyze the detection of CaLsol by real-time
PCR. Several samples per plant was collected: bark material close to the inoculation site (graft) and
midribs of leaves from all the shoots of the inoculated plant.

2.6. Feeding Behavior of T. erytreae

The probing and feeding behavior of T. erytreae on sour orange and carrot plants were monitored
using the electrical penetration graph (EPG) technique [44] according to Antolínez et al. [45,46].
EPG recordings were obtained with a DC-EPG device (Giga-4; EPG Systems, Wageningen,
The Netherlands), adjusted to a 100× gain. The monitoring system was assembled inside a Faraday
cage (100 × 100 × 70 cm) to prevent electrical noise. EPG data acquisition was recorded using Stylet+
software for Windows (EPG Systems, Wageningen, the Netherlands). A total of 68 EPG recordings in
citrus and 64 in carrots were made. Only those EPG recordings with an optimal signal quality were
considered for the analysis: 14 and 11 EPG recordings from citrus and carrots, respectively.

Insect probing and feeding behavior were monitored for 8 h in the laboratory starting immediately
after the insects were placed on the leaf. The EPG waveforms previously described for psyllid
species [46–48] were identified as follows: nonprobing (np), intercellular apoplastic stylet pathway
(C waveform), initial contact with phloem tissue (D waveform), salivation into phloem sieve elements
(E1 waveform), passive phloem sap uptake (E2 waveform) and active intake of xylem sap (G waveform).
Fourteen replicates were recorded for sour orange plants and eleven for carrot plants. Each replicate
(individual psyllids and plants) was tested using a different plant and psyllid for each EPG recording.
All behavioral variables were processed using an MS Excel workbook for automatic EPG data
calculations according to the methods of Sarriá et al. [49].

The number of events and total duration of events per insect (means ± SEs) of selected EPG
variables were calculated using the SPSS statistical software package according to Backus et al. [50].
The following parameters were used: the number of waveform events per insect (NWEI), which is the
total number of events of a particular waveform divided by the total number of insects under each
treatment; the waveform duration (s) per insect (WDI), which is the total duration of each event of
a particular waveform made by each individual insect that produced that waveform divided by the
total number of insects under each treatment; and the waveform duration (s) per event and per insect
(WDEI), which is the sum of the mean duration of the events of a particular waveform made by each
individual insect divided by the total number of insects.

2.7. CaLsol Transmission Studies by T. erytreae

2.7.1. CaLsol Acquisition Studies by T. erytreae

Three trials of CaLsol acquisition by T. erytreae from infected carrot plants were carried out.
The data are summarized in Table 1, showing the number of psyllids used per test, number of
repetitions and times of acquisition in carrot plants infected with CaLsol. Psyllids which were not
exposed to infected carrot plants were used as a control (10 psyllids per repetition).

Table 1. CaLsol acquisition access period (AAP) by T. erytreae in infected carrot plants.

Assay No. Psyllid No. Repetition No. Acquisition Period Evaluated

1 10 4 1 days
2 10 3 1, 6 and 12 h; 1, 2, 3 and 5 days
3 10 2 1, 2, 3 days
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2.7.2. CaLsol Inoculation Studies Using T. erytreae as a Vector

Adult psyllid individuals were allowed to feed on CaLsol-infected carrot donor plants for an
acquisition access period (AAP) of 72 h [45]. It was found that it was enough time to infect 46%
of psyllids exposed to infected carrot plants (see Section 3.4.1. Trioza erytreae acquisition assays).
All experiments were performed in a chamber under controlled conditions (20 ± 5 ◦C, RH > 70%, 16:8 h
(L:D)). Calsol-free carrot plants without psyllid exposure were used in all the experiments as controls.

After the AAP, T. erytreae individuals were placed into a plastic clip cage (Ø = 3.5 cm × 4 cm
high) clamped onto a leaf, where they stayed for different inoculation access periods (IAP) of 24 h,
3 days, 7 days and 14 days or until insect death (five psyllid adults per clip cage/leaf and four clip cages
per plant, for a total of 20 psyllid species per plant). The assays were carried out for ten replicates
per plant species (using carrot and sour orange plants as receptor plants) (Supplementary Material,
Figure S4). After each IAP, the insects were collected, and the leaf was removed and cleaned with
sterile distilled water. The psyllid species and leaves were subsequently tested for CaLsol by real-time
PCR. Afterwards, the plants were sprayed outside the chamber with a systemic insecticide (1 g/L
Confidor®, Bayer CropScience) and then moved to an insect-proof greenhouse, where they grew for
one month. The plants were then monitored for disease symptoms, and newly developed leaves from
each plant were tested by real-time PCR to assess CaLsol infection.

2.8. Settling and Oviposition of T. erytreae

Settling and oviposition of T. erytreae was monitored in twelve carrots and twelve citrus plants.
A group of homogeneous adults of T. erytreae at fertile stage was chosen from the colony (described in
2.1 Source of insects), and each female was found to be capable to laying eggs. A pair (1♂+ 1♀) were
randomly placed in each plant inside a plastic cage (Ø = 5.5 cm × 15 cm high), with a ventilation hole
covered with a mesh, to prevent the escape of the psyllids and to favor the air flow. They were confined
for 3 days, after this period, the pair was removed, and the number of eggs and their evolution were
registered for 28 d.

2.9. Statistical Analysis

Statistical analyses were performed regarding feeding behavior and oviposition assays.
The analysis of the data was conducted in both cases using the SPSS Statistics version 22 software (IBM).

All behavioral variables obtained by the EPG recordings were transformed prior to analysis by
either the sqrt (x + 1) or ln (x + 1) and checked for normality using the Shapiro–Wilk W test. Comparison
between treatments were made by Student’s t-test (Gaussian variables) or by the Mann–Whitney U
test (for non-Gaussian variables). P-values below 0.05 were statistically significant.

The data obtained from the oviposition assay were checked for normality with Shapiro–Wilk
W test, obtaining non-Gaussian variables. Thus, comparisons between treatments were made by
Mann–Whitney U test.

3. Results

3.1. Transmission Studies by Dodder

After 3 months of phloem connection by dodder, CaLsol presence was detected in each receptor
species tested. Two species of receptor plants, carrot and rose periwinkle, showed characteristic
CaLsol symptoms. In carrot, red and yellow leaves discoloration and stems with multiple sprouts
were observed; in rose periwinkle plants, yellow discoloration of the leaves and a decreased
development/dwarfing were noticed. The bacterium was detected in both carrot and rose periwinkle
plants at 6 months after dodder removal. During 3 months after dodder removal, citrus plants did not
show symptoms of diseases and showed healthy growth. New citrus sprouts analyzed after 4, 5 and
6 months gave negative results for CaLsol. The haplotype of the experimentally infected receptor
plants was the same as the original one in the donor plants.
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3.2. Transmission Studies by Budding Grafting

CaLsol was never detected in new sprouts of citrus plants (both assayed botanical species) at the
end of the experimental period of 8 months after challenging by budding. No symptoms of diseases
were observed neither during the assay nor at 12 months’ postassay.

3.3. Feeding Behavior of T. erytreae

The results of the feeding behavior study for 8 h are summarized in Table 2. There were significant
differences in the time to first probe from the start of the EPG duration, which was higher in the
carrot plants (9804.8 ± 3786.7 s) than in the citrus plants (1649.7 ± 938.9 s). Although the number
of nonprobe waveforms was significantly higher in citrus plants (25.9 ± 4.7 s) than in carrot plants
(6.8 ± 1.9 s), the duration of nonprobing events was higher in the carrot plants (WDI: 23,769.7 ± 2051.2 s;
WDEI: 10,748.4 ± 3608.2 s) than in the citrus plants (WDI: 14,342.0 ± 1655.9 s; WDEI: 1056.2 ± 362.5 s).
The number of probes by T. erytreae was significantly higher for the citrus plants (25.3 ± 4.7) than for
the carrot plants (5.9 ± 1.9), similarly to what happened for the duration of probes per insect (WDI:
14,431.6 ± 1655.1 s in citrus vs. 5030.3 ± 2051.2 s in carrots). Only 6 psyllids feeding on citrus plants
were able to contact the phloem tissues (PPW D: 6/14), while no phloem activities were observed for
psyllid species feeding on carrot plants. In citrus, the proportion of psyllid individuals salivating into
the phloem cells (E1) was 28.6% (4/14), and three of fourteen (21.42%) individuals analyzed reached
the continuous phloem ingestion phase (E2) during the recording period. Three of these 4 individuals
reached phloem sieve elements in citrus plants, reaching phloem ingestion phases six times, and five
of these six E2 phases were longer than 10 min. Therefore, 83.3% of all phloem ingestion contacts
were successful.

Table 2. Variables of feeding behavior, monitored by electrical penetration graphs (EPGs), of T. erytreae
species in citrus plants and carrot plants (means ± standard errors (SEs)) of the sequential and
nonsequential variables.

Variable 1 Treat. PPW
NWEI 2 WDI 2 (s) WDEI 2 (s)

Mean ± SE p Mean ± SE p Mean ± SE p

Time to 1st
probe 3

Citrus 14/14 1649.7 ± 938.9
0.044Carrot 11/11 9804.8 ± 3786.7

No probe Citrus 14/14 25.9 ± 4.7
0.002

14,342.0 ± 1655.9
0.002

1056.2 ± 362.5
<0.000Carrot 11/11 6.8 ± 1.9 23,769.7 ± 2051.2 10,748.4 ± 3608.2

Probe
Citrus 14/14 25.3 ± 4.7

0.001
14,431.6 ± 1655.1

0.002Carrot 8/11 5.9 ± 1.9 5030.3 ± 2051.2

C
Citrus 14/14 25.5 ± 4.7

0.002
9647.6 ± 1350.5

0.001
782.0 ± 272.3

0.149Carrot 8/11 6.3 ± 1.9 3289.7 ± 1451.0 693.6 ± 465.5

E1
Citrus 4/14 0.5 ± 0.3

0.244
20.3 ± 11.6

0.244
12.5 ± 6.8

0.244Carrot 0/11 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

E2
Citrus 3/14 0.4 ± 0.3

0.373
2494.5 ± 1392.2

0.373
1718.8 ± 1053.5

0.373Carrot 0/11 0.0 ± 0.0 0.0 ± 0.0 0.00 ± 0.00

G
Citrus 6/14 0.4 ± 0.1

0.936
2269.3 ± 775.3

0.687
2269.3 ± 775.3

0.536Carrot 4/11 0.5 ± 0.2 1740.6 ± 881.1 1335.9 ± 600.4

D
Citrus 6/14 0.6 ± 1.3

0.110
27.6 ± 67.2

0.169
13.1 ± 20.6

0.037Carrot 0/11 0.0 ± 0.0 0.0 ± 0.0 0.00 ± 0.00

D with no E1
Citrus 2/14 0.1 ± 0.4

0.187
4.5 ± 12.9

0.244
4.5 ± 12.9

0.244Carrot 0/11 0.0 ± 0.0 0.0 ± 0.0 0.00 ± 0.00
1 No probe: without activity. Probe: total count activity. C: activity in the intracellular space. E1: salivation in the
phloem. E2: ingestion of the phloem. G: ingestion of the xylem. D: first contact with the phloem. 2 NWEI: number
of waveform events per insect. WDI: waveform duration per insect. WDEI: duration of waveform event per insect.
3 Time to 1st probe from the start of the EPG.
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3.4. CaLsol Transmission Studies by T. erytreae

3.4.1. Trioza erytreae Acquisition Assays

The results of the acquisition assay are shown in Table 3. CaLsol was detected in 6.7%, 14.4%,
20.0%, 46.0% and 33.3% of the T. erytreae adults after 12 h, 1 day, 2 days, 3 days and 5 days of exposure
to infected carrot plants, respectively.

Table 3. Results of CaLsol detection in T. erytreae specimens of each of the acquisition access periods
(AAPs) evaluated.

Assay No.
AAPs

Control 1 h 6 h 12 h 1 Days 2 Days 3 Days 5 Days

1 0/40 - 1 - - 9/40 - - -
2 0/30 0/30 0/30 2/30 1/30 5/30 9/30 10/30
3 0/20 - - - 3/20 5/20 14/20 -

Total 2 0% 0% 0% 6.70% 14.4% 20.0% 46.0% 33.3%
1 Not studied in this assay.2 Percentage of T. erytreae individuals positive for CaLsol in each AAP. The results include
all the different replications together.

3.4.2. CaLsol Inoculation Studies Using T. erytreae Species as a Vector

The results of CaLsol detection on T. erytreae for the clip cage plant assay are shown in Table 4.
The bacterium was never detected in either psyllid or plant controls. Psyllid species found on plants
after each IAP were analyzed, revealing 14.3 to 33.3% of CaLsol-positive individuals.

Table 4. Detection of CaLsol on T. erytreae individuals, carrot plants and citrus plants in restricted leaf
exposure (clip cage plant) assays.

IAP Control Carrot to Citrus 2 Control Carrot to Carrot 3

Psyllids 1

24 h 0/22 16/76 (21.0%) 0/5 3/21 (14.3%)
3 days 0/16 25/83 (30.1%) 0/4 3/9 (33.3%)
7 days 0/9 10/59 (16.9%) 0/1 2/10 (20.0%)
14 days 0/12 15/54 (27.8%) 0/5 0/8

Plants 1

24 h 0/6 0/14 0/2 0/6
3 days 0/6 0/14 0/2 0/6
7 days 0/6 0/14 0/2 1/6 (16.7%)
14 days 0/6 0/13 0/2 1/6 (16.7%)

1 No. infected psyllids or plants/No. psyllids or plants tested. 2 From CaLsol-infected carrot plants to healthy citrus
plants. 3 From CaLsol-infected carrot plants to healthy carrot plants.

CaLsol was detected in one out of the six tested carrot plants exposed to T. erytreae after 7 days
and 14 days of IAP (inoculation access period). Nevertheless, the bacterium was never detected in
citrus plants after the four assessed IAPs.

3.5. Setting and Oviposition Studies of T. erytreae

The T. erytreae survival percentages on carrot and citrus plants at 72 h after confining were 91.7%
and 100%, respectively. The number of eggs laid per T. erytreae female per plant (mean ± SE) at 72 h
was 145.75 ± 30.52 in citrus and 6.92 ± 3.49 in carrots. The accumulative number of eggs laid by
T. erytreae was significantly higher on sweet orange plants (1470 eggs) than on carrot plants (77 eggs).
On the citrus plants, 11.9% of the T. erytreae eggs were able to complete their life cycle until the adult
stage, but none were able to complete their life cycle on the carrot plants. In total, 42.8 % of T. erytreae
eggs survived until the N1–N3 stage on carrot plants, and the highest mortality (100%) occurred from
N1–N3 nymphs to N4–N5 nymphs.
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4. Discussion

Three different ways of transmission of ‘Candidatus Liberibacter spp.’: dodder, grafting and
psyllids, were evaluated. However, the main way to transmit members of this genus of bacteria
under natural field conditions is through psyllid vector species after introduction of infected plants.
The behavior of T. erytreae was monitored in citrus and carrot plants, consequently the oviposition and
feeding behavior was evaluated, as well as the acquisition and inoculation of the bacterium in both
plant species, which has not been reported before.

The use of dodder and budding, or other grafting procedures, as transmission ways is
common [16,41,51–54]. The aim of our assays was to qualitatively evaluate the transmission,
following international standard procedures to design the experiments [42,43], where the use of
less than ten replicates is widely accepted. In our experiment with dodder, CaLsol was transmitted
from infected carrots to citrus, rose periwinkle and carrots. To our knowledge, this is the first time that
the bacterium was detected in citrus plants after experimental transmission. Carrot and rose periwinkle
showed characteristic CaLsol symptoms; however, positive citrus were always asymptomatic, and the
bacterium was not detected several months after disconnection from the dodder. This fact may be
explained because CaLsol is being transmitted to citrus plants while the dodder was establishing
vascular connections with infected carrot but apparently is unable to multiply itself in citrus after
dodder disconnection, at least under the conditions of our experiment. In the transmission studies
by budding, CaLsol was not detected in the receptor citrus species at 8 months postinoculation by
grafting. As far as we know, citrus plants were positive while they were connected through dodder to
infected carrots. Once the dodder connection was removed, they were still positive before budding
performance. However, CaLsol were not detected after three months of dodder removal. That is why,
as authors, we believe that the CaLsol infection in citrus plants was not systemic. In a previous paper
by Haapalainen et al. [16], the transmission of CaLsol haplotype C through dodder and grafting onto
potato was performed, but the transmission rate was very low; the bacteria did not colonize neither the
root tissues nor the tubers. The reasons remain unknown, but they could be related to the specificity
of the CaLsol haplotype, which could have different interactions with alternative hosts but also the
cultivar assayed could be more resistant than others used in America [16].

This study evaluates, for the first time, the feeding behavior of T. erytreae by EPG in citrus and
carrot plants, although this characteristic has been studied in other nearby species, such as T. apicalis,
B. cockerelli, B. trigonica and B. tremblayi and for other vectors of HLB, such as Diaphorina citri [45,55–59].
It is worth emphasizing that T. erytreae feed readily on citrus plants because four individuals reached
the phloem in citrus, and for five times, the duration of each event was longer than 10 min; however,
in our EPG assay there were no significant differences in the number or duration of E1 and E2 in citrus
and carrot plants. The little difference between these EPG event durations may be influenced by citrus
species, leaf age and EPG recording time used. A fully young expanded leaf of sour orange seedlings
(which facilitates EPGs) was used, but it has been shown in previous studies that the leaf stage of citrus
plants plays an important role in feeding behavior and overall in the case of T. erytreae, which has a
strong preference to feed on young sprouts [60]. Studies carried out with D. citri showed that it prefers
to ingest from the phloem of immature leaves but from the xylem of mature leaves [59]. The citrus
species used in our assay was sour orange, a frequent host of T. erytreae in the North of the Iberian
Peninsula (Portugal and Spain) as ornamental tree in private and public gardens, where damages and
frequency of infestation by this pest have been previously reported [34]. Additionally, this species
is commonly used as a rootstock for lemon and as a crop for the jam industry. All in all, it would
be interesting to perform new feeding behavior assays with other citrus species, such as lemon,
sweet orange or mandarin trees, since certain preference of T. erytreae have been seen in the fields where
the most frequently grown citrus species are: lime, lemon, mandarins, sweet orange and grapefruit
trees [60–62]. For our study, eight hours of EPG recording time was used as this is the standard
time used in many previous similar EPG studies, e.g., in those involving B. trigonica, B. tremblayi and
D. citri [45,54,63]. However, EPG recordings of B. cockerelli were documented for 24 h [55,64] and in
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D. citri for 42 h [58]; if shorter EPG recording times are used, it could be problematic to quantify the
first phloem ingestion phase by some psyllids [59]. These factors could explain the low activity of
T. erytreae reported in our assays on citrus and carrot plants. EPG is a useful technique to determine
whether this psyllid species is able to reach the phloem sieves in carrot plants because this fact has great
importance in the acquisition and inoculation of CaLsol. Nevertheless, this transmission has never
been recorded in the Canary Islands field conditions. In routine analyses performed on a great number
of citrus plants and T. erytreae individuals, using the universal protocol to detect ‘Ca. Liberibacter spp.’
by real-time PCR (which also detect CaLsol and associated bacterial species to HLB), no case has ever
been found [34].

The results of our CaLsol transmission studies by T. erytreae showed that this psyllid was able
to acquire the bacterium from symptomatic carrot plants under no-choice conditions in an AAP of
72 h. We found that it was enough time to infect 46% of psyllids exposed to infected carrot plants and
this result agrees with Antolinez et al. [45] who also used 72 h as AAP. CaLsol was detected in one
carrot plant after 7 days and in another one after 14 days of IAP. Consequently T. erytreae was able
to transmit CaLsol from carrot to carrot plants when it was forced to feed off of them. Nevertheless,
under multiple choice conditions, which are actually like more real situations in the field, T. erytreae is
unlikely to transmit the bacterium from one carrot plant to another because this species is not a host
(T. erytreae is not able to complete its life cycle on this species, although it can land or feed off of carrot
plants). This fact could only occur sporadically; several reports have described rutaceous plants as
the only hosts of T. erytreae [34,60–62,65–67]. In addition, previous studies using sampling methods
at the level of the crop canopy have shown that the main psyllid species present in carrot fields is
B. trigonica, followed by B. nigricornis in low proportions [27,29]. Several previous studies on bacterial
transmission by psyllid species in nonhost plant species found that: T. apicalis (a vector of CaLsol
in Apiaceae species in northern Europe) does not transmit the bacterium from carrot to potato [16],
B. trigonica (a vector of CaLsol in Apiaceae species in southern Europe and North Africa) was able to
transmit CaLsol at a low rate from carrot to potato or tomato [45,54], and the transmission of CaLsol to
carrots by B. cockerelli (vector of CaLsol in Solanaceae species) was possible at a low rate and induced
disease symptoms [62]. On the one hand, B. tremblayi could acquire CaLsol from infected carrot plants,
but it could not transmit the bacterium to carrot plants, which might be because the bacterium was not
able to complete circulation in the body of the psyllid to be ultimately inoculated from the salivary
glands [45]. On the other hand, Teresani et al. [54], who investigated CaLsol transmission by B. trigonica
from carrot to potato and tomato, reported a high detection of CaLsol in the leaves immediately after
the insects were removed, which may be due to inoculation in phloem sieves, contamination of the
tissue by psyllid activities or detection of nonviable bacteria. A similar situation could have happened
with the detection of CaLsol in our assay.

Another part of the T. erytreae behavior study is the oviposition on carrot and citrus plants.
If T. erytreae is able to settle and oviposit on carrots plants, the risk of transmission would not be
negligible. T. erytreae showed much higher oviposition on citrus plants than on carrot plants. The insects
were able to survive (91.7% of adults) and oviposit for 72 h on carrot plants and 42.8% of 77 laid
eggs developed until the nymph N1–N3 stage. In citrus, 11.9% of the laid eggs completed their life
cycle and reached the adult stage. According to Catling [65], a high mortality of different juvenile
stages in host plants was previously reported. Taken together, these results indicate a high survival of
T. erytreae on a nonhost plant species, which contrasts with the results of previous studies conducted
with B. trigonica, which was unable to lay eggs on tomato plants, and only five eggs were laid by a total
of three pairs in potato plants, where the few hatched nymphs died during the first instar [54]. In the
case of B. tremblayi, although it could settle and oviposit on carrot plants, it clearly preferred to oviposit
in leek (its main host) [45]. A previous study of T. erytreae feeding preference in Kenya showed that
many other rutaceous plants are alternative hosts but feeding on them could affect the morphometry of
psyllids [67]. Although no studies have yet been carried out on psyllid species to establish the relation
between oviposition and long-term survival on alternative hosts, our results again might confirm that
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psyllid species can sporadically settle in different plant species, which may help to sustain survival
when the main hosts are rare or not present [30,45].

5. Conclusions

T. erytreae was assessed as a sporadic visitor of carrot plants where it is able to feed (in forced
conditions of nonchoice), as shown in our experiments. Furthermore, there is no evidence and nor
is it feasible that dodder would be able to colonize carrot plants and citrus plants at the same time,
and it is not feasible that budding or any grafting procedure could be performed between CaLsol
infected carrot plants and citrus plants. In conclusion, after having assessed all relevant possibilities by
experimental transmissions of CaLso from infected carrot plants to citrus plant, the bacterium was
transmitted but not established. Therefore, our data suggest that CaLsol is unlikely to be transmitted
under natural field conditions from carrot plants to citrus plants.

Supplementary Materials: The following are available online at http://www.mdpi.com/2075-4450/11/8/514/s1,
Figure S1: Graph of the capture evolution of Trioza erytreae in sticky yellow traps (20 × 26 cm) placed above the
canopy at 50 cm from the ground on a commercial carrot field where the distance between carrots and citrus
plants was about 150 m. The carrot field was located in Tegueste (Tenerife, Spain). Traps were collected every
week during 17 months. The capture evolution is shown as an average of the individuals caught by 9 sticky
traps. Video S1: Trioza erytreae adult specimen, inserting its stylet into a grapevine (Vitis vinifera L.) leaf. Figure S2:
Scheme of CaLsol transmission studies by dodder. Figure S3: Scheme of CaLsol transmission studies by budding
(grafting). Figure S4: Scheme of CaLsol transmission studies by T. erytreae.

Author Contributions: Conceptualization, M.C.; Methodology, E.B., A.M. and E.H.-S.; Formal Analysis, F.S., A.M.
and M.Q.-G.d.C.; Investigation, M.Q.-G.d.C., E.B., G.R.T. and E.H-S.; Resources, M.C. and F.S.; Data Curation,
M.Q.-G.d.C. and F.S.; Writing–Original Draft Preparation, M.Q.-G.d.C.; Writing–Review and Editing, E.H.-S.,
A.M., A.F., M.C. and F.S. Supervision, F.S.; Project Administration, E.H.-S. and M.C.; Funding Acquisition, F.S. and
M.C. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria,
INIA RTA2011-00142-C2 and INIA E-RTA2014-00008-C4. M.Q.-G.d.C. is recipient of a 2017-2020 Ph.D. grant from
INIA. G.R.T. was recipient of Ph.D. grant 2010-2014 from Coordenação de Aperfeiçoamento de Pessoal de Nível
Superior (CAPES), Ministério da Educação, Brazil. E.B. was recipient of an INIA-CCAA 2011-2016 contract from
Ministerio de Ciencia e Innovación, Spain.

Acknowledgments: We thank Estefanía Padilla for her contributions to the experimental assays and Servicio
de Sanidad Vegetal de la Dirección General de Agricultura del Gobierno de Canarias for allowing the use of its
laboratory equipment.

Conflicts of Interest: The authors declare no conflict of interest. The sponsors had no role in the design, execution,
interpretation or writing of the study.

References

1. Hansen, A.K.; Trumble, J.T.; Stouthamer, R.; Paine, T.D. A New Huanglongbing Species, ‘Candidatus
Liberibacter psyllaurous’ Found To Infect Tomato and Potato, Is Vectored by the Psyllid Bactericera cockerelli
(Sulc). Appl. Environ. Microbiol. 2008, 74, 5862–5865. [CrossRef]

2. Liefting, L.W.; Perez-Egusquiza, Z.; Clover, G.R.G.; Anderson, J.A.D. A New ‘Candidatus Liberibacter’ Species
in Solanum tuberosum in New Zealand. Plant Dis. 2008, 92, 1474. [CrossRef]

3. Liefting, L.W.; Weir, B.S.; Pennycook, S.R.; Clover, G.R.G. ‘Candidatus Liberibacter solanacearum’, associated
with plants in the family Solanaceae. Int. J. Syst. Evol. Microbiol. 2009, 59, 2274–2276. [CrossRef]

4. Munyaneza, J.E.; Sengoda, V.G.; Aguilar, E.; Bextine, B.R.; McCue, K. First Report of ‘Candidatus Liberibacter
solanacearum’ Infecting Eggplant in Honduras. Plant Dis. 2013, 97, 1654. [CrossRef]

5. Nelson, W.; Fisher, T.W.; Munyaneza, J.E. Haplotypes of ‘Candidatus Liberibacter solanacearum’ suggest
long-standing separation. Eur. J. Plant Pathol. 2011, 130, 5–12. [CrossRef]

6. EPPO. PM 9/25 (1) Bactericera cockerelli and ‘Candidatus Liberibacter solanacearum’. EPPO Bull. 2017, 47,
513–523. [CrossRef]

7. Munyaneza, J.E.; Fisher, T.W.; Sengoda, V.G.; Garczynski, S.F.; Nissinen, A.; Lemmetty, A. Association of
‘Candidatus Liberibacter solanacearum’ With the Psyllid, Trioza apicalis (Hemiptera: Triozidae) in Europe.
J. Econ. Èntomol. 2010, 103, 1060–1070. [CrossRef]

http://www.mdpi.com/2075-4450/11/8/514/s1
http://dx.doi.org/10.1128/AEM.01268-08
http://dx.doi.org/10.1094/PDIS-92-10-1474A
http://dx.doi.org/10.1099/ijs.0.007377-0
http://dx.doi.org/10.1094/PDIS-06-13-0641-PDN
http://dx.doi.org/10.1007/s10658-010-9737-3
http://dx.doi.org/10.1111/epp.12442
http://dx.doi.org/10.1603/EC10027


Insects 2020, 11, 514 12 of 15

8. Alfaro-Fernández, A.; Cebrián, M.C.; Villaescusa, F.J.; De Mendoza, A.H.; Ferrándiz, J.C.; Sanjuán, S.;
Font, M.I. First Report of ‘Candidatus Liberibacter solanacearum’ in Carrot in Mainland Spain. Plant Dis.
2012, 96, 582. [CrossRef]

9. Alfaro-Fernández, A.; Siverio, F.; Cebrián, M.C.; Villaescusa, F.J.; Font, M.I. ‘Candidatus Liberibacter
solanacearum’ Associated with Bactericera trigonica-Affected Carrots in the Canary Islands. Plant Dis. 2012,
96, 581. [CrossRef]

10. Teresani, G.R.; Bertolini, E.; Alfaro-Fernández, A.; Martínez, C.; Tanaka, F.A.O.; Kitajima, E.; Roselló, M.;
Sanjuan, S.; Ferrandiz, J.C.; Lopez, M.M.; et al. Association of ’Candidatus Liberibacter solanacearum’ with
a vegetative disorder of celery in Spain and development of a real-time PCR method for its detection.
Phytopathology 2014, 104, 804–811. [CrossRef]

11. Alfaro-Fernández, A.; Hernández-Llopis, D.; Font, M.I. Haplotypes of ‘Candidatus Liberibacter solanacearum’
identified in Umbeliferous crops in Spain. Eur. J. Plant Pathol. 2017, 149, 127–131. [CrossRef]

12. Hajri, A.; Loiseau, M.; Cousseau-Suhard, P.; Renaudin, I.; Gentit, P. Genetic Characterization of ‘Candidatus
Liberibacter solanacearum’ Haplotypes Associated with Apiaceous Crops in France. Plant Dis. 2017, 101,
1383–1390. [CrossRef]

13. Bextine, B.; Aguilar, E.; Rueda, A.; Cáceres, O.; Sengoda, V.G.; McCue, K.F.; Munyaneza, J.E. First Report of
‘Candidatus Liberibacter solanacearum’ on Tomato in El Salvador. Plant Dis. 2013, 97, 1245. [CrossRef]

14. Munyaneza, J.E. Zebra Chip Disease, ‘Candidatus Liberibacter’, and Potato Psyllid: A Global Threat to the
Potato Industry. Am. J. Potato Res. 2015, 92, 230–235. [CrossRef]

15. EPPO. ‘Candidatus Liberibacter solanacearum’. European and Mediterranean Plant Protection Organization.
EPPO Global Database. Available online: https://gd.eppo.int/taxon/LIBEPS/distribution (accessed on
12 May 2020).

16. Haapalainen, M.; Latvala, S.; Rastas, M.; Wang, J.; Hannukkala, A.; Pirhonen, M.; Nissinen, A.I. Carrot
Pathogen ‘Candidatus Liberibacter solanacearum’ Haplotype C Detected in Symptomless Potato Plants in
Finland. Potato Res. 2018, 61, 31–50. [CrossRef]

17. Sjölund, M.J.; Clark, M.; Carnegie, M.; Greenslade, A.; Ouvrard, D.; Highet, F.; Sigvald, R.; Bell, J.; Arnsdorf, Y.;
Cairns, R.; et al. First report of ’Candidatus Liberibacter solanacearum’ in the United Kingdom in the psyllid
Trioza anthrisci. New Dis. Rep. 2017, 36, 4. [CrossRef]

18. Tahzima, R.; Maes, M.; Achbani, E.H.; Swisher, K.D.; Munyaneza, J.E.; De Jonghe, K. First Report of
‘Candidatus Liberibacter solanacearum’ on Carrot in Africa. Plant Dis. 2014, 98, 1426. [CrossRef]

19. Ilardi, V.; Di Nicola, E.; Tavazza, M. First report of ‘Candidatus Liberibacter solanacearum’ in commercial
carrot seeds in Italy. J. Plant Pathol. 2016, 98, 2.

20. Holeva, M.C.; Glynos, P.E.; Karafla, C.D. First report of ‘Candidatus Liberibacter solanacearum’ on carrot in
Greece. Plant Dis. 2017, 101, 1819. [CrossRef]

21. Ben Othmen, S.; Morán, F.E.; Navarro, I.; Barbé, S.; Martinez, C.; Marco-Noales, E.; Chermiti, B.; López, M.M.
‘Candidatus Liberibacter solanacearum’ haplotypes D and E in carrot plants and seeds in Tunisia. J. Plant Pathol.
2018, 100, 197–207. [CrossRef]

22. Mawassi, M.; Dror, O.; Bar-Joseph, M.; Piasezky, A.; Sjölund, J.M.; Levitzky, N.; Shoshana, N.; Meslenin, L.;
Haviv, S.; Porat, C.; et al. ‘Candidatus Liberibacter solanacearum’ Is Tightly Associated with Carrot Yellows
Symptoms in Israel and Transmitted by the Prevalent Psyllid VectorBactericera trigonica. Phytopathology
2018, 108, 1056–1066. [CrossRef] [PubMed]

23. Haapalainen, M.L.; Wang, J.; Latvala, S.; Pirhonen, M.; Lehtonen, M.; Nissinen, A. Genetic Variation of
‘Candidatus Liberibacter solanacearum’ Haplotype C and Identification of a Novel Haplotype from Trioza
urticae and Stinging Nettle. Phytopathology 2018, 108, 925–934. [CrossRef] [PubMed]

24. Grimm, K.D.S.; Garczynski, S.F. Identification of a New Haplotype of ‘Candidatus Liberibacter solanacearum’
in Solanum tuberosum. Plant Dis. 2019, 103, 468–474. [CrossRef]

25. Mauck, K.E.; Sun, P.; Meduri, V.R.; Hansen, A.K. New ‘Ca. Liberibacter psyllaurous’ haplotype resurrected
from a 49-year-old specimen of Solanum umbelliferum: A native host of the psyllid vector. Sci. Rep. 2019, 9,
9530. [CrossRef]

26. Haapalainen, M.; Latvala, S.; Wickström, A.; Wang, J.; Pirhonen, M.; Nissinen, A.I. A novel haplotype of
‘Candidatus Liberibacter solanacearum’ found in Apiaceae and Polygonaceae family plants. Eur. J. Plant Pathol.
2019, 156, 413–423. [CrossRef]

http://dx.doi.org/10.1094/PDIS-11-11-0918-PDN
http://dx.doi.org/10.1094/PDIS-10-11-0878-PDN
http://dx.doi.org/10.1094/PHYTO-07-13-0182-R
http://dx.doi.org/10.1007/s10658-017-1172-2
http://dx.doi.org/10.1094/PDIS-11-16-1686-RE
http://dx.doi.org/10.1094/PDIS-03-13-0248-PDN
http://dx.doi.org/10.1007/s12230-015-9448-6
https://gd.eppo.int/taxon/LIBEPS/distribution
http://dx.doi.org/10.1007/s11540-017-9350-3
http://dx.doi.org/10.5197/j.2044-0588.2017.036.004
http://dx.doi.org/10.1094/PDIS-05-14-0509-PDN
http://dx.doi.org/10.1094/PDIS-03-17-0419-PDN
http://dx.doi.org/10.1007/s42161-018-0045-7
http://dx.doi.org/10.1094/PHYTO-10-17-0348-R
http://www.ncbi.nlm.nih.gov/pubmed/29663849
http://dx.doi.org/10.1094/PHYTO-12-17-0410-R
http://www.ncbi.nlm.nih.gov/pubmed/29600888
http://dx.doi.org/10.1094/PDIS-06-18-0937-RE
http://dx.doi.org/10.1038/s41598-019-45975-6
http://dx.doi.org/10.1007/s10658-019-01890-0


Insects 2020, 11, 514 13 of 15

27. Teresani, G.; Hernandez, E.; Bertolini, E.; Siverio, F.; Marroquin, C.; Molina, J.; De Mendoza, A.H.; Cambra, M.
Search for potential vectors of ‘Candidatus Liberibacter solanacearum’: Population dynamics in host crops.
Span. J. Agric. Res. 2015, 13, e1002. [CrossRef]

28. Asensio, S.; Manzanera, M.C.; Santiago, Y.; Vacas, R.; Flores, D.; Ruano-Rosa, D.; García-Méndez, E.M.;
Martín-Alonso, I.; Bastin, S.; Hernández Suárez, E.; et al. In Proceedings of the ‘Candidatus Liberibacter
solanacearum’ en Patata y Sus Posibles Vectores en España. XIX Congreso de la Sociedad Española de
Entomología Aplicada, Toledo, Spain, 8–10 October 2018. Poster No. 171.

29. Antolínez, C.A.; Moreno, A.; Ontiveros, I.; Pla, S.; Plaza, M.; Sanjuan, S.; Palomo, J.L.; Sjölund, M.J.;
Sumner-Kalkun, J.C.; Arnsdorf, Y.M.; et al. Seasonal Abundance of Psyllid Species on Carrots and Potato
Crops in Spain. Insects 2019, 10, 287. [CrossRef]

30. Burckhardt, D.; Ouvrard, D.; Queiroz, D.; Percy, D. Psyllid Host-Plants (Hemiptera: Psylloidea): Resolving a
Semantic Problem. Fla. Èntomol. 2014, 97, 242–246. [CrossRef]

31. Carvalho, J.P.; Aguiar, A.M.F. Pragas Doss Citrinos na Ilha da Madeira; Regiao Autónoma da Madeira. Secretaria
Regional de Agricultura Florestas e Pescas; Direccao Regional de Agricultura: Funchal, Portugal, 1997; p. 410.

32. González-Hernández, A. Trioza erytreae (Del Guercio 1918): Nueva plaga de los cítricos en Canarias.
Phytoma España 2003, 153, 112–117.

33. Pérez-Otero, R.; Mansilla, J.P.; Estal, P. Detección de la psila africana de los cítricos, Trioza erytreae (Del Guercio,
1918) (Hemiptera: Psylloidea: Triozidae), en la Península Ibérica. Arq. Entomolóxicos 2015, 1897, 119–122.

34. Siverio, F.; Marco-Noales, E.; Bertolini, E.; Teresani, G.; Peñalver, J.; Mansilla, P.; Aguín, O.; Pérez Otero, R.;
Abelleira, A.; Guerra-García, J.A.; et al. Survey of huanglongbing associated with ‘Candidatus Liberibacter
species’ in Spain: Analyses of citrus plants and Trioza erytreae. Phytopathol. Mediterr. 2017, 56, 98–110.

35. MAPA. Ministerio de Agricultura, Pesca y Alimentación. Plan de Contingencia de Diaphorina citri Kuwayana.
2015. Available online: https://www.mapa.gob.es/es/agricultura/temas/sanidad-vegetal/pnc_diaphorina_
julio_2015_tcm30-512380.pdf (accessed on 7 August 2020).

36. MAPA. Ministerio de Agricultura, Pesca y Alimentación Plan de Contingencia de ‘Candidatus Liberibacter
spp.’ Bacteria Asociada a la Enfermedad del Huanglongbing o Greening de los Cítrico. 2015.
Available online: https://www.mapa.gob.es/es/agricultura/temas/sanidad-vegetal/plancontingenciahlb_
tcm30-136012.pdf (accessed on 7 August 2020).

37. MAPA. Ministerio de Agricultura, Pesca y Alimentación. Plan de Contingencia de Trioza Erytreae
(Del Guercio). 2016. Available online: https://www.mapa.gob.es/es/agricultura/temas/sanidad-vegetal/
pnctrioza-octubre2016_tcm30-512379.pdf (accessed on 7 August 2020).

38. Bové, J.M. Huanglongbing: A destructive, newly-emerging, century-old disease of citrus. J. Plant Pathol.
2006, 88, 7–37.

39. Wang, N.; Pierson, E.A.; Setubal, J.C.; Xu, J.; Levy, J.G.; Zhang, Y.; Li, J.; Rangel, L.T.; Martins, J.
The ‘Candidatus Liberibacter’–Host Interface: Insights into Pathogenesis Mechanisms and Disease Control.
Annu. Rev. Phytopathol. 2017, 55, 451–482. [CrossRef]

40. EPPO. PM 7/143 (1) ‘Candidatus Liberibacter solanacearum’. EPPO Bull. 2020, 50, 49–68. [CrossRef]
41. Bertolini, E.; Teresani, G.R.; Loiseau, M.; Tanaka, F.A.O.; Barbe, S.; Martínez, C.; Gentit, P.; Lopez, M.M.;

Cambra, M. Transmission of ‘Candidatus Liberibacter solanacearum’ in carrot seeds. Plant Pathol. 2014, 64,
276–285. [CrossRef]

42. Roistacher, C.N. Graft-Transmissible Diseases of Citrus: Handbook for Detection and Diagnosis; FAO: Rome, Italy,
1991; p. 286.

43. International Plant Protection Convention Secretariat (IPPC). DP 15. Citrus Virus Tristeza. Diagnostic
Protocols. In International Standard for Phytosanitary Measures; Available online: https://www.ippc.int/static/

media/files/publication/en/2017/01/DP_15_2016_En_2017-01-30.pdf (accessed on 7 August 2020).
44. Tjallingii, W.F. Electronic recording of penetration behaviour by aphids. Èntomol. Exp. Appl. 1978, 24,

721–730. [CrossRef]
45. Antolinez, C.A.; Fereres, A.; Moreno, A. Risk assessment of ‘Candidatus Liberibacter solanacearum’

transmission by the psyllids Bactericera trigonica and B. tremblayi from Apiaceae crops to potato. Sci. Rep.
2017, 7, 45534. [CrossRef]

46. Antolínez, C.A.; Moreno, A.; Appezzato-Da-Glória, B.; Fereres, A. Characterization of the electrical penetration
graphs of the psyllidBactericera trigonicaon carrots. Èntomol. Exp. Appl. 2017, 163, 127–139. [CrossRef]

http://dx.doi.org/10.5424/sjar/2015131-6551
http://dx.doi.org/10.3390/insects10090287
http://dx.doi.org/10.1653/024.097.0132
https://www.mapa.gob.es/es/agricultura/temas/sanidad-vegetal/pnc_diaphorina_julio_2015_tcm30-512380.pdf
https://www.mapa.gob.es/es/agricultura/temas/sanidad-vegetal/pnc_diaphorina_julio_2015_tcm30-512380.pdf
https://www.mapa.gob.es/es/agricultura/temas/sanidad-vegetal/plancontingenciahlb_tcm30-136012.pdf
https://www.mapa.gob.es/es/agricultura/temas/sanidad-vegetal/plancontingenciahlb_tcm30-136012.pdf
https://www.mapa.gob.es/es/agricultura/temas/sanidad-vegetal/pnctrioza-octubre2016_tcm30-512379.pdf
https://www.mapa.gob.es/es/agricultura/temas/sanidad-vegetal/pnctrioza-octubre2016_tcm30-512379.pdf
http://dx.doi.org/10.1146/annurev-phyto-080516-035513
http://dx.doi.org/10.1111/epp.12611
http://dx.doi.org/10.1111/ppa.12245
https://www.ippc.int/static/media/files/publication/en/2017/01/DP_15_2016_En_2017-01-30.pdf
https://www.ippc.int/static/media/files/publication/en/2017/01/DP_15_2016_En_2017-01-30.pdf
http://dx.doi.org/10.1111/j.1570-7458.1978.tb02836.x
http://dx.doi.org/10.1038/srep45534
http://dx.doi.org/10.1111/eea.12565


Insects 2020, 11, 514 14 of 15

47. Bonani, J.P.; Fereres, A.; Garzo, E.; Miranda, M.P.; Appezzato-Da-Glória, B.; Lopes, J.R.S. Characterization
of electrical penetration graphs of the Asian citrus psyllid, Diaphorina citri, in sweet orange seedlings.
Èntomol. Exp. Appl. 2010, 134, 35–49. [CrossRef]

48. Civolani, S.; Leis, M.; Grandi, G.; Garzo, E.; Pasqualini, E.; Musacchi, S.; Chicca, M.; Castaldelli, G.;
Rossi, R.; Tjallingii, W.F. Stylet penetration of Cacopsylla pyri; an electrical penetration graph (EPG) study.
J. Insect Physiol. 2011, 57, 1407–1419. [CrossRef]

49. Sarria, E.; Cid, M.; Garzo, E.; Fereres, A. Excel Workbook for automatic parameter calculation of EPG data.
Comput. Electron. Agric. 2009, 67, 35–42. [CrossRef]

50. Backus, E.A.; Cline, A.R.; Ellerseick, M.R.; Serrano, M.S. Lygus hesperus (Hemiptera: Miridae) Feeding on
Cotton: New Methods and Parameters for Analysis of Nonsequential Electrical Penetration Graph Data.
Ann. Èntomol. Soc. Am. 2007, 100, 296–310. [CrossRef]

51. Garnier, M. Transmission of the Organism Associated with Citrus Greening Disease from Sweet Orange to
Periwinkle by Dodder. Phytopathology 1983, 73, 1358. [CrossRef]

52. Zhou, L.J.; Gabriel, D.W.; Duan, Y.P.; Halbert, S.E.; Dixon, W.N. First Report of Dodder Transmission of
Huanglongbing from Naturally Infected Murraya paniculata to Citrus. Plant Dis. 2007, 91, 227. [CrossRef]
[PubMed]

53. Hartung, J.S.; Paul, C.; Achor, D.; Brlansky, R.H. Colonization of dodder, Cuscuta indecora, by ‘Candidatus
Liberibacter asiaticus’ and ‘Ca. L. americanus’. Phytopathology 2010, 100, 756–762. [CrossRef]

54. Teresani, G.R.; Hernández, E.; Bertolini, E.; Siverio, F.; Moreno, A.; Fereres, A.; Cambra, M. Transmission
of ‘Candidatus Liberibacter solanacearum’ by Bactericera trigonica Hodkinson to vegetable hosts. Span. J.
Agric. Res. 2018, 15, 1011. [CrossRef]

55. Pearson, C.C.; Shugart, H.J.; Munyaneza, J.E.; Backus, E.A. Characterization and Correlation of EPG
Waveforms of Bactericera cockerelli (Hemiptera: Triozidae): Variability in Waveform Appearance in Relation
to Applied Signal. Ann. Èntomol. Soc. Am. 2014, 107, 650–666. [CrossRef]

56. Sandanayaka, M.; Moreno, A.; Tooman, L.; Page-Weir, N.; Fereres, A. Stylet penetration activities linked to
the acquisition and inoculation of ‘Candidatus Liberibacter solanacearum’ by its vector tomato potato psyllid.
Èntomol. Exp. Appl. 2014, 151, 170–181. [CrossRef]

57. Collins, L.; Nissinen, A.; Pietravalle, S.; Jauhiainen, L. Carrot psyllid (Trioza apicalis) feeding behaviour on
carrot and potato: An EPG study. In Proceedings of the 14th Annual SCRI Zebra Chip Reporting Session.
November, Portland, OR, USA, 9–12 November 2014.

58. George, J.; Ammar, E.-D.; Hall, D.G.; Shatters, R.G.; Lapointe, S.L. Prolonged phloem ingestion by Diaphorina
citri nymphs compared to adults is correlated with increased acquisition of citrus greening pathogen. Sci. Rep.
2018, 8, 10352. [CrossRef]

59. Ebert, T.A.; Backus, E.A.; Shugart, H.J.; Rogers, M.E. Behavioural plasticity in probing by Diaphorina citri
(Hemiptera: Liviidae): Ingestion from phloem vs. xylem is influenced by leaf age and surface. J. Insect Behav.
2018, 31, 119–137. [CrossRef]

60. Cocuzza, G.M.; Alberto, U.; Hernández-Suárez, E.; Siverio, F.; Di Silvestro, S.; Tena, A.; Carmelo, R. A review
on Trioza erytreae (African citrus psyllid), now in mainland Europe, and its potential risk as vector of
huanglongbing (HLB) in citrus. J. Pest Sci. 2016, 90, 1–17. [CrossRef]

61. Arenas-Arenas, F.J.; Duran-Vila, N.; Quinto, J.; Hervalejo, Á. Is the presence of Trioza erytreae, vector of
huanglongbing disease, endangering the Mediterranean citrus industry? Survey of its population density
and geographical spread over the last years. J. Plant Pathol. 2018, 100, 567–574. [CrossRef]

62. Arenas-Arenas, F.J.; Duran-Vila, N.; Quinto, J.; Hervalejo, Á. Geographic spread and inter-annual evolution
of populations of Trioza erytreae in the Iberian Peninsula. J. Plant Pathol. 2019, 101, 1151–1157. [CrossRef]

63. Youn, Y.; Backus, E.A.; Serikawa, R.H.; Stelinski, L.L. Correlation of an Electrical Penetration Graph Waveform
with Walking by Asian Citrus Psyllid, Diaphorina citri (Hemiptera: Psyllidae). Fla. Èntomol. 2011, 94,
1084–1087. [CrossRef]

64. Munyaneza, J.E.; Mustafa, T.; Ficher, T.W.; Sengoda, V.G.; Horton, D.R. Assesing the likelihood of Transmission
of ‘Candidatus Liberibacter solanacearum’ to carrot by Potato Psyllid, Bactericera cockerelli (Hemiptera:
Triozidae). PLoS ONE 2016, 11, e0161016. [CrossRef] [PubMed]

65. Green, G.; Catling, H. Weather-induced mortality of the citrus psylla, trioza erytreae (del guercio) (homoptera:
Psyllidae), a vector of greening virus, in some citrus producing areas of Southern Africa. Agric. Meteorol.
1971, 8, 305–317. [CrossRef]

http://dx.doi.org/10.1111/j.1570-7458.2009.00937.x
http://dx.doi.org/10.1016/j.jinsphys.2011.07.008
http://dx.doi.org/10.1016/j.compag.2009.02.006
http://dx.doi.org/10.1603/0013-8746(2007)100[296:LHHMFO]2.0.CO;2
http://dx.doi.org/10.1094/Phyto-73-1358
http://dx.doi.org/10.1094/PDIS-91-2-0227B
http://www.ncbi.nlm.nih.gov/pubmed/30781013
http://dx.doi.org/10.1094/PHYTO-100-8-0756
http://dx.doi.org/10.5424/sjar/2017154-10762
http://dx.doi.org/10.1603/AN13178
http://dx.doi.org/10.1111/eea.12179
http://dx.doi.org/10.1038/s41598-018-28442-6
http://dx.doi.org/10.1007/s10905-018-9666-0
http://dx.doi.org/10.1007/s10340-016-0804-1
http://dx.doi.org/10.1007/s42161-018-0109-8
http://dx.doi.org/10.1007/s42161-019-00301-x
http://dx.doi.org/10.1653/024.094.0456
http://dx.doi.org/10.1371/journal.pone.0161016
http://www.ncbi.nlm.nih.gov/pubmed/27525703
http://dx.doi.org/10.1016/0002-1571(71)90118-X


Insects 2020, 11, 514 15 of 15

66. Berg, M.V.D.; Deacon, V.E.; Steenekamp, P. Dispersal within and between citrus orchards and native hosts,
and nymphal mortality of citrus psylla, Trioza erytreae (Hemiptera: Triozidae). Agric. Ecosyst. Environ. 1991,
35, 297–309. [CrossRef]

67. Aidoo, O.F.; Tanga, C.M.; Khamis, F.M.; Rasowo, B.A.; Mohamed, S.A.; Badii, B.K.; Salifu, D.; Sétamou, M.;
Ekesi, S.; Borgemeister, C. Host suitability and feeding preference of the African citrus triozid Trioza erytreae
Del Guercio (Hemiptera: Triozidae), natural vector of “Candidatus Liberibacter africanus”. J. Appl. Èntomol.
2018, 143, 262–270. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/0167-8809(91)90080-H
http://dx.doi.org/10.1111/jen.12581
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Source of Insects 
	Plant Material 
	Donor Plants 
	Receptor Plants 
	Plant Material in Setting and Oviposition Studies 

	DNA Extraction, Detection and Haplotyping of CaLsol 
	CaLsol Transmission Studies by Dodder 
	CaLsol Transmission Studies by Budding Grafting 
	Feeding Behavior of T. erytreae 
	CaLsol Transmission Studies by T. erytreae 
	CaLsol Acquisition Studies by T. erytreae 
	CaLsol Inoculation Studies Using T. erytreae as a Vector 

	Settling and Oviposition of T. erytreae 
	Statistical Analysis 

	Results 
	Transmission Studies by Dodder 
	Transmission Studies by Budding Grafting 
	Feeding Behavior of T. erytreae 
	CaLsol Transmission Studies by T. erytreae 
	Trioza erytreae Acquisition Assays 
	CaLsol Inoculation Studies Using T. erytreae Species as a Vector 

	Setting and Oviposition Studies of T. erytreae 

	Discussion 
	Conclusions 
	References

