JACC: ADVANCES © 2024 THE AUTHORS. PUBLISHED BY ELSEVIER ON BEHALF OF THE AMERICAN COLLEGE OF CARDIOLOGY FOUNDATION. THIS IS AN OPEN ACCESS ARTICLE UNDER THE CC BY-NC-ND LICENSE (http://creativecommons.org/licenses/by-nc-nd/4.0/).

ORIGINAL RESEARCH

Percent Predicted Peak Exercise Oxygen Pulse Provides Insights Into Ventricular-Vascular Response and Prognosticates HFpEF

Jason P. Li, MD,^{a,b} Charles Slocum, MD,^a John Sbarbaro, BA,^a Mark Schoenike, BS,^a Joseph Campain, BS,^a Cheshta Prasad, BA,^a Matthew G. Nayor, MD, MPH,^c Gregory D. Lewis, MD,^a Rajeev Malhotra, MD, MS^a

ABSTRACT

BACKGROUND Peak oxygen consumption and oxygen pulse along with their respective percent predicted measures are gold standards of exercise capacity. To date, no studies have investigated the relationship between percent predicted peak oxygen pulse (%PredO₂P) and ventricular-vascular response (VVR) and the association of %PredO₂P with all-cause mortality in heart failure with preserved ejection fraction (HFpEF) patients.

OBJECTIVES The authors investigated the association between: 1) CPET measures of %PredO₂P and VVR; and 2) % PredO₂P and all-cause mortality in HFpEF patients.

METHODS Our cohort of 154 HFpEF patients underwent invasive CPET and were grouped into %PredO₂P tertiles. The association between percent predicted Fick components and markers of VVR (ie, proportionate pulse pressure, effective arterial elastance) was determined with correlation analysis. The Cox proportional hazards model was used to identify predictors of mortality.

RESULTS The participants' mean age was 57 ± 15 years. Higher %PredO₂P correlated with higher exercise capacity. In terms of VVR, higher %PredO₂P correlated with a lower pressure for a given preload (effective arterial elastance r = -0.45, P < 0.001 and proportionate pulse pressure r = -0.22, P = 0.008). %PredO₂P distinguished normal and abnormal percent predicted peak stroke volume and correlated positively with %PredVO₂ (r = 0.61, P < 0.001). Participants had a median follow-up time of 5.6 years and 15% death. Adjusted for age and body mass index, there was a 5% relative reduction in mortality (HR: 0.95, 95% CI: 0.92-0.98, P = 0.003) for every percent increase in %PredO₂P.

CONCLUSIONS In HFpEF, %PredO₂P is a VVR marker that can stratify invasive parameters such as percent predicted peak stroke volume. %PredO₂P is an independent prognostic marker for all-cause mortality and those with higher %PredO₂P exhibited longer survival. (JACC Adv 2024;3:101101) © 2024 The Authors. Published by Elsevier on behalf of the American College of Cardiology Foundation. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Manuscript received October 9, 2023; revised manuscript received April 3, 2024, accepted May 15, 2024.

From the ^aDivision of Cardiology, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA; ^bDivision of Cardiology, Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA; and the ^cSection of Cardiovascular Medicine and Preventive Medicine and Epidemiology, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA.

The authors attest they are in compliance with human studies committees and animal welfare regulations of the authors' institutions and Food and Drug Administration guidelines, including patient consent where appropriate. For more information, visit the Author Center.

ABBREVIATIONS AND ACRONYMS

2

%PredC_{av}O₂ = percent predicted peak arterio-mixed venous oxygen content difference

%PredO₂P = percent predicted peak oxygen pulse

%PredSV = percent predicted peak stroke volume

BMI = body mass index

C_{av}O₂ = arterio-mixed venous oxygen content difference

Ea = effective arterial elastance

HFpEF = heart failure with preserved ejection fraction

HR = heart rate

O2P = oxygen pulse

PAP/CO = linear slope of pulmonary arterial pressure and cardiac output

PCWP = pulmonary capillary wedge pressure

PCWP/CO = linear slope of pulmonary capillary wedge pressure and cardiac output

PrPP = proportionate pulse pressure (at peak exercise)

PVR = pulmonary vascular resistance

RVSWI = right ventricular stroke work index

SVR = systemic vascular resistance

VE/VCO₂ = minute ventilation/carbon dioxide production

VVR = ventricular-vascular response

he heterogeneity of heart failure with preserved ejection fraction (HFpEF) pathophysiology, encompassing abnormalities of diastolic relaxation, peripheral oxygen uptake, and ventricularvascular response (VVR), has resulted in therapeutic challenges.¹⁻³ Cardiopulmonary exercise testing (CPET) is an ideal approach to understand HFpEF physiology given that dynamic measurements often outperform resting measurements.4-6 Peak oxygen uptake (VO₂) is the gold standard measure of functional capacity and is reduced in HFpEF patients compared to patients without heart failure.^{7,8} Oxygen pulse (O₂P), a noninvasive CPET measure, represents the product of stroke volume (SV) and arterio-mixed venous oxygen content difference (CavO₂).^{9,10} HFpEF patients exhibit impaired augmentation of heart rate (HR), SV, and CavO2 during exercise.^{2,6}

Both percent predicted models and peak values of exercise are predictors of adverse events.¹⁰⁻¹² Percent predicted values have the ability to adjust for age, body mass index (BMI), and sex.¹¹ Few studies have examined percent predicted peak O₂P (%PredO₂P) and its relationship with peak VO₂¹⁰ and data are lacking on the relationship of %PredO₂P with peak HR, C_{av}O₂, and SV in HFpEF.

Previous studies have elucidated the synergistic dysfunction of the ventricles and arteries as playing a role in HFpEF pathophysiology.^{7,13} Ventricular-vascular coupling can be assessed with echocardiography or invasive CPET and is an important determinant of exercise capacity, whereby vasculature vasodilates to accommodate the increased cardiac output, while blunting inappropriate increases in blood pressure.14,15 Markers of ventricular-vascular coupling include systemic (SVR) and pulmonary (PVR) vascular resistance, effective arterial elastance (Ea), which is the ratio of endsystolic blood pressure to SV, and proportionate pulse pressure (PrPP), which is the ratio of pulse pressure to systolic blood pressure.^{16,17} VVR is defined here as ventricular-vascular coupling during exercise and associated hemodynamic responses to exercise (ie, peak SV, peak right ventricular stroke work index, PAP/CO, PCWP/CO). PAP/CO is the slope of the linear relationship between pulmonary arterial pressure and cardiac output from rest to peak exercise, and PCWP/CO is the slope of the linear relationship of pulmonary capillary wedge pressure and cardiac output from rest to peak exercise.¹⁸ The former examines the degree of right ventricular filling pressures relative to cardiac output, while the latter examines the degree of left ventricular filling pressures relative to cardiac output.¹⁸

We believe $\[mathcal{P}\] P \ would be an ideal noninva$ sive surrogate for measuring ventricular-vasculardysfunction because O₂P has long been thought ofas a substitute for stroke volume.^{19,20} We hypothesize $that <math>\[mathcal{P}\] P \ edO_2P$ should associate with markers of VVR and all-cause mortality in HFpEF.

In short, the role of %PredO₂P in determining VVR and survival of HFpEF patients remains incompletely understood. The objective of our study was to delineate %PredO₂P in a HFpEF cohort, demonstrate how %PredO₂P associates with ventricular-vascular decoupling, and explore the prognostic capabilities of %PredO₂P in HFpEF.

METHODS

PATIENT POPULATION AND STUDY DESIGN. Clinical assessment. A total of 663 consecutive patients who had dyspnea on exertion and left ventricular ejection fraction ≥50% underwent invasive CPET at our institution. Of those, 154 patients had HFpEF (defined as left ventricular ejection fraction \geq 50% with resting supine pulmonary capillary wedge pressure [PCWP] ≥15 mm Hg and/or exercise PCWP/ CO \geq 2.0 mm Hg/L/min¹⁸), did not take atrioventricular nodal blocking agents, did not have atrial fibrillation, and were not paced by a pacemaker (Supplemental Figure 1). Excluding patients on atrioventricular nodal blocking agents, who were paced or had atrial fibrillation was done in order to assess unaffected intrinsic chronotropic responses to exercise.^{8,21}

Cardiopulmonary exercise testing. All patients had Swan Ganz catheter placement via right internal jugular access and arterial line placement via radial artery access. First-pass radionuclide ventriculography was performed at rest and peak exercise. Patients underwent a maximum upright CPET via cycle ergometry, the start of which included a 3-minute resting period followed by 3 minutes of unloaded exercise. Subsequently, patients continued on an incremental exercise ramp protocol of 5 to 25 W/min, based on estimated exercise capacity. All patients surpassed their anaerobic threshold and had a respiratory exchange ratio in excess of 1.05. Right atrial pressure, mean pulmonary arterial pressure, PCWP, and systemic arterial pressures were measured minute-by-minute at end-expiration (Witt Biomedical). Fick-derived cardiac outputs were determined

at 1-minute intervals throughout exercise via simultaneous measurements of breath-by-breath VO₂ along with arterial and mixed venous O2 content to derive C_{av}O₂ (MedGraphics). SV was calculated by dividing cardiac output by HR. Peak VO₂ was defined as the highest 30-second median VO2 along the exercise ramp. The other components of peak values were chosen at the same minute measurement as peak VO₂ in order to accurately determine percent predicted. Percent predicted components were calculated using the Wasserman equation for maximal-predicted peak VO₂.²² Age-predicted maximal HR was defined as 220 beats/min subtracted by age in years. Maximumpredicted peak O₂P was calculated by dividing Wasserman's predicted peak VO₂ by age-predicted maximal HR. Maximum CavO2 values for male and female were defined as 14.5 mL/dL and 13.0 mL/dL, respectively.^{9,23} Percent predicted peak VO₂ (%PredVO₂), HR (%PredHR), and C_{av}O₂ (%PredC_{av}O₂) were calculated from peak values divided by the theoretical maximum or normal values for each patient. Percent predicted peak stroke volume (%PredSV) was back calculated from Equation 1 below:

$$\label{eq:predSV} \begin{split} & \mbox{\ensuremath{\mathbb{R}}} PredSV = \mbox{\ensuremath{\mathbb{P}}} PredVO_2 \, / \, (\mbox{\ensuremath{\mathbb{P}}} PredHR \cdot \mbox{\ensuremath{\mathbb{P}}} PredC_{av}O_2) \\ & (\mbox{Eq. 1}) \end{split}$$

%PredO₂P tertiles were formed for comparative analyses. We derived OUES using semilog transformation and VE/VCO₂ slope across time with linear regressions of minute-by-minute exercise measurements.²⁴

Assessment of VVR. Linear regression of PCWP/CO and PAP/CO was determined through the least squares method.¹⁸ Ea was calculated with the equation Ea = $0.9 \cdot \text{SBP/SV}$.¹⁶ SV and %PredSV were calculated as mentioned previously. Right ventricular stroke work index (RVSWI) was calculated with the equation RVSWI= SVI · (mPAP-mRAP) · 0.0136.²⁵ PrPP was calculated as previously specified.¹⁷ SVR and PVR were calculated as previously described.²⁶

OUTCOMES. All-cause mortality was ascertained using the social security death index and electronic medical records.

STATISTICAL ANALYSIS. Statistical analysis was performed with Stata 16 (StataCorp) and GraphPad Prism 8 (GraphPad Software). The Shapiro-Wilk normality test was performed to assess for normality of distribution. Measurements are presented as mean \pm SEM or median (IQR) for continuous variables, as appropriate, and as numbers and percentages for categorical variables. Groups were compared using the 1-way analysis of variance, Kruskal-Wallis test, or chi-square test, where appropriate. An extended

TABLE 1 Baseline Characteristics by Tertiles of Peak Oxygen Pulse					
	%PredO ₂ P 42.1-139.2 Cohort (n = 154)	42.1-<76.2 Tertile 1 (n = 51)	%PredO ₂ P 76.2-<94.4 Tertile 2 (n = 51)	%PredO ₂ P 94.4-139.2 Tertile 3 (n = 52)	P Value
Age (y)	57 (1)	53 (2)	59 (2)	59 (2)	0.092
Female	66 (102)	57 (29)	71 (36)	71 (37)	0.223
BMI (kg/m ²)	29.9 (0.6)	27.8 (0.8)	29.5 (0.9)	32.5 (1.2)	0.014
LVEF (%)	66 (1)	66 (1)	67 (1)	65 (1)	0.404
Hypertension	46 (71)	35 (18)	53 (27)	50 (26)	0.159
Diabetes	12 (18)	10 (5)	14 (7)	12 (6)	0.846
HLD	36 (56)	25 (13)	43 (22)	40 (21)	0.137
ACEI or ARB	30 (46)	31 (16)	37 (19)	21 (11)	0.195
Diuretic	30 (46)	22 (11)	31 (16)	37 (19)	0.242
Statin	36 (55)	31 (16)	35 (18)	40 (21)	0.632

Values are mean (SEM), median (IQR) or % (n). P values of 1-way ANOVA, Kruskal-Wallis, or chi-square, as appropriate.

ACEI = angiotensin-converting-enzyme inhibitor; ARB = angiotensin receptor blockers; BMI = body mass index; HLD = hyperlipidemia; LVEF = left ventricular ejection fraction; O_2P = oxygen pulse.

Wilcoxon rank-sum test in Stata was used to assess the trend across ordered groups. Least square regressions were performed for $\parkspace{0.2ex}P$ and the respective $\parkspace{0.2ex}P$ red counterparts. Pearson correlation was calculated to assess linear relationships, and Spearman's rank-order correlation was assessed for monotonic relationships in nonparametric variables. Sensitivity and specificity analysis was used in stratifying $\parkspace{0.2ex}P$ and $\parkspace{0.2ex}P$ value of <0.05 was considered statistically significant, except when adjusting for multiple comparisons via Bonferroni correction, where indicated.

The Kaplan-Meier method was used to calculate cumulative survival rates. The log-rank test for trend was performed across tertiles. Unadjusted and adjusted Cox proportionality hazards modeling were performed using %PredO₂P as a covariate. The adjusted models included a combination of covariates including age, sex, BMI, peak VO₂, VE/VCO₂ slope, and %PredO₂P. The proportionality assumption was verified for all Cox regression models by Schoenfeld residual testing. The study was approved by the Mass General Brigham Institutional Review Board (2010P001704 and 2010P002423).

RESULTS

BASELINE CHARACTERISTICS AND RESTING HEMO-DYNAMICS. With the exception of a trend towards higher BMI for higher %PredO₂P tertiles, the cohort's baseline characteristics, prevalence of comorbidities and medication usage did not differ across %PredO₂P tertiles, **Table 1**. Resting hemodynamic and ventilatory measures were similar across %PredO₂P tertiles except for HR (P < 0.001) and SV (P = 0.001 (**Table 2**).

3

4

TABLE 2 Resting and Peak Exercise Hemodynamic, Gas Exchange, and Metabolic Responses Across Percent Predicted Peak O ₂ P Tertiles					
	Cohort	Tertile 1	Tertile 2	Tertile 3	P Value
Rest					
RA (mm Hg)	3 (0.2)	3 (0.5)	3 (0.3)	3 (0.3)	0.296
PAP (mm Hg)	17 (0.4)	18 (0.8)	17 (0.6)	17 (0.7)	0.171
Supine PCWP (mm Hg)	14 (0.5)	13 (1.0)	13 (0.8)	16 (0.8)	0.021
SBP (mm Hg)	148 (2)	145 (4)	151 (3)	149 (3)	0.185
DBP (mm Hg)	78 (1)	79 (2)	78 (2)	76 (2)	0.480
CO (L/min)	5.1 (0.1)	4.9 (0.2)	5.1 (0.2)	5.2 (0.2)	0.344
HR (beats/min)	81 (1)	89 (2)	80 (2) ^a	75 (1) ^{ab}	<0.001
SV (mL)	65 (2)	56 (3)	68 (4) ^a	71 (3) ^a	0.001
O ₂ P (mL/beat)	3.6 (0.1)	3.3 (0.1)	3.5 (0.2)	3.9 (0.1)	0.004
VO ₂ (mL/min)	282 (6)	285 (11)	275 (9)	286 (10)	0.769
VO ₂ /kg (mL kg ⁻¹ min ⁻¹)	3.5 (0.1)	3.8 (0.1)	3.5 (0.1)	3.3 (0.1)	0.022
C _{av} O ₂ (mL/dL)	5.6 (0.1)	5.6 (0.2)	5.6 (0.1)	5.7 (0.1)	0.511
C _a O ₂ (mL/dL)	17.4 (0.2)	17.3 (0.3)	17.2 (0.3)	17.7 (0.3)	0.459
C_vO_2 (mL/dL)	11.8 (0.2)	11.7 (0.3)	11.7 (0.2)	12.0 (0.3)	0.842
S _{av} O ₂ (%)	33 (1)	33 (1)	33 (1)	33 (1)	0.957
Hgb (g/dL)	12.8 (0.1)	12.8 (0.2)	12.7 (0.2)	13.0 (0.2)	0.611
Peak					
Work (W)	89 (3)	82 (5)	87 (4)	99 (5)	0.031
RER	1.19 (0.01)	1.22 (0.02)	1.18 (0.02)	1.17 (0.01)	0.040
RA (mm Hg)	11 (1.2)	11 (1.2)	13 (0.9)	11 (0.8)	0.168
PAP (mm Hg)	38 (1.5)	38 (1.5)	37 (1.3)	38 (1.2)	0.773
PCWP (mm Hg)	23 (1.5)	23 (1.5)	23 (1.0)	23 (1.1)	0.689
SBP (mm Hg)	186 (2)	188 (3)	188 (3)	181 (3)	0.226
DBP (mm Hg)	89 (1)	88 (2)	89 (2)	89 (2)	0.754
CO (L/min)	10.8 (0.2)	10.0 (0.4)	11.1 (0.3)	11.5 (0.5)	0.038
HR (beats/min)	134 (2)	143 (3)	135 (4)	123 (4) ^{ab}	<0.001
SV (mL)	82 (2)	71 (3)	83 (2)ª	93 (3) ^{ab}	<0.001
O ₂ P (mL/beat)	9.2 (0.2)	7.6 (0.3)	8.8 (0.3) ^a	11.2 (0.4) ^{ab}	<0.001
VO ₂ (mL/min)	1,208 (31)	1,069 (53)	1,181 (38)	1,369 (61) ^{ab}	<0.001
VO ₂ /kg (mL kg ⁻¹ min ⁻¹)	14.8 (0.3)	13.9 (0.5)	14.9 (0.5)	15.7 (0.7)	0.230
C _{av} O ₂ (mL/dL)	11.1 (0.2)	10.7 (0.3)	10.7 (0.2)	11.9 (0.3) ^{ab}	<0.001
C _a O ₂ (mL/dL)	18.2 (0.2)	18.1 (0.4)	17.9 (0.3)	18.5 (0.3)	0.405
C_vO_2 (mL/dL)	7.1 (0.1)	7.4 (0.3)	7.2 (0.2)	6.5 (0.2)	0.010
S _{av} O ₂ (%)	61 (1)	59 (1)	59 (1)	65 (1) ^{ab}	<0.001
Hgb (g/dL)	13.6 (0.1)	13.6 (0.3)	13.5 (0.2)	13.7 (0.2)	0.715

Values are in mean (SEM) or median (IQR). *P* values of 1-way ANOVA, Kruskal-Wallis or chi-square when appropriate. Subgroup compariso *P* values of student t-test or Mann-Whitney U test as appropriate. Values in **bold** indicate statistically significant after adjusting for multiple comparisons. ^a*P* < 0.0167 vs tertile 1, Bonferroni adjusted. ^b*P* < 0.0167 vs tertile 2, Bonferroni adjusted.

 $\begin{array}{l} C_aO_2 = \mbox{arterial oxygen content;} \ C_aVO_2 = \mbox{arterial-venous } O_2\ \mbox{content difference;} \ C_vO_2 = \mbox{mixed venous oxygen content;} \ CO = \mbox{cardiac output;} \ DBP = \mbox{distribution} \ SDP = \mbox{distribution} \ SD$

EXERCISE HEMODYNAMICS. HFpEF patients with higher %PredO₂P had higher peak O₂P, VO₂, $C_{av}O_2$, $S_{av}O_2$, SV and lower HR (P < 0.001 for all respective comparisons) (**Table 2**) compared to those with lower %PredO₂P. Tertile 3 had the lowest HR (P < 0.0167 compared to tertiles 1 and 2) and highest SV (P < 0.0167 compared to tertiles 1 and 2). Higher O₂P tertiles trended toward higher peak CO (P = 0.038) and maximum work (P = 0.031) that were not significant after adjusting for multiple comparisons.

Higher %PredO₂P tertile associated with more efficient oxygen utilization for a given ventilation as measured by OUES (trend P = 0.010) with a trend toward improved ventilatory efficiency as assessed by minute ventilation-to-CO₂ production ratio (VE/VCO₂ slope, trend P = 0.098 (Supplemental Table 1).

Participants with higher \PredO_2P had greater augmentation of O_2P , VO_2 , and VO_2/kg than those in the lowest \PredO_2P tertile (Figure 1, Supplemental Table 1). We observed similar results for $C_{av}O_2$ and $S_{av}O_2$ in that those with the highest \PredO_2P tertile had improved augmentation compared to those in the lowest tertile (Figure 1). Notably, HR augmentation did not differ among the tertiles and SV augmentation did not have a statistical difference among groups despite a visible trend (Figure 1).

RELATIONSHIP OF PERCENT PREDICTED PEAK O2P WITH OTHER PERCENT PREDICTED COMPONENTS. The relationships between the individual percent predicted components of the Fick equation with %PredO₂P are shown in Figure 2. %PredO₂P had positive correlations with %PredSV (r = 0.66, P < 0.001), % $PredVO_2$ (r = 0.61, P < 0.001), and $%PredC_{av}O_2$ (r = 0.41, P < 0.001) and a negative correlation with % PredHR (r = -0.37, P < 0.001). Consistently, these same patterns were seen at corresponding peak absolute values of O₂P components (Supplemental Table 2). On average HFpEF patients with a lower % PredO₂P have relatively even contributions from % PredC_{av}O₂ and %PredSV, whereas those with higher % PredO₂P have a pattern of relatively greater contribution from %PredSV than %Pred $C_{av}O_2$ (Figure 2). There was greater variability in %PredSV than %Pre $dC_{av}O_2$ (Figure 2).

Because of the robust correlation of %PredO₂P with %PredSV, we performed sensitivity and specificity analyses of %PredO₂P in predicting %PredSV (Supplemental Figure 2). Using a common cutoff for CPET laboratory tests (\geq 80% %PredO₂P), we determined that all patients had \geq 80% %PredSV. For % PredO₂P <80%, more than half (37/57) the patients had a %PredSV \geq 80%. When we moved the threshold to \geq 85% %PredO₂P, which is the value supported for heart failure patients,¹⁰ all patients had a % PredSV \geq 85%. These results indicate that a normal % PredO₂P is strongly tied with a normal %PredSV; however, an abnormal %PredO₂P is linked to an abnormal %PredSV only in a fraction of HFpEF patients due to the contribution from %PredC_{av}O₂.

VENTRICULAR-VASCULAR RESPONSE. We observed a correlation between improved VVR and higher %PredO₂P (**Table 3**). Peak exercise SVR was negatively correlated with %PredO₂P (rho = -0.25, P = 0.002)

Violin plots with first quartile, median and third quartile shown via horizontal black lines in ascending order. $\Delta C_{av}O_2 =$ change in arterialvenous O₂ content difference from peak exercise to rest; $\Delta HR =$ change in heart rate from peak exercise to rest; $\Delta SV =$ change in stroke volume from peak exercise to rest; $\Delta O_2P =$ change in oxygen pulse from peak exercise to rest; $\Delta S_{av}O_2 =$ change in arterial-venous oxygen saturation from peak exercise to rest; $\Delta VO_2 =$ change in oxygen uptake from peak exercise to rest. **P* < 0.0167 vs tertile 1, Bonferroni adjusted. †*P* < 0.0167 vs tertile 2, Bonferroni adjusted. *P* values of student's *t*-test or Mann-Whitney *U* test as appropriate.

(Figure 3A), indicating that a higher vascular resistance is associated with lower %PredO₂P. Coupled with this vascular finding, %PredO2P had positive correlations with peak SV (r = 0.48, P < 0.001) (Figure 3B) and %PredSV (r = 0.66, P < 0.001) (Figure 2). Furthermore, %PredO₂P had negative correlations with the established ventricular-vascular coupling measures of PrPP (r = -0.22, P = 0.008) (Figure 3C) and Ea at peak exercise (r = -0.45, P < 0.001) (Figure 3D). HFpEF patients associate with higher Ea,²⁷ and now we show that %PredO₂P can stratify impaired left ventricular and systemic vascular coupling within HFpEF. Similarly, for the right-sided circulation, there is some evidence of impaired right ventricular-pulmonary vascular coupling. Patients with lower %PredO₂P exhibited a

trend toward higher peak PVR (r = -0.16, P = 0.043) (Figure 3E) and lower peak RVSWI (r = 0.21, P = 0.010; Figure 3F), though those trends were not statistically significant after adjusting for multiple comparisons. There was a relationship of lower PAP/CO slope (trend P = 0.001) (Figure 3G) and lower PCWP/CO slope (trend P = 0.004) (Figure 3H) across higher %PredO₂P tertiles, indicating that higher %PredO₂P is correlated with improved left-sided and right-sided hemodynamic responses to exercise. Overall, these results underscore the important insights that %PredO₂P can provide on VVR in HFpEF. When correlations of % PredO₂P with VVR variables were assessed across subsets of BMI < 30 kg/m², BMI \ge 30 kg/m², no diuretic use and diuretic use, those findings were similar to the whole cohort (Supplemental Table 3).

%PredVO₂ = percent predicted peak oxygen uptake.

SURVIVAL OUTCOMES. The median follow-up time for the 154 patients was 5.6 years (IQR: 3.0-7.8 years) with 15% (n = 23) mortality. There was improved survival with increasing tertiles of %PredO₂P (**Figure 4**) (log-rank trend P = 0.0455). Cox proportional hazard modeling was performed with the restriction of having at most 2 to 3 covariates in order to maintain standard statistical etiquette.²⁸ Univariable analysis is presented in **Table 4**. When adjusted for age and BMI, there was a 5% reduction in risk of mortality (HR: 0.95, 95% CI: 0.92-0.98, P = 0.003) (**Table 5**) for every percent increase in %PredO₂P. For comparison, %PredO₂P performed as well if not better than traditional CPET prognostic markers such as peak VO₂ and VE/VCO₂ (Supplemental Table 4) and was an independent marker of all-cause mortality when adjusted for VE/VCO₂ slope and age or peak VO₂ and age (model 1 and model 2, respectively) (Supplemental Table 4).

DISCUSSION

In HFpEF patients, higher %PredO₂P correlated with higher maximal aerobic capacity, greater %PredSV

TABLE 3 Ventricular-Vascular Response Across Percent Predicted Peak O2P Tertiles					
	Cohort	Tertile 1	Tertile 2	Tertile 3	P Value
PCWP/CO (mm Hg*min/L)	3.0 (0.1)	3.5 (0.3)	2.9 (0.2) ^a	2.8 (0.3) ^a	0.004
PAP/CO (mm Hg*min/L)	3.8 (0.2)	4.5 (0.3)	3.6 (0.2) ^a	3.3 (0.2) ^a	0.001
Rest Ea (mm Hg/mL)	2.3 (0.1)	2.5 (0.1)	2.3 (0.1)	2.2 (0.1)	0.014
Peak Ea (mm Hg/mL)	2.2 (0.1)	2.6 (0.1)	2.1 (0.1)	1.9 (0.1) ^{ab}	<0.001
PrPP	0.52 (0.004)	0.53 (0.006)	0.53 (0.008)	0.51 (0.006) ^a	<0.001

Values are in mean (SEM) or median (IQR). Trend *P* values of an extended Wilcoxon rank-sum test above. Subgroup comparison *P* values of student t-test or Mann-Whitney U test when appropriate. Values in **bold** indicate statistically significant after adjusting for multiple comparisons. ${}^{a}P < 0.0167$ vs tertile 1, Bonferroni adjusted. ${}^{b}P < 0.0167$ vs tertile 2, Bonferroni adjusted.

Ea = effective arterial elastance; PAP/CO = linear slope of pulmonary arterial pressure and cardiac output; PCWP/CO = linear slope of pulmonary capillary wedge pressure and cardiac output; PrPP = proportionate pulse pressure (at peak exercise).

Continued on the next page

and %PredC_{av}O₂, and lower %PredHR. Those with lower %PredO₂P exhibited worse VVR (higher PAP/CO, PCWP/CO, Ea, PrPP, peak SVR, and lower peak SV). %PredO₂P was an independent predictor of all-cause mortality in HFpEF and those with higher % PredO₂P had higher survival (Central Illustration).

Ventricular-vascular coupling is a critical determinant of peak exercise capacity. Chen et al¹⁵ showed evidence of ventricular-vascular decoupling in elderly patients. Borlaug et al⁸ and Kawaguchi et al¹³ carried that finding forward in HFpEF patients with the leading theory that a stiffer vasculature associates with a dampened stroke volume response to exercise. Lower exercise capacity in HFpEF associates with ventricular-vascular decoupling, a hallmark mechanism of diastolic dysfunction.^{29,30} We observed a correlation of lower %PredO2P with worse ventricular-vascular decoupling. Lower stroke volume response is correlated with a higher afterload in the systemic (higher SVR) and pulmonary (higher PVR) vascular systems—we see this with a correlation of lower peak SV and a trend of lower peak RVSWI in those with lower %PredO₂P. Furthermore, those with lower %PredO2P had evidence of abnormal hemodynamic response to exercise with higher PrPP, PAP/CO and PCWP/CO (Figure 3). Previous studies have shown associations of lower stroke volume augmentation during exercise in HFpEF patients compared to normal or hypertensive controls.^{31,32} Within our HFpEF population, we see a correlation of lower % PredO₂P with lower %PredSV (Figure 2). HFpEF patients have worse arterial stiffening compared to their

FIGURE 3 Continued

Patients with higher %PredO₂P correlated with improved left-sided and right-sided ventricular vascular response with exercise. %PredO₂P correlated with higher left ventricular stroke volume response (Peak SV), lower systemic vascular resistance (Peak SVR), and a more compliant vasculature (PrPP, PAP/CO, PCWP/CO) with exercise. There was a trend of higher right ventricular stroke volume response (peak RVSWI) and lower pulmonary vascular resistance (peak PVR) that was not statistically significant after Bonferroni correction. Violin plots with first quartile, median and third quartile shown via horizontal black lines in ascending order. (A) Spearman rank correlation of peak SVR vs %PredO₂P. (B) Peak stroke volume vs %PredO₂P. (C) PrPP vs %PredO₂P. (D) Peak Ea vs %PredO₂P. (E) Peak PVR vs %PredO₂P. (F) Peak RVSWI vs %PredO₂P. (G) PAP/CO across %PredO₂P tertiles. (H) PCWP/CO across %PredO₂P tertiles. *P*-values of Spearman rank-order correlation, Pearson correlation, or an extended Wilcoxon rank-sum test as appropriate. **P* < 0.0167 vs tertile 1, Bonferroni adjusted. %PredO₂P = percent predicted peak oxygen pulse; CO = cardiac output; Ea = effective arterial elastance; PAP = pulmonary arterial pressure; PCWP = pulmonary capillary wedge pressure; PrPP = proportionate pulse pressure (at peak exercise); PVR = pulmonic vascular resistance; RVSWI = right ventricular systolic work index; SVR = systemic vascular resistance.

	HR (95% CI)	P Value
Age	1.05 (1.02-1.08)	0.001
Sex	0.66 (0.29-1.52)	0.337
BMI	0.98 (0.92-1.04)	0.495
%PredO ₂ P	0.97 (0.95-0.99)	0.032
Peak VO ₂	0.998 (0.997-0.999)	0.004
VE/VCO ₂ slope	1.05 (1.01-1.08)	0.011

 VCO_2 = minute ventilation/carbon dioxide production slope; VO_2 = oxygen uptake.

hypertensive counterparts³³ and in particular arterial stiffening associate with higher exercise PCWP/CO.³⁴ When compared to healthy controls, HFpEF patients had a higher SVR response during exercise.³⁵ Here we show that in HFpEF patients, lower %PredO₂P is correlated with higher peak SVR.

Exercise capacity in HFpEF patients is in part limited by peripheral oxygen utilization,^{2,36} and this finding is supported in our study. The highest %PredO₂P tertile is associated with higher tissue oxygen utilization. There is a positive correlation between % PredO₂P and %PredC_{av}O₂ (**Figure 2**) and between % PredO₂P and peak C_{av}O₂ (Supplemental Table 2), reaffirming the significance of peripheral oxygen utilization in HFpEF patients.²

Finally, the heart rate response plays a role in exercise capacity. HFpEF patients have reduced heart rate response compared to normal subjects.^{7,8} Within HFpEF itself, the heart rate response to exercise especially in patients not on atrioventricular nodal blocking agents has not been thoroughly examined. Here we show that the heart rate response does not differ among the %PredO₂P tertiles. The lower %PredO₂P patients did not exhibit chronotropic incompetence during exercise.

Our findings support the robust correlation of %PredO₂P and %PredSV. Our sensitivity and specificity analysis underscores the stratification ability of %PredO₂P as a noninvasive marker for %PredSV, an invasive measurement.

Oliveira et al¹⁰ showed the prognostic abilities of the synergistic use of peak VO₂ and %PredO₂P in heart failure patients. As for survival outcomes, our cohort was relatively healthy in that total mortality was low (15%, n = 23, with a median follow up time of 5.6 years) and the mean %PredVO₂ was greater than 50%.¹² When we compare this to the HFpEF population of Lam et al (mortality of 14% at the 2-year follow-up), the survival difference likely stems from

TABLE 5Multivariable Cox Proportional Hazards RegressionModel Including %PredO2P for Mortality				
	HR (95% CI)	P Value		
Age	1.06 (1.03-1.11)	<0.001		
BMI	1.01 (0.94-1.09)	0.726		
%PredO ₂ P	0.95 (0.92-0.98)	0.003		
Values in bold indicate statistically significant after adjusting for multiple com- parisons. Model includes covariates of age, BMI and %PredO ₂ P. %PredO ₂ P = percent predicted peak oxygen pulse; BMI = body mass index.				

differences in age (57 vs 72 years, respectively). In light of the younger and healthier population, we were still able to see a significant difference in survival among the %PredO₂P tertiles (Figure 4). In unadjusted Cox proportionality hazard modeling, for every percent increase in %PredO₂P there was a trend toward a 3% decrease in risk of mortality (P = 0.032) (Table 4) that was not significant after adjusting for multiple comparisons. Of note, Laukkanen et al³⁷ showed a higher relative risk of mortality in HFpEF patients with higher BMI despite similar peak O₂P. Indeed, when we adjusted for age and BMI in our model, %PredO₂P served as an independent marker of survival in HFpEF with every percent increase in % PredO₂P having a 5% reduction in risk of mortality (P = 0.003) (Table 5).

The ventricular-vascular decoupling pathophysiology of HFpEF is an avenue with potential therapies. Already there have been fruitful albeit smaller randomized studies. When HFpEF patients with elevated PVR were treated with albuterol their PVR decreased with improved cardiac output and pulmonary-ventricular coupling.³⁸ Inhaled sodium nitrite has been shown to decrease the rise in PCWP at peak exercise and overall decrease the resting PCWP.³⁹ % PredO₂P can potentially serve as a ventricular-vascular marker to stratify and to assess efficacy of therapeutic targets in HFpEF patients.

CONCLUSIONS

In our HFpEF cohort, higher %PredO₂P associates with higher maximal aerobic capacity, and %PredO₂P is a VVR marker that can stratify invasive parameters such as %PredSV. %PredO2P is an independent prognostic marker for all-cause mortality and those with higher %PredO₂P associated with higher survival.

STUDY LIMITATIONS. This study is a retrospective assessment of a prospectively enrolled cohort and based on a small number of patients, albeit with extensive physiologic phenotyping, and a relatively

10

SVR = systemic vascular resistance; VVR = ventricular-vascular response.

small number of clinical endpoints. Because this study included patients not taking any atrioventricular nodal blocking agents, which is ideal for studying oxygen pulse because of its reliance on heart rate changes, the generalizability of the model may be limited in the general HFpEF population who are sometimes placed on atrioventricular nodal blocking agents. We acknowledge this is a proof-ofconcept study.

FUNDING SUPPORT AND AUTHOR DISCLOSURES

Dr Malhotra was supported by the National Heart, Lung, and Blood Institute (R01HL142809, R01HL159514, and R01HL162928), the American Heart Association (22TPA969625), and the Wild Family Foundation. Dr Malhotra has received research funding from Angea Biotherapeutics and Amgen; and serves as a consultant for Myokardia/BMS, Renovacor, Epizon Pharma, and Third Pole. Dr Malhotra is a co-founder of Patch, Inc; is a co-inventor for a patent on pharmacologic BMP inhibitors (along with Mass General Brigham) for which he receives royalties; and has received royalties from UpToDate for scientific content authorship. Dr Nayor was supported by NIH grants K23-HL138260, R01-HL156975, and R01-HL131029 and by a Career Investment Award from the Department of Medicine, Boston University School of Medicine; and has received speaking honoraria from Cytokinetics. Dr Lewis has received research funding from the National Institutes of Health R01-HL 151841, R01-HL131029, R01-HL159514, American Heart Association 15GPSGC-24800006 and Amgen, Cytokinetics, Applied Therapeutics, Astra-Zeneca, and SoniVie; has received honoraria for advisory boards outside of the current study from Pfizer, Merck, Boehringer Ingelheim, NXT, American Regent, Cyclerion, Cytokinetics, and Amgen; and has received royalties from UpToDate for scientific content authorship related to exercise physiology. All other authors have reported that they have no relationships relevant to the contents of this paper to disclose.

ADDRESS FOR CORRESPONDENCE: Dr Jason P. Li, University of Washington School of Medicine, 1959 NE Pacific Street, Box 356422, Seattle, Washington 98195-6422, USA. E-mail: jpli89@uw.edu.

PERSPECTIVES

COMPETENCY IN MEDICAL KNOWLEDGE: The synergistic dysfunction of the ventricles and arteries plays a role in HFpEF pathophysiology. Traditional measures of vascular resistance such as SVR and PVR and ventricular-vascular coupling terms such as PAP/CO are invasive and even Ea while can be obtained noninvasively remains difficult to measure. Oxygen pulse has long been thought of as a substitute for stroke volume.

TRANSLATIONAL OUTLOOK: %PredO₂P serves as a routinely measured, noninvasive ventricular-vascular marker that can potentially stratify and assess efficacy of therapeutic targets in HFpEF patients. %PredO₂P serves as an independent prognostic factor on survival in HFpEF.

REFERENCES

1. Gorter TM, Obokata M, Reddy YNV, Melenovsky V, Borlaug BA. Exercise unmasks distinct pathophysiologic features in heart failure with preserved ejection fraction and pulmonary vascular disease. *Eur Heart J.* 2018;39:2825-2835. https://doi.org/10.1093/eurheartj/ehy331

2. Dhakal BP, Malhotra R, Murphy RM, et al. Mechanisms of exercise intolerance in heart failure with preserved ejection fraction: the role of abnormal peripheral oxygen extraction. *Circ Heart Fail*. 2015;8(2):286-294. https://doi.org/10.1161/ CIRCHEARTFAILURE.114.001825

3. Lee JF, Barrett-O'Keefe Z, Garten RS, et al. Evidence of microvascular dysfunction in heart failure with preserved ejection fraction. *Heart*. 2016;102:278-284. https://doi.org/10.1136/ heartjnl-2015-308403

4. Malhotra R, Bakken K, D'Elia E, Lewis GD. Cardiopulmonary exercise testing in heart failure. *JACC Heart Fail.* 2016;4:607–616. https://doi.org/ 10.1016/j.jchf.2016.03.022

5. Haykowsky MJ, Brubaker PH, Stewart KP, Morgan TM, Eggebeen J, Kitzman DW. Effect of endurance training on the determinants of peak exercise oxygen consumption in elderly patients with stable compensated heart failure and preserved ejection fraction. *J Am Coll Cardiol.* 2012;60(2):120–128. https://doi.org/10.1016/j. jacc.2012.02.055

6. Borlaug BA, Nishimura RA, Sorajja P, Lam CS, Redfield MM. Exercise hemodynamics enhance diagnosis of early heart failure with preserved ejection fraction. *Circ Heart Fail*. 2010;3(5):588-595. https://doi.org/10.1161/CIRCHEARTFAILURE. 109.930701

7. Kitzman DW, Higginbotham MB, Cobb FR, Sheikh KH, Sullivan MJ. Exercise intolerance in patients with heart-failure and preserved leftventricular systolic function - failure of the Frank-Starling mechanism. J Am Coll Cardiol. 1991;17:1065-1072. https://doi.org/10.1016/ 0735-1097(91)90832-t

8. Borlaug BA, Melenovsky V, Russell SD, et al. Impaired chronotropic and vasodilator reserves limit exercise capacity in patients with heart failure and a preserved ejection fraction. *Circulation*. 2006;114(20):2138-2147. https://doi.org/10.1161/ CIRCULATIONAHA.106.632745

 Stringer WW, Hansen JE, Wasserman K. Cardiac output estimated noninvasively from oxygen uptake during exercise. J Appl Physiol. 1997;82(3):908-912. https://doi.org/10.1152/ iappl.1997.82.3.908

10. Oliveira RB, Myers J, Araújo CG, et al. Does peak oxygen pulse complement peak oxygen uptake in risk stratifying patients with heart failure? *Am J Cardiol.* 2009;104(4):554-558. https://doi.org/10.1016/j.amjcard.2009.04.022

11. Stelken AM, Younis LT, Jennison SH, et al. Prognostic value of cardiopulmonary exercise testing using percent achieved of predicted peak oxygen uptake for patients with ischemic and dilated cardiomyopathy. J Am Coll Cardiol. 1996;27(2):345-352. https://doi.org/10.1016/ 0735-1097(95)00464-5

12. Arena R, Myers J, Abella J, et al. Determining the preferred percent-predicted equation for peak oxygen consumption in patients with heart failure. *Circ Heart Fail.* 2009;2(2):113-120. https://doi.org/10.1161/CIRCHEARTFAILURE.108.834168

13. Kawaguchi M, Hay I, Fetics B, Kass DA. Combined ventricular systolic and arterial stiffening in patients with heart failure and preserved ejection fraction: implications for systolic and diastolic reserve limitations. *Circulation*. 2003;107(5):714-720. https://doi.org/10.1161/01.cir.0000048123. 22359.a0

14. Borlaug BA, Kass DA. Ventricular-vascular interaction in heart failure. *Heart Fail Clin.* 2008;4(1):23-36. https://doi.org/10.1016/j.hfc. 2007.10.001

15. Chen CH, Nakayama M, Nevo E, Fetics BJ, Maughan WL, Kass DA. Coupled systolic-ventricular and vascular stiffening with age. implications for pressure regulation and cardiac reserve in the elderly. *J Am Coll Cardiol.* 1998;32(5):1221-1227. https://doi.org/10.1016/s0735-1097(98)00374-x

16. Kelly RP, Ting CT, Yang TM, et al. Effective arterial elastance as index of arterial vascular load in humans. *Circulation*. 1992;86(2):513-521. https://doi.org/10.1161/01.cir.86.2.513

17. Namasivayam M, Lau ES, Zern EK, et al. Exercise blood pressure in heart failure with preserved and reduced ejection fraction. *JACC Heart Fail*. 2022;10(4):278-286. https://doi.org/10.1016/j. jchf.2022.01.012

 Eisman AS, Shah RV, Dhakal BP, et al. Pulmonary capillary wedge pressure patterns during exercise predict exercise capacity and incident heart failure. *Circ Heart Fail*. 2018;11(5): e004750. https://doi.org/10.1161/CIRCH-EARTFAILURE.117.004750

19. Van Iterson EH, Olson TP, Borlaug BA, Johnson BD, Snyder EM. Comparisons of noninvasive methods used to assess exercise stroke volume in heart failure with preserved ejection fraction. *Med Sci Sports Exerc.* 2017;49(9):1758-1768. https://doi. org/10.1249/MSS.000000000001308

20. Whipp BJ, Higgenbotham MB, Cobb FC. Estimating exercise stroke volume from asymptotic oxygen pulse in humans. J Appl Physiol. 1996;81(6):2674-2679. https://doi.org/10.1152/ jappl.1996.81.6.2674

21. Meyer M, LeWinter MM. Heart rate and heart failure with preserved ejection fraction: time to slow β -blocker use? *Circ Heart Fail*. 2019;12(8): e006213. https://doi.org/10.1161/CIRCHEARTFAI-LURE.119.006213

22. Hansen JE, Sue DY, Wasserman K. Predicted values for clinical exercise testing. *Am Rev Respir*

Dis. 1984;129(2 Pt 2):S49-S55. https://doi.org/10. 1164/arrd.1984.129.2P2.S49

12

23. Rivers EP, Ander DS, Powell D. Central venous oxygen saturation monitoring in the critically ill patient. *Curr Opin Crit Care*. 2001;7(3):204-211. https://doi.org/10.1097/00075198-200106000-00011

24. Baba R, Nagashima M, Goto M, et al. Oxygen uptake efficiency slope: a new index of cardiorespiratory functional reserve derived from the relation between oxygen uptake and minute ventilation during incremental exercise. J Am Coll Cardiol. 1996;28(6):1567-1572. https://doi.org/10. 1016/s0735-1097(96)00412-3

25. Armstrong HF, Schulze PC, Kato TS, Bacchetta M, Thirapatarapong W, Bartels MN. Right ventricular stroke work index as a negative predictor of mortality and initial hospital stay after lung transplantation. J Heart Lung Transplant. 2013;32(6):603–608. https://doi.org/10.1016/j. healun.2013.03.004

26. Johnson W, Nohria A, Garrett L, et al. Contribution of endothelin to pulmonary vascular tone under normoxic and hypoxic conditions. *Am J Physiol Heart Circ Physiol*. 2002;283(2):H568-H575. https://doi.org/10.1152/ajpheart.00099.
2001

27. Lam CS, Roger VL, Rodeheffer RJ, et al. Cardiac structure and ventricular-vascular function in persons with heart failure and preserved ejection fraction from Olmsted County, Minnesota [published correction appears in Circulation. 2007 May 22;115(20):e535]. *Circulation*. 2007;115(15):1982-1990. https://doi.org/10.1161/CIRCULATIONAHA. 106.659763

28. Vittinghoff E, McCulloch CE. Relaxing the rule of ten events per variable in logistic and Cox

regression. *Am J Epidemiol*. 2007;165(6):710-718. https://doi.org/10.1093/aje/kwk052

29. Borlaug BA, Olson TP, Lam CS, et al. Global cardiovascular reserve dysfunction in heart failure with preserved ejection fraction. *J Am Coll Cardiol*. 2010;56(11):845-854. https://doi.org/10.1016/j. jacc.2010.03.077

30. Phan TT, Abozguia K, Nallur SG, et al. Heart failure with preserved ejection fraction is characterized by dynamic impairment of active relaxation and contraction of the left ventricle on exercise and associated with myocardial energy deficiency. *J Am Coll Cardiol.* 2009;54(5):402–409. https://doi.org/10.1016/j.jacc.2009.05.012

31. Abudiab MM, Redfield MM, Melenovsky V, et al. Cardiac output response to exercise in relation to metabolic demand in heart failure with preserved ejection fraction. *Eur J Heart Fail.* 2013;15(7):776-785. https://doi.org/10.1093/eurjhf/hft026

32. Maeder MT, Thompson BR, Brunner-La Rocca HP, Kaye DM. Hemodynamic basis of exercise limitation in patients with heart failure and normal ejection fraction. *J Am Coll Cardiol.* 2010;56(11):855-863. https://doi.org/10.1016/j. jacc.2010.04.040

33. Reddy YNV, Andersen MJ, Obokata M, et al. Arterial stiffening with exercise in patients with heart failure and preserved ejection fraction. *J Am Coll Cardiol.* 2017;70(2):136-148. https://doi.org/ 10.1016/j.jacc.2017.05.029

34. Zern EK, Ho JE, Panah LG, et al. Exercise intolerance in heart failure with preserved ejection fraction: arterial stiffness and abnormal left ventricular hemodynamic responses during exercise. *J Card Fail.* 2021;27(6):625-634. https://doi.org/10.1016/j.cardfail.2021.02.011

35. Roberto S, Mulliri G, Milia R, et al. Hemodynamic response to muscle reflex is abnormal in patients with heart failure with preserved ejection fraction. *J Appl Physiol*. 2017;122(2):376-385. https://doi.org/10.1152/japplphysiol.00645. 2016

36. Haykowsky MJ, Brubaker PH, John JM, Stewart KP, Morgan TM, Kitzman DW. Determinants of exercise intolerance in elderly heart failure patients with preserved ejection fraction. *J Am Coll Cardiol.* 2011;58(3):265-274. https://doi. org/10.1016/j.jacc.2011.02.055

37. Laukkanen JA, Kurl S, Salonen JT, Lakka TA, Rauramaa R. Peak oxygen pulse during exercise as a predictor for coronary heart disease and all cause death. *Heart*. 2006;92(9):1219-1224. https://doi. org/10.1136/hrt.2005.077487

38. Reddy YNV, Obokata M, Koepp KE, Egbe AC, Wiley B, Borlaug BA. The β -adrenergic agonist albuterol improves pulmonary vascular reserve in heart failure with preserved ejection fraction. *Circ Res.* 2019;124(2):306-314. https://doi.org/10. 1161/CIRCESAHA.118.313832

39. Borlaug BA, Melenovsky V, Koepp KE. Inhaled sodium nitrite improves rest and exercise hemodynamics in heart failure with preserved ejection fraction. *Circ Res.* 2016;119(7):880-886. https:// doi.org/10.1161/CIRCRESAHA.116.309184

KEY WORDS CPET, HFpEF, peak oxygen pulse, ventricular-vascular response

APPENDIX For supplemental tables and figures, please see the online version of this paper.