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Background: Colorectal cancer (CRC) is the third most frequently diagnosed malignancy
and the fourth leading cause of cancer-related death among common tumors in the world.
We aimed to establish and validate a risk assessment model to predict overall survival (OS)
for the CRC patients.

Methods: DNA methylation-driven genes were identified by integrating DNA methylation
profile and transcriptome data from The Cancer Genome Atlas (TCGA) CRC cohort. Then,
a risk score model was built based on LASSO, univariable Cox and multivariable Cox
regression analysis. After analyzing the clinicopathological factors, a nomogram was
constructed and assessed. Another cohort from GEO was used for external validation.
Afterward, the molecular and immune characteristics in the two risk score groups were
analyzed.

Results: In total, 705 methylation-driven genes were identified. Based on the LASSO and
Cox regression analyses, nine genes, i.e., LINC01555, GSTM1, HSPA1A, VWDE,
MAGEA12, ARHGAP, PTPRD, ABHD12B and TMEM88, were selected for the
development of a risk score model. The Kaplan–Meier curve indicated that patients in
the low-risk group had considerably better OS (P � 2e-08). The verification performed in
subgroups demonstrated the validity of the model. Then, we established an OS-
associated nomogram that included the risk score and significant clinicopathological
factors. The concordance index of the nomogram was 0.81. A comprehensive molecular
and immune characteristics analysis showed that the high-risk group was associated with
tumor invasion, infiltration of immune cells executing pro-tumor suppression (such as
myeloid-derived suppressor cells, regulatory T cells, immature dendritic cells) and higher
expression of common inhibitory checkpoint molecules (ICPs).
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Conclusion:Our nine-gene associated risk assessment model is a promising signature to
distinguish the prognosis for CRC patients. It is expected to serve as a predictive tool with
high sensitivity and specificity for individualized prediction of OS in the patients with CRC.

Keywords: nomogram, risk score, colorectal cancer, DNA methylation, prognosis

INTRODUCTION

Colorectal cancer (CRC) is the third most frequently diagnosed
malignancy and the fourth leading cause of cancer-related death
among of those common tumors in the world (Arnold et al.,
2017). Themorbidity of CRC worldwide is expected to increase to
more than two million new cases by 2035 (Dekker et al., 2019).
Curative surgical resection and chemotherapy are still the main
treatment (Dekker et al., 2019). Although great progress has been
made in the diagnosis and treatment of CRC in recent years, the
prognosis of colorectal cancer remains unsatisfactory. Currently,
the prognosis assessment of colorectal cancer staging based on
tumor-node-metastases (TNM) classification system is
insufficient for prognostic estimation, which limited the
clinical decision-making (Compton, 2007). The exploration of
effective biomarkers for early assessment is an important
preventive measure to improve the prognosis of CRC.

Pursuing predictors of colorectal cancer, a growing number of
studies have identified valuable biomarkers, such as Integrin beta-
4 (ITGB4) (Li et al., 2019), Placenta-specific protein 1 (PLAC1)
(Ren et al., 2020), some miRNAs and lncRNAs(Hibner et al.,
2018; Dastmalchi et al., 2020). However, due to lack of sufficient
sensitivity and specificity, few biomarkers have been successfully
applied in clinical practice.

DNA methylation represents an important epigenetic
modification that regulates gene expression (Dor and Cedar,
2018). In humans, DNA methylation mainly occurs on CpG
dinucleotides. CRC develops through cumulative genetic and
epigenetic changes in the precursor lesions (such as adenomas
and serrated lesions) (Jung et al., 2020). Currently,
hypermethylation in promoter regions of some important
tumor suppressor genes that cause gene expression
inhibition has been identified in colorectal cancer cells (de
Vallière et al., 2015), such as Cyclin-dependent kinase
inhibitor 2A (CDKN2A) (Bihl et al., 2012), DNA mismatch
repair protein Mlh1 (MLH1) (Cunningham et al., 1998), and
Adenomatous polyposis coli protein (APC) (Liang et al., 2017).
The aberrant methylation may be a key event in the
progression of colorectal cancer. Therefore, deregulated
DNA methylation and corresponding gene expression
changes might be used as biomarkers to play a prospective
role in the early diagnosis, prognosis and clinical decision-
making for CRC, which is worthy of further study.

By integrating DNA methylation and mRNA expression
profile data, we aimed to screen out CRC-associated DNA
methylation-driven genes and evaluate the potential of these
genes expression to predict CRC prognosis. We identified a
prognosis-related gene panel made up of nine genes and
developed a risk score model. Then we established a
nomogram by combining the nine-gene signature and some

significant clinicopathologic factors to predict overall survival
(OS) in patients with CRC. The model was validated in one Gene
Expression Omnibus (GEO) cohort. Furthermore, we
characterized the molecular and immune profile of nine-gene
signature. These results showed that the nine-gene risk model was
a promising prognostic biomarker for CRC patients.

MATERIALS AND METHODS

Data Acquisition and Preprocessing
The available RNA-seq transcriptome data, gene mutation
information and clinicopathological information were
directly downloaded from the TCGA database (https://
portal.gdc.cancer.gov/). There were 476 samples with gene
transcriptome data (41 normal and 435 tumor), 347
patients with mutation information, and 400 patients with
available survival data. TCGA-Assembler 2 (Wei et al., 2018)
was used to obtain Level 3 methylation data (37 normal and
279 tumor) from the TCGA Methylation 450 k Bead chip.
Then the function CalculateSingleValueMethylationData of
TCGA-Assembler two was used to calculate the average
methylation level of each gene. The methylation levels of
genes were scored using β values ranging from 0 to 1
(unmethylated to totally methylated). The external
validation cohort was from a GEO dataset of gene
expression arrays [GSE39582 (N � 550)] (https://www.ncbi.
nlm.nih.gov/geo/query/acc.cgi?acc�GSE39582). “Deseq2”
package of R was used to normalize the raw RNA-seq data
and identify differentially expressed genes (DEGs) between
normal and cancer groups (Anders and Huber, 2010).

Identification of DNA Methylation-Driven
Genes
Through the integration of gene expression and DNA
methylation datasets, “MethylMix” package of R software was
employed to recognize DNA methylation-driven genes
(Gevaert, 2015). There are three steps. Firstly, a linear
regression model was built to estimate the association
between gene methylation and gene expression, and genes
with a significant inverse relationship (p value < 0.01) were
selected. Such genes were defined as transcriptionally predictive
genes. Secondly, a beta mixture model was created to determine
the methylation states of each gene. Thirdly, the Wilcoxon rank
tests were computed to compare the methylation levels between
each methylation state and normal tissue samples. Differential
genes were collected. Lastly, genes that were both
transcriptionally predictive and differential were selected as
DNA methylation-driven genes.
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Function Enrichment and Pathway Analysis
Metascape (Zhou et al., 2019) was used to perform GO Biological
Processes enrichment and KEGG pathway analysis of the genes
identified by MethylMix. Only terms with p < 0.01, a minimum
overlap of 3 and an enrichment factor>1.5 were considered
significant.

Feature Selection and Building the
Predictive Signature
Initially, the genes identified by MethylMix were applied to a
univariable Cox regression and a LASSO Cox regression. In
univariable Cox regression analysis, genes with p < 0.05 were
selected. In LASSO regression, genes were screened 1,000 times,
and if specific genes were detected more than 700 times, they were
regarded as candidates. The intersection of univariable Cox
regression and LASSO regression (nine genes) were brought
into a multivariable Cox regression analysis. The linear
combination of the regression coefficient derived from the
multivariable Cox regression model (β) multiplied by its
mRNA level generated a prognostic risk score with nine genes.

Development and Validation of the Risk
Score Model
Using X-tile software (Camp et al., 2004) to determine the optimal
cut-off value, we divided patients into low- and high-risk groups.
Then the Kaplan–Meier curves and time-dependent receiver
operating characteristic curve (tdROC) analysis were performed
to evaluate the predictive accuracy of the nine-gene signature risk
model for OS. The survivalROC function in “survivalROC”
package of R was used to draw tdROC and the span argument
was set as 0.0657. A subgroup analysis was performed by dividing
the patients based on clinicopathological characteristics.

Development and Assessment of the
Nomogram in the TCGA Dataset
The significance of the risk score model and other traditional
clinicopathological characteristics to predict OS was evaluated by
univariable Cox regression analysis. Then, we used multivariable
Cox regression analysis and stepwise regression method to
distinguish significant predictive factors, from which we built a
nomogram predictive model. The concordance index (C-index)
was computed to evaluate the accuracy of the nomogram. The
prognostic risk value of each patient was calculated using the
nomogram and tdROC curve analysis was used to further validate
the predictive performance of the nomogram. The span argument
of survivalROC function was set as 0.0657. The survival
estimation and ROC curve of patients above were analyzed
with the Kaplan–Meier method by “survival”, “survivalROC”
and “plotROC” packages of R.

External Validation of the Nomogram
In the validation phase, we verified the nomogram by using
another CRC dataset, GSE39582 in the GEO. The discrimination
of model was assessed by the AUC of tdROC and concordance

index. The span argument of survivalROC function was set as
0.0616. The calibration of model was visualized in calibration plot
and quantified by the slope of the calibration line.

Weighted Gene Correlation Network
Analysis
All robustly expressed genes (nearly 18,000 genes) were used for
WGCNA analysis. The analysis was performed as described
previously (Langfelder and Horvath, 2008). Briefly, we first
screened the best soft threshold by “WGCNA” package
(Langfelder and Horvath, 2008) of R to ensure a scale-free
network. In the co-expression network, genes with high
absolute correlations were clustered into the same module.
Furthermore, module eigengenes (MEs) were defined as the
first principal component of each gene module and the
expression of MEs was considered as a representative of all
genes in a given module. The correlation between MEs and
clinical trait was calculated to identify the clinical key module.
GO and KEGG enrichment analysis of the key module resulted
from WGCNA were performed by Metascape.
ModuleMembership (MM) was defined as the Pearson’s
correlation between gene expression and ME. Gene significance
(GS) was defined as the Pearson’s correlation between gene
expression and certain clinical trait. The cut-off criteria was set
as |MM|>0.8, |GS|>0.3 to identify hub genes with high connectivity
in the clinical key module. Gene Expression Profiling Interactive
Analysis (GEPIA) database (Tang et al., 2017) (http://gepia.cancer-
pku.cn/) is an interactive website application that includes the
transcriptome data in TCGA and GTEx projects and integrate
them in a widely accepted process. We inputted the hub genes into
the GEPIA and validated these hub genes.

Gene Set Enrichment Analysis
Differential expression analysis was first performed on all genes
to analyze the samples with high and low nine-gene score using
“DESeq2” package of R. Enrichment analysis to determine the
signaling pathways in which the differentially expressed genes are
involved was then carried out by using GSEA method based on
the GO Biological Processes and Hallmark gene sets with the
“clusterProfiler” (Yu et al., 2012) package of R. A false discovery
rate (FDR) less than 0.25 and an absolute value of the normalized
enrichment score (NES) greater than 1 were defined as the cutoff
criteria.

Gene Mutation Analysis
In the gene mutation analysis, information on genetic alterations
was directly obtained from the TCGA database portal, and the
quantity and quality of gene mutations were analyzed by using
the “Maftools” package (Mayakonda et al., 2018) of R.

Analysis of Tumor-Infiltrating Immune Cells
Characteristics
The ssGSEA by “GSVA” package (Hänzelmann et al., 2013) of R
was introduced to quantify the relative infiltration of 28 immune
cell types in the tumor microenvironment. Feature gene sets for
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each immune cell type were obtained from a recent publication
(Charoentong et al., 2017). The gene sets include 782 genes for
predicting the abundance of 28 TIICs in individual tissue
samples. The following 28 types of immune cells include:
activated B cells (Ba), activated CD4+ T cells (CD4+ Ta),
activated CD8+ T cells (CD8+ Ta), activated dendritic cells
(DCa), CD56bright natural killer cells (CD56+ NK),
CD56dim natural killer cells (CD56− NK), central memory
CD4+ T cells (CD4+ Tcm), central memory CD8+ T cells
(CD8+ Tcm), effector memory CD4+ T cells (CD4+ Tem),
effector memory CD8+ T cells (CD8+ Tem), eosinophils,
gamma delta T cells (γδT), immature B cells (Bim),
immature dendritic cells (DCim), mast cells, myeloid-derived
suppressor cells (MDSC), memory B cells (Bm), monocytes,
natural killer cells (NK), natural killer T cells (NK T),
neutrophils, plasmacytoid dendritic cells (DCp),
macrophages, regulatory T cells (Tregs), follicular helper
T cells (Tfh), type-1 T helper cells (Th1), type-17 T helper
cells (Th17), and type-2 T helper cells (Th2). The relative
abundance of each immune cell type was represented by an
enrichment score in ssGSEA analysis. The ssGSEA score was
normalized to unity distribution, for which zero is the minimal
and one is the maximal score for each immune cell type.

Statistical Analysis
The bilateral log-rank test was used in the Kaplan–Meier survival
examination to compare OS between different subgroups.
Wilcoxon rank-sum test was used to evaluate the differences
between two groups. All statistical analyses were conducted with
R software (version 4.0.3). All statistical tests were two-sided, and
p values less than 0.05 were considered statistically significant.

RESULTS

TCGA Data Acquisition and Identification of
DNA Methylation-Driven Genes
The study flowchart describing the process is shown in Figure 1.
To identify DNA methylation-driven genes in CRC, we
performed MethylMix analysis on 273 tumor samples and 37
normal tissue samples. A total of 705 genes were identified and a
mixture model of each gene was constructed (Supplementary
Figure S1). Their methylation levels were visualized by heat map
(Figure 2A). Metascape analysis showed the first 20 clusters of
enriched sets (Figure 2B). For biological process (BP), these genes
showed enrichment in pattern specification process, lipid
catabolic process, multicellular organismal homeostasis, cell

FIGURE 1 | The flow chart of the study design and analysis.
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fate commitment and so on. The KEGG pathway data were
enriched in peroxisome and PPAR signaling pathway.

Establishment of a Prognostic Risk Score
Model
We included 400 patients with RNA-seq data and complete
clinical information from the TCGA database for subsequent
analysis. The patients’ characteristics are summarized in
Table 1. Univariable Cox regression analysis was performed
for 705 genes and 40 genes with p < 0.05 were selected. Besides,

the same 705 genes were brought into LASSO regression
analysis and 10 genes were selected (Figures 3A,B). The
intersection of above two gene sets, including nine genes
(LINC01555,GSTM1,HSPA1A, VWDE,
MAGEA12,ARHGAP4,PTPRD, ABHD12B,TMEM88) were
eventually screened out as prognosis-related genes.
Supplementary Figure S2 showed the correlation between
gene expression and corresponding methylation level of nine
genes. Then, multivariable Cox regression analyses were
performed, and a nine-gene model was constructed according
to their expression levels and coefficients (Figure 3C). The

FIGURE 2 |Candidate DNAmethylation-driven genes screened byMethylMix. (A)Heatmap of the candidate DNAmethylation-driven genes (n � 705) in cancer and
normal tissues. (B) GO/KEGG analysis of DNA Methylation-driven genes.
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formula was as follow: risk score �
(−0.421*LINC01555)+(0.168*GSTM1)+(0.241*HSPA1A)+(0.581*VWDE)
+(0.107*MAGEA12)+(0.153*ARHGAP4)+(−0.168*PTPRD)
+(0.281*ABHD12B)+(0.157*TMEM88). Based on the
formula, we calculated the risk score for each patient and
used X-tile software to identify the optimal cut-off value
(2.51). Those with a risk score over the cut-off value, 172
patients in total, were classified as the high-risk group, while
the remaining 228 patients were classified as the low-risk group
(Figure 3D). Intuitively, more people died in the high-risk
group than in the low-risk group (Figure 3E). The
expression profiles of nine genes in all patients and the
corresponding risk group were presented in the form of heat
map (Figure 3F). The Kaplan–Meier analysis of all patients
demonstrated that the high-risk group had a significantly
shorter OS (P � 2e-08) (Figure 3G). The AUC of this nine-
gene risk assessment model was 0.745 (95% CI 0.634–0.856),
0.708 (95% CI 0.615–0.801) and 0.721 (95% CI 0.621–0.821) at
1-, 3- and 5- years, respectively (Figure 3H).

We further tested the effect of the model in different
subgroups divided by some clinicopathologic factors (age,
TNM stage, lymph node metastatic and distant metastatic).
The K-M survival analysis showed the same prediction trend
in all subgroups, proving that the model has certain reliability
and practicability in evaluating prognosis (Figure 4).

Development and Evaluation of a
Nomogram for OS Prediction
Risk score, age, T stage, lymph node metastatic and distant
metastatic were selected as significant predictive factors after
univariable regression analysis (Table 2). Stepwise regression
analysis showed that after removing the factor lymph node
metastatic, AIC of multivariable Cox regression went down
from 751.65 to 750.64, so it was further ruled out. Therefore,
four independent risk factors (risk score, age, T stage and distant
metastatic) were ultimately retained to build a visualized and
applicable nomogram (Figures 5A,B). The C-index of the model
is 0.81 (95% CI: 0.754–0.868). According to Nomogram, each
variable was assigned a corresponding score, as a result we could
calculate a total score for each patient. The AUC of nomogram
was 0.815 (95% CI 0.712–0.917), 0.794 (95% CI 0.708–0.881) and
0.802 (95% CI 0.720–0.884) at 1-, 3- and 5- year, respectively
(Figure 5C). The results revealed that the predicted survival
possibility by the nomogram was close to the actual survival
situation. Furthermore, our nomogram model performed better
than the model only using significant clinicopathological factors
(Supplementary Table S1).

External Validation of the Nomogram
The nomogram established above was further validated in the
GEO dataset GSE39582 (Figures 6A–E). Totally 550 patients
with complete basic clinical information were included for
analysis (Table 1). The calibration curves for the predicted
possibility of 1-, 3- and 5-years survival displayed obvious
concordance between the predicted results and the actual
observations in the GEO dataset (Figures 6B–D). The
calibration slope was 1.56 (95% CI 1.31–1.82) at 1-year
survival, 1.21 (95% CI 1.05–1.36) at 3-years survival and 1.00
(95% CI 0.74–1.26) at 5-years survival. Similar to the
performance in TCGA cohort, the AUC of tdROC was 0.788
(95% CI 0.684–0.892) at 1-year survival, 0.743 (95% CI
0.679–0.807) at 3-years survival and 0.714 (95% CI
0.647–0.780) at 5-years survival (Figure 6E). The concordance
index of the nomogram was 0.722 (95%CI 0.683–0.761). To sum
up, the results showed that our model performed well in the
validation cohort.

Molecular Characteristic of Different Risk
Groups
We used two approaches to comprehensively explore molecular
characteristic of different risk groups. Firstly, we performed
WGCNA analysis in the TCGA cohort. In current study, the
power of β � 10 (scale-free R2 � 0.74) was selected as a soft
threshold parameter to ensure a scale-free network (Figures
7A,B). The co-expression gene modules were then constructed
and divided into 28 meaningful modules via the average linkage
hierarchical clustering (Figure 7C). Blue module was found to
have the highest association with 9-gene risk model (Cor � 0.28,
P � 1e-08 for risk score; Cor � 0.2, P � 6e-05 for risk group)
(Figure 7D). There were a total of 1,577 genes in the blue module.
We then used Metascape to analyze these genes. Top 20 clusters
of functional enriched sets were presented (Figure 8A). Based on

TABLE 1 | Summary of the patients’ demographics and clinical characteristics.

Variables Groups Patients

Training
set (n = 400)

Validation
set (n = 550)

Age [n (%)]
— Median 68 68
— Range 57.8–77.0 59.0–76.0
— ≤65 years 166 (41.5%) 219 (39.8%)
— >65 years 234 (58.5%) 331 (60.2%)
Gender [n (%)]
— Male 214 (53.5%) 299 (54.4%)
— Female 186 (46.5%) 251 (45.6%)
T stage [n (%)]
— 1 9 (2.3%) 16 (2.9%)
— 2 69 (17.2%) 47 (8.5%)
— 3 275 (68.7%) 372 (67.7%)
— 4 47 (11.8%) 115 (20.9%)
Lymph node metastatic [n (%)]
— Yes 166 (41.5%) 241 (43.8%)
— No 234 (58.5%) 309 (56.2%)
Distant metastatic [n (%)]
— Yes 57 (14.3%) 60 (10.9%)
— No 343 (85.7%) 550 (89.1%)
TNM stage [n (%)]
— Ⅰ 70 (17.5%) 40 (7.2%)
— Ⅱ 156 (39.0%) 257 (46.8%)
— Ⅲ 117 (29.3%) 194 (35.3%)
— Ⅳ 57 (14.2%) 59 (10.7%)
Vital status
— Alive 318 (85.1%) 374 (68%)
— Dead 82 (14.9%) 176 (32%)
Median follow up (months)
— — 23 53
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FIGURE 3 | Identification of prognostic genes and nine-gene risk model construction in the TCGA cohort. (A) LASSO coefficients. (B) Plots of the cross-validation
error rates. The dashes signify the value of theminimal error and greater λ value. (C)Multivariable Cox proportional hazardmodel of nine genes. (D)Risk score distribution
in the two groups. (E) Survival overview in the two groups. (F) Heatmap of nine genes in the two groups. (G) Survival curve of the two groups. (H) Time-dependent ROC
curve for 1-, 3-, and 5-years survival prediction. *p < 0.05, **p < 0.01, ***p < 0.001.
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FIGURE 4 | Kaplan–Meier survival curves. Validation of the nine-gene model based on different clinicopathologic characteristics.
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the cut-off criteria (|MM|>0.8, |GS|>0.3), twelve hub genes
(LZTS1, TIE1, STARD8, VEGFC, KCNE4, ADAMTS1,
AFAP1L1, ITGA5, BCL6B, MMRN2, CAVIN1 and CCBE1)
with high connectivity in the clinical significant module were
identified (Figure 8B). The expression of all twelve genes showed
significant correlation with risk score (Supplementary Figures
S3A–L). The hub genes were then analyzed in the GEPIA
database. For LZTS1, VEGFC, KCNE4, ITGA5, CCBE1 and
CAVIN1, K-M survival analysis revealed that a higher
expression was meaningfully associated with a worse prognosis
(Figures 8C–H).

Besides, GSEA was performed in the two risk groups. A false
discovery rate (FDR) less than 0.25 and an absolute value of the
normalized enrichment score (NES) greater than 1 were defined
as the cut-off criteria. The gene sets of the high-risk group were
enriched in tumor progression and metastasis-related pathways
and inflammatory response-related pathways (Figure 9A), while
the gene sets of the low-risk group were enriched in DNA
integration, epithelial structure maintenance related pathways
(Figure 9B).

Next, we analyzed gene mutations to further understand
different molecular subgroup associated with the nine-gene
risk score (Figures 9C,D). The mutation rates of APC, TP53,
TTN, KRAS, SYNE1,MUC16 and PIK3CA were higher than 20%
in both groups. The mutation of the RYR2, ABCA13 and PCLO
genes was more common in the high-risk group, while the
mutation of FAT4, OBSCN and ZFHX4 genes was more
common in the low-risk group.

Immune Characteristics of Different Risk
Groups
Given that the features of tumor-infiltrating immune cells (TIICs)
are correlated with the development and progression of cancer
and may influence the prognosis, including CRC, we then used
ssGSEA method to analyze the infiltration of various immune
cells in tumor samples. We found that cells executing pro-tumor
suppression (such as MDSCs, regulatory T cells, immature
dendritic cells) were more abundant in the high-risk group
(Figure 10A). Additionally, the correlation between the risk
and common ICPs, i.e., PDCD1 (PD1), CD274 (PDL1),
CTLA4, LAG3, HAVCR2 (TIM3) and TIGIT, was analyzed.
Consistent with the higher infiltration of immunosuppressive
cells in high-risk group, several common ICPs showed a

significantly higher expression in the high-risk group
(Figure 10B). The immune landscape and clinicopathological
characteristics of different risk groups are presented as heat map
in Figure 10C.

DISCUSSION

Pathological staging (tumor-node-metastases classification
system) is a significant factor in clinical decision-making and
prognosis evaluation of CRC. However, clinical outcomes often
differ remarkably among patients at the same stage, suggesting
that the current staging system is not sufficient in reflecting
individual biological heterogeneity and predicting patient
outcomes. A new prognostic assessment model referring to
molecular and genetic profile may guide individualized therapy
and improve long-term outcomes.

DNA methylation is an important mechanism in the
regulation of gene expression. Aberrant methylation is
frequently observed in tumors. These changes may promote
malignant transformation by upregulating the expression of
proto-oncogenes or inhibiting the expression of tumor
suppressor genes. Abnormal methylation of some specific
genes may be a key event in the early development of tumors
and has potential to be a predictive biomarker for prognosis.With
advances in sequencing technology, epigenetic changes of genes
can be easily detected with a high degree of accuracy. Therefore,
we adopted a beta mixture model-based method (MethylMix) to
identify DNA methylation-driven genes. We identified
705 methylation-driven genes in CRC. Functional enrichment
analysis revealed that these genes were involved in a wide range of
biological processes and pathways, including cell signal
transduction, cell differentiation, apoptosis regulation,
metabolism, etc. These results suggest that DNA methylation
is involved in gene dysregulation influencing various
physiological processes and imply a possible mechanism by
which DNA methylation is functionally associated with
progression and prognosis in patients with CRC.

In our study, combining LASSO regression and multivariable
Cox regression analysis, nine genes that were closely related to
survival and prognosis were selected. Most of these genes have
been reported in cancer studies. Glutathione S-transferase Mu 1
(GSTM1), a member of the glutathione S-transferase family,
functions primarily as a detoxification enzyme, also involved

TABLE 2 | Univariable and multivariable Cox regression analyses in TCGA cohort.

Univariable cox regression Multivariable cox regression

95% CI 95% CI

HR Lower Upper p HR Lower Upper p

Risk score 2.718 2.163 3.416 <0.001 2.429 1.931 3.055 <0.001
Age 1.019 1 1.039 0.045 1.031 1.012 1.05 0.001
Gender (male/female) 1.183 0.764 2.832 0.452 — — — —

T stage 3.163 2.036 4.915 <0.001 2.372 1.432 3.929 <0.001
Lymph node metastatic (yes/no) 2.772 1.767 4.346 <0.001 — — — —

Distant metastatic (yes/no) 4.965 3.133 7.868 <0.001 3.193 1.936 5.267 <0.001
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FIGURE 5 | Nomogram for survival prediction. (A)Multivariable Cox proportional hazard model of the risk score and clinicopathologic factors. (B) OS-associated
nomogram. (C) Time-dependent ROC curve for 1-, 3-, and 5-years survival prediction. **p < 0.01, ***p < 0.001.
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in the negative regulation of apoptosis-related signaling pathways
(Kalinina et al., 2014). Aberrant methylation of GSTM1 has been
found in various cancers, such as acute myeloid leukaemia,

urothelial carcinoma and head and neck cancer (Sharma et al.,
2010; Ohgami et al., 2012; Wang et al., 2016). However, the
methylation changes in CRC remain to be further validated. Heat

FIGURE 6 | Validation of the prediction model. (A) Survival curve of the two groups. (B–D)Nomogram calibration plots at 1-, 3-, 5-years in the validation cohort. (E)
Time-dependent ROC curve for 1-, 3-, and 5-years in the validation cohort.

Frontiers in Genetics | www.frontiersin.org January 2022 | Volume 12 | Article 77938311

Feng et al. A Methylation-Driven Genes Model

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


FIGURE 7 | Construction of weighted gene correlation network. (A, B) Screening and validation of the soft threshold. (C) Clustering dendrogram of genes. (D)
Correlation between modules and risk model and identification of the key module.
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FIGURE 8 | Analysis of weighted gene correlation network. (A) Enrichment analysis in the Metascape database and the top 20 enrichment terms were shown. (B)
Identification of the hub genes (|MM|>0.8, |GS|>0.3). (C) Association of OS and LZTS1 expression in GEPIA database. (D) Association of OS and VEGFC expression in
GEPIA database. (E) Association of OS and KCNE4 expression in GEPIA database. (F) Association of OS and ITGA5 expression in GEPIA database. (G) Association of
OS and CCBE1 expression in GEPIA database. (H) Association of OS and CAVIN1 expression in GEPIA database.
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FIGURE 9 |Molecular characteristics of different risk groups. (A) Gene sets enriched in high-risk group. (B) Gene sets enriched in low-risk group. (C) Significantly
mutated genes in the mutated samples of high-risk group. (D) Significantly mutated genes in the mutated samples of low-risk group. Mutated genes (rows, top 10) are
ordered by mutation rate. The right shows mutation percentage, and the top shows the overall number of mutations. The color-coding indicates the mutation type.
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FIGURE 10 | Immune characteristics of different risk groups. (A) The relative abundance of TIICs in different risk groups. (B) The expression of ICPs in different risk
groups. The scattered dots represent the outliers of the two risk groups. The thick lines represent the median value. The bottom and top of the boxes are the 25th and
75th percentiles (interquartile range), respectively. Significant statistical differences between the two groups were assessed using the Wilcoxon test. (C) The relative
abundance of TIICs for 400 patients in the TCGA cohort. ns: not significant, *p < 0.05, **p < 0.01, ***p < 0.001.
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shock 70 kDa protein 1A (HSPA1A), a major member of the
70 kDa stress protein family, is increased in a variety of tumor
types (Calderwood et al., 2006). High level of intracellular
HSPA1A can prevent cancer cells from apoptotic cell death,
promote cancer cells proliferation or migration, and mediate
therapeutic resistance, thus contributing to the formation of
aggressive tumor phenotypes (Shevtsov et al., 2018).
Melanoma-associated antigen 12 (MAGEA12) is also highly
expressed in some tumor cells and has been found to exert
oncogenic role by promoting the ubiquitination and
degradation of the tumor suppressor p21 (Yanagi et al., 2017).
Besides, DNA hypomethylation of MAGEA12 has been identified
as a candidate biomarker for liver cancer diagnosis and prognosis
(Stefanska et al., 2013). Rho GTPase-activating protein 4
(ARHGAP4) belongs to the small GTPase family, which can
hydrolyze the active GTP into inactive GDP and negatively
regulate RhoA protein. Studies showed that it was involved in
regulating the invasion and metastasis of pancreatic cancer cells
(Shen et al., 2019a; Shen et al., 2019b). Receptor-type tyrosine-
protein phosphatase delta (PTPRD) is frequently found to be
inactivated by epigenetic modification in a variety of tumors,
suggesting that it may have tumor suppressive effects (Kohno
et al., 2010; Funato et al., 2011; Giefing et al., 2011). Based on
methylation-specific PCR, frequently hypermethylation of
PTPRD promoter has been validated in CRC, which may
mediate the gene inactivation (Mokarram et al., 2009).
Furthermore, in vitro experiments also showed that exogenous
expression of PTPRD could inhibit the migration and invasion of
colon cancer cells (Funato et al., 2011). Transmembrane protein
88 (TMEM88), a newly discovered protein that is localized on cell
membranes, can inhibit the classical Wnt signaling pathway and
is thought to have a bidirectional effect of inhibiting or promoting
cancer in different contexts (Ge et al., 2018). Indeed, promoter
hypermethylation of TMEM88 is associated with poorer prognosis of
non-small cell lung cancer (Ma et al., 2017), whereas the
hypomethylation is associated with platinum resistance in ovarian
cancer (de Leon et al., 2016). What effect of aberrant TMEM88
methylation has onCRCneeds to be further explored. LINC01555 is a
long non-coding RNA that has rarely been studied. Von Willebrand
factor D and EGF domain-containing protein (VWDE) is a blastema-
enriched gene in a variety of highly regenerative species (Leigh et al.,
2020). A recent study showed that VWDE is a significant driver
oncogene with a highly mutation prevalence in breast cancer (Pongor
et al., 2015). Abhydrolase domain containing 12B (ABHD12B) locates
on chromosome 14. Physiological and pathological functions of
ABHD12B are rarely reported. Given the significant association of
these three genes (LINC01555, VWDE and ABHD12B) with
prognostic in CRC, it is meaningful to further study that how they
regulate the development of CRC.

Furthermore, based on the expression of these nine genes
and coefficients with survival, a prognostic model was
established. Each patient’s risk score was calculated and all
patients were divided into two groups based on the X-tile
software. The K-M survival curve revealed that the model
could distinguish the difference of OS between the two risk
groups. Time-dependent ROC analysis showed that the nine-
gene risk model had a good performance in predicting OS of

CRC. Our risk model was a promising prognostic biomarker
for CRC patients.

To determine the molecular mechanisms which drive the nine
gene risk model, we took many approaches. Firstly, WGCNA was
performed to explore clinical significant modules associated with
the nine-gene signature. The blue module, which contained 1,577
genes, was found to have the highest association with risk model.
GO/KEGG enrichment analysis by Metascape showed that the
functions of “extracellular matrix organization,” “vasculature
development,” “cell junction organization,” “cell-substrate
adhesion,” “collagen fibril organization” were significantly
enriched. Many of these pathways have been reported to be
involved in tumor onset and development. According to the
cut-off criteria |MM| > 0.8, |GS| > 0.3, twelve genes with a high
connectivity were screened out from the clinical significant
module. The analysis using GEPIA also confirmed that high
expression of LZTS1, VEGFC, KCNE4, ITGA5, CCBE1 and
CAVIN1 was significantly associated with poorer prognosis in
CRC. Leucine zipper putative tumor suppressor 1 (LZTS1) was
reported to suppress cancer cell growth and regulate cell cycle
(Ishii et al., 2001). However, given that the higher expression was
associated with shorter OS, the specific role of LZTS1 in CRC
needs further research. Vascular endothelial growth factor C
(VEGFC) is active in blood vessels and lymphatics endothelial
cell proliferation and migration, therefore contributing to tumor
metastases (Tacconi et al., 2015). Recently, VEGFR3 was found to
be expressed in tumor-associated macrophages (TAMs) in CRC.
VEGFC/VEGFR3 pathway could inhibit antitumor immunity by
regulating TAMs (Tacconi et al., 2019). Potassium voltage-gated
channel subfamily E member 4 (KCNE4) has been found to be
increased in multiple solid tumors (Biasiotta et al., 2016). Some
studies also show a direct association between the
transmembrane ion transport and carcinogenesis, although the
exact mechanism is still unclear (Cone, 1969). Integrin alpha-5
(ITGA5) can form heterodimer with different beta subunits.
Down-regulation of ITGA5 in CRC cells could inhibit cell
proliferation and tumorigenesis and promote cell apoptosis
(Yu et al., 2019). Besides, one study shows that ITGA5 is
required for the tumor supportive role of fibroblasts (Lu et al.,
2019). Collagen and calcium-binding EGF domain-containing
protein 1 (CCBE1) is important for lymphatic vascular
development and plays a pro-tumor role in colorectal cancer
by promoting lymphangiogenesis and lymphatic metastasis of
cancer cells (Song et al., 2020). Indeed, in the TCGA cohort
CCBE1 expression was significantly higher in patients with
lymph node metastasis compared to those without lymph
node metastasis (Supplementary Figure S4A). Caveolae-
associated protein 1 (CAVIN1) cooperates with Caveolin to
regulate lipid uptake of cell. Cavin1 can promote the secretion
of extracellular vesicles (EVs) in glioma, and EVs expressing
cavin1 in turn promote the growth of glioma (Wang et al., 2020).

We also used GSEA to analyze the differential gene expression
between the high-risk group and the low-risk group. Consistent
with the results of WGCNA, the biological processes or pathways
enriched in the high-risk group were mostly involved in tumor
invasion and progression. For example, activation of the
transcription factor STAT3 has been widely reported in
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various tumors, including CRC (Bollrath et al., 2009).
Phosphorylation and nuclear translocation of STAT3 drive
transcription of genes involved in cell-cycle regulation, cell
survival, cell migration, ultimately promoting invasion and
metastasis of tumors (Yu et al., 2014).

Numerous studies have revealed that the features of tumor-
infiltrating immune cells (TIICs) are closely correlated with the
development and progression of cancer (Grivennikov et al., 2010;
Steidl et al., 2010; Li et al., 2011). Understanding the landscape of the
TIICs could help in finding new strategies to treat CRC. In our
report, there were obvious differences in tumor immune cell
composition between high-risk and low-risk groups. Notably,
some immunosuppressive cells (MDSCs, regulatory T cells,
immature dendritic cells), which might favor tumor growth (Jia
et al., 2018), were more enriched in the high-risk group. Besides, the
proportion of TAMs was significantly higher in the high-risk group
than in the low-risk group. TAM infiltration is an independent
prognostic risk factor for several kinds of cancer, including CRC
(Steidl et al., 2010; Herrera et al., 2013;Waniczek et al., 2017; Ye et al.,
2019). Accordingly, the expression of several common ICPs was
higher in the high-risk group, further revealing that the high-risk
group was characteristics of immunosuppression.

The efficacy of every single biomarker is inadequate. To
further enhance the potential clinical application of this risk
model, we established a nomogram. Nomogram combined
multiple risk factors (nine-gene signature, age, T stage and
distant metastatic) and constructed a simple statistical
prediction model. Time-dependent ROC and calibration curve
both showed that the predicted survival rate was close to the
actual situation. Our nomogram might serve as an excellent
predictive model in the prognosis assessment of CRC patients.

To the best of our knowledge, this nine-gene risk model has
not been previously reported, and the information of DNA
methylation driven genes provides a foundation for further
exploration of the pathogenesis and therapeutic strategy of
CRC. However, there are some limitations in current study.
The risk model requires further confirmation by increasing the
sample size and performing prospective, multicenter studies.

CONCLUSION

In summary, our study established a nomogram that combined
the DNA methylation-driven genes and some significant
clinicopathological features. This model has been validated in
different study cohorts and is expected to serve as a predictive tool
with high sensitivity and specificity to assess clinical prognosis
and to guide individualized anti-tumor therapy for patients
with CRC.
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