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ABSTRACT

Antisense oligonucleotide (ASO) drugs that trigger
RNase H1 cleavage of target RNAs have been de-
veloped to treat various diseases. Basic pharmaco-
logical principles suggest that the development of
tolerance is a common response to pharmacological
interventions. In this manuscript, for the first time we
report a molecular mechanism of tolerance that oc-
curs with some ASOs. Two observations stimulated
our interest: some RNA targets are difficult to reduce
with RNase H1 activating ASOs and some ASOs dis-
play a shorter duration of activity than the prolonged
target reduction typically observed. We found that
certain ASOs targeting the coding region of some
mRNAs that initially reduce target mRNAs can sur-
prisingly increase the levels of the corresponding
pre-mRNAs. The increase in pre-mRNA is delayed
and due to enhanced transcription and likely also
slower processing. This process requires that the
ASOs bind in the coding region and reduce the target
mRNA by RNase H1 while the mRNA resides in the
ribosomes. The pre-mRNA increase is dependent on
UPF3A and independent of the NMD pathway or the
XRN1-CNOT pathway. The response is consistent in
multiple cell lines and independent of the methods
used to introduce ASOs into cells.

INTRODUCTION

Antisense oligonucleotides (ASOs) that contain central
oligodeoxynucleotide portion flanked by 2′ modified nu-
cleotides at both ends, known as gapmer ASOs, can hy-
bridize with complementary RNAs and trigger RNase
H1 cleavage, leading to specific RNA degradation (1).
Chemically modified ASOs that contain phosphoroth-
ioate (PS) backbones and different 2′ modifications,
e.g. 2′methoxyethyl (MOE), can be delivered to different tis-
sues and cells to elicit antisense activity in vivo and in vitro
(2,3). Though most ASOs are potent in reducing targeting

RNAs and have long duration of activity, as a common re-
sponse to pharmacological interventions (4), certain ASOs
can display tolerance effects. For example, some mRNA tar-
gets are difficult to reduce with gapmer ASOs and some
ASOs display a shorter duration of activity than the pro-
longed target reduction that is typically observed for most
ASOs. However, very little is known regarding the potential
mechanism(s) responsible for ASO tolerance.

It has been shown that ASOs are active in both the nu-
cleus and the cytoplasm, where RNase H1 is present (5). For
example, nuclear localized pre-mRNAs and non-coding
RNAs can be efficiently reduced by ASOs (6–9). On the
other hand, mature mRNAs can also be rapidly degraded
in the cytoplasm upon transfection of exon-targeting ASOs
(5). Some exon-targeting ASOs can reduce both mature
mRNA and pre-mRNA, which are enriched in the cy-
toplasm and nucleus, respectively. However, certain exon-
targeting ASOs can rapidly reduce the levels of mature mR-
NAs but not their pre-mRNAs (5), suggesting different ac-
cessibility of ASOs to the same sequence present in both
mRNA and pre-mRNA. This view is also supported by
the observations that ASOs targeting intron-encoded snoR-
NAs can efficiently reduce the levels of mature snoRNAs,
without affecting the levels of the host pre-mRNAs (6).
However, the splicing intermediate containing the snoRNA
can be degraded by ASOs (5).

In addition, after ASO-RNA hybridization, other pro-
teins can be recruited to the ASO/RNA heteroduplex, af-
fecting RNase H1 cleavage, and can modulate the RNA
fate by triggering different post-hybridization mechanisms
(3). For example, Ku70, P54nrb and HspA8 proteins can
bind ASO/RNA heteroduplex and inhibit RNase H1 re-
cruitment and RNA cleavage (10,11). These observations
suggest that mature RNA and precursors may adopt differ-
ent structures or are associated with different proteins, lead-
ing to altered accessibility to the ASOs, most likely depen-
dent on ASO target site present in an RNA, and/or the lo-
calization of the RNA in cells. In addition, we recently also
found that an ASO targeting 5S rRNA reduced the level of
mature 5S rRNA, yet triggered accumulation of an incom-
pletely processed pre-5S rRNA species in the nucleus, in a
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ASO/RNA hybridization dependent manner (12), further
highlighting the complexity of potential antisense mecha-
nisms triggered by ASO hybridization to target RNAs.

In mammalian cells, most protein coding genes are tran-
scribed as pre-mRNAs in the nucleus, where pre-mRNAs
are processed by intron removal (splicing), nucleotide mod-
ification, 5′ capping and 3′ end processing to generate ma-
ture mRNAs (13–15). Mature mRNAs are then exported to
and accumulate in the cytoplasm, and are translated by the
ribosomes (16). The steady state levels of mRNAs are deter-
mined by the rate of mRNA synthesis and mRNA degrada-
tion. mRNAs normally undergo decay process that involves
decapping, de-adenylation and exonucleases such as XRN1
and exosomes (17). However, certain mRNAs containing
premature termination codon (PTC) can undergo nonsense
mediated decay (NMD), which requires NMD factors such
as UPF1, UPF2, and UPF3 (18–20). Two forms of UPF3,
UPF3A and UPF3B, are differentially expressed during
development and may play opposite roles in NMD, with
UPF3A as a repressor and UPF3B as an enhancer (21).

It has been shown that mRNA levels are well buffered and
cytoplasmic mRNA decay or degradation is linked to tran-
scription (22–24), which can be mediated by decay factors
XRN1, and CCR4–CNOT complex proteins (17). These
proteins shuttle between cytoplasm and nucleus in a mRNA
degradation dependent manner and enhance transcription
by binding to the promoter region (25). In addition, un-
der certain genetic mutations the expression of homologue
genes can be upregulated through genetic compensatory re-
sponse (GCR) (26), which is triggered by degradation of
PTC containing mutant mRNAs likely through NMD (27),
but in a UPF1 and UPF3B independent manner (28). How-
ever, this process requires NMD factor UPF3A, and the
COMPASS complex proteins including WDR5, the latter
complex is required for histone methylation (H3K4me3) at
the transcription start site of the compensatory genes to en-
hance transcription (27,28).

Previously we have found that an ASO targeting the exon
region of SOD1 mRNA reduced the level of mRNA, yet
surprisingly increased the level of its pre-mRNA (5). This
observation raises a possibility that certain ASOs may grad-
ually reduce antisense activity due to tolerance mediated by
increased pre-mRNA levels. However, it is unclear whether
this observation is unique to that ASO and what underly-
ing mechanism(s) may be involved in gapmer ASO-induced
pre-mRNA increase. In the current study, we analyzed the
effects of multiple exonic ASOs targeting different mRNAs
on the levels of pre-mRNAs and found that some gapmer
ASOs can increase the levels of pre-mRNAs in both human
and mouse cells. Further, we showed that pre-mRNA in-
crease occurs shortly after mRNA reduction, and mRNA
reduction itself is required but not sufficient to trigger pre-
mRNA increase. In addition, we found that pre-mRNA
increase is due to enhanced transcription and likely also
slower processing, depends on RNase H1 and translation,
and requires UPF3A but not WDR5. However, reduction
of other NMD factors UPF1, UPF2, and UPF3B did not
affect pre-mRNA increase upon ASO treatment. More-
over, the process of pre-mRNA increase is not mediated by
the XRN1-CNOT feedback pathway. Importantly, an ASO
that caused pre-mRNA increase showed reduced activity af-

ter repeated dosing in animals, consistent with phenotypes
of drug tolerance. Together, these results suggest that some
gapmer ASOs can reduce mRNA levels in the cytoplasm yet
triggering a feedback mechanism to enhance transcription
of the corresponding gene, leading to increased levels of the
pre-mRNA, which can blunt total ASO activity.

MATERIALS AND METHODS

Materials used in this study are included in Supplementary
Information

ASOs are presented in Supplementary Table S1. Primer
probe sets for qRT-PCR are listed in Supplementary Table
S2. siRNAs are shown in Supplementary Table S3. and an-
tibodies are listed in Supplementary Table S4.

Cell culture and transfection of siRNAs and ASOs

HeLa, HEK293, A431 or MHT cells were grown at 37◦C
in Dulbecco’s modified Eagle’s medium (DMEM) supple-
mented with 10% fetal bovine serum (FBS), 0.1 �g/ml
streptomycin, and 100 units/ml penicillin. Cells were seeded
at 70% confluency one day before transfection. siRNAs
were transfected at 3–5 nM final concentration into HeLa
cells using Lipofectamine RNAiMAX (Life Technologies),
according to the manufacturer’s protocol. At 36 h after
siRNA transfection, cells were reseeded into 96-well plates,
with ∼8000 cells per well, and continue to grow for an ad-
ditional 16–18 h. ASO transfection was performed using
Lipofectamine 2000 (Life Technologies), based on the man-
ufacturer’s instruction, for different times as indicated in
figure legends. For free uptake, ASOs were added to the
medium without transfection reagent, and incubated with
cells for 18–24 h.

Cell treatment with small molecules

For translation inhibition, cells were transfected with ASOs
for 3 h, followed by addition of 100 �g/ml of cycloheximide
(CHX) or 40 �g/ml puromycin for an additional 2 h before
RNA preparation. For transcription inhibition, cells were
transfected with ASOs for 4 h, followed by addition of 5,6-
dichlorobenzimidazole 1-�-D-ribofuranoside (DRB) at 200
�M final concentration for indicated times.

RNA preparation and qRT-PCR

Total RNA was prepared using a RNeasy mini kit (Qia-
gen) from cells grown in 96-well plates using the manufac-
turer’s protocol, with DNase treatment included in the pro-
cedure. qRT-PCR was performed in triplicate using Taq-
Man primer probe sets as described previously (29). Briefly,
∼50 ng total RNA in 5 �l water was mixed with 0.5 �l
primer probe sets containing forward and reverse primers
(10 �M of each) and fluorescently labeled probe (3 �M), 0.5
�l RT enzyme mix, 4 �l RNase-free water, and 10 �l of 2×
PCR reaction buffer (AgPath-ID, ThermoFisher Scientific)
in a 20 �l reaction. Reverse transcription was performed at
48◦C for 10 min and stopped by heating at 94◦C for 10 min.
qPCR was performed for 40 cycles at 94◦C for 20 s, and
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60◦C for 20 s within each cycle using the StepOne Plus RT-
PCR system (Applied Biosystems). Negative control qRT-
PCR was performed using similar reactions but lacking the
step of reverse transcription that showed no amplification.
The mRNA levels were normalized to the amount of to-
tal RNA as determined using the Ribogreen assay (Life
Technologies) for duplicate RNA samples. Statistical analy-
ses were performed from three independent experiments us-
ing Prism with either t-test or F-test for curve comparison
based on non-linear regression (dose-response curves) for
XY analyses, using equation ‘log(agonist) versus normal-
ized response – variable slope’. The Y axis (relative level)
was used as the normalized response.

Nascent RNA labeling and quantification

HeLa cells grown in 10 cm dishes were transfected with 30
nM ASOs for 5 h, followed by treatment with 200 �M 5-
ethynyl uridine (EU) for 20 min, or for 15, 30, and 45 min
in the kinetic study. Cells were harvested and total RNA
was prepared using Tri-Reagent. Approximately 20 �g to-
tal RNA was used for biotin labeling, and nascent RNAs
were biotinylated using the Click-iT Nascent RNA capture
kit (ThermoFisher Scientific), based on the manufacturer’s
protocol. Nascent RNAs were then isolated through affinity
selection using streptavidin beads. Co-isolated RNAs and
10% of input total RNAs were extracted again using Tri-
Reagent. The levels of mature RNA and pre-mRNA in in-
put total RNA and in isolated nascent RNA samples were
quantified using qRT-PCR. The levels of mRNA and pre-
mRNA of NCL were normalized to the levels of mRNA
and pre-mRNA of SOD1, respectively, in each sample. The
relative recovery rates of nascent pre-mRNA and mature
mRNA in affinity selection were calculated based on the
levels of total pre-mRNA or total mRNA in input RNA
from mock treated control sample before EU labeling.

Chromatin immunoprecipitation

Chromatin Immunoprecipitation (ChIP) was performed us-
ing the SimpleChIP® Plus Chromatin Immunoprecipi-
tation Kit (Cell Signaling, #9003), based on the manu-
facturer’s protocol, with either IgG control or antibody
against H3K4me3 (ab8580, Abcam). Briefly, ∼8 × 106 Hela
cells were used for each immunoprecipitation (IP). Cells
were transfected with 40 nM ASOs for 4 h in Opti-MEM
reduced-serum medium (ThermoFisher). Next, cells were
cross-linked for 20 minutes with 1% formaldehyde, followed
by quenching using 1× glycine solution for 5 min at room
temperature. Cells were washed with ice cold PBS, and pel-
leted. Pelleted cells were resuspended in Buffer B + DTT
solution and treated with micrococcal nuclease for 20 min,
and quenched with EDTA. Digested pellets were resus-
pended in 200 �l of ChIP buffer and sonicated on ice using
130-W Ultrasonic Processors. Equal amount (5 �g DNA)
of sonicated chromatin was used in each ChIP reaction and
was diluted in 500 �l 1× ChIP buffer. Two �g of antibody
or control IgG per IP were added to the chromatin samples
and rotated at 4◦C overnight. IP was performed by adding
30 �l of ChIP-Grade Protein G agarose beads and rotat-
ing for 2 h at 4◦C. Agarose pellets were washed based on

the manufacturer’s protocol to prepare for elution of chro-
matin and reversal of cross-linking. Chromatin was released
by incubating in 1× ChIP buffer in a thermomixer at 65◦C
for 30 min. After release, supernatant was collected and fur-
ther treated with Proteinase K for 2 h at 65◦C. Input and
co-immunoprecipitated DNA was prepared and subjected
to qRT-PCR analysis without reverse transcription, using
primer probe sets specific to the promoter or transcription
start site (TSS) regions of NCL or Drosha gene. The re-
covery rates of immunoprecipitated DNA were calculated
based on the levels in the input DNA samples.

Western analysis

Cells were collected using trypsin, and cell pellets were lysed
by incubation for 30 min at 4◦C in RIPA buffer (50 mM
Tris–HCl, pH 7.4, 150 mM NaCl, 0.5 mM EDTA, 1% Tri-
ton X-100 and 0.5% sodium deoxycholate). Proteins were
cleared by centrifugation. Approximately 20–40 �g pro-
tein were separated on 6–12% NuPAGE Bis–Tris gradient
SDS-PAGE gels (Life Technologies) and transferred onto
PVDF membranes using the iBLOT transfer system (Life
Technologies). The membranes were blocked with 5% non-
fat dry milk in 1× PBS at room temperature for 30 min.
Membranes were then incubated with primary antibodies
(1:1000–1:2000) in 5% milk at room temperature for 2 h
or at 4◦C overnight. After three washes with 1 × PBS, 5
min each, the membranes were incubated with appropri-
ate HRP-conjugated secondary antibodies (1:2000) at room
temperature for 1 h. After three washes with 1× PBS, im-
ages were developed using Immobilon Forte Western HRP
Substrate (Millipore) and visualized using ChemiDoc sys-
tem (Bio-Rad). Antibodies for RNase H1 and RNase H2A
were raised in Rabbit, as described previously (30,31).

Animal studies

Experiments in animals were performed according to
American Association for the Accreditation of Laboratory
Animal Care guidelines and were approved by the insti-
tution’s Animal Welfare Committee (Cold Spring Harbor
Laboratory′s Institutional Animal Care and Use Commit-
tee guidelines). In vivo activity of ASO 110095 and ASO
1441119 were determined in pilot experiments by subcuta-
neous injection of ASOs to 7-week-old male BALB/c mice
at 0, 3, 11, 33 and 100 mg/kg (N = 2 for each dose), and mice
were sacrificed 48 h after injection. Total RNA from liver
samples was prepared and the levels of NCL mRNA was de-
termined by qRT-PCR. For longer term study, 7-week-old
male BALB/c mice (N = 3 for each group) were given ASOs
at approximate ED50 level (100 mg/kg for ASO110095 or
33 mg/kg for ASO1441119) by subcutaneous injection, ei-
ther one time, or twice a week for 1 or 2 weeks. Mice were
sacrificed at 96 h (1 dose), 1 week (2 doses) or 2 weeks (4
doses) after dosing, and blood or liver samples were col-
lected. Plasma ALT and AST levels were analyzed. Total
RNA and protein were prepared from liver and subjected
to qRT-PCR and western analyses, respectively. The levels
of NCL mRNA and pre-mRNA and PTEN mRNA were
normalized to the levels of GAPDH mRNA determined in
the same samples. All animals were included in the study.
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RESULTS

Some ASOs targeting coding regions of NCL mRNA can in-
crease the levels of NCL pre-mRNA

Previously we have found that a gapmer ASO targeting the
coding region of SOD1 mRNA caused increased levels of
SOD1 pre-mRNA (5). To determine whether other ASOs
targeting a different mRNA can also increase pre-mRNA
levels, 80 PS-MOE gapmer ASOs targeting exonic regions
of human NCL mRNA were synthesized. HeLa cells were
transfected for 4 h with these ASOs that target different re-
gions of NCL mRNA, including 5′, 3′ UTR and coding re-
gion sequence (CDS). qRT-PCR results showed that, as ex-
pected, many ASOs can significantly reduce NCL mRNA
levels (Figure 1A), consistent with our previous observa-
tions (32). However, increased levels of pre-mRNAs were
observed for some ASOs, as determined using a primer
probe set spanning the intron 12–exon 13 region (I12E13).
We note that these (and subsequent) experiments were re-
peated at least three times and only representative results
are shown.

Increased NCL pre-mRNA levels were also confirmed in
more detailed dose-response studies performed with differ-
ent ASOs targeting the CDS. As expected, greater reduc-
tion of NCL mature mRNA was achieved with higher con-
centration of ASOs (Figure 1B, C; Supplementary Figure
S1A, B), accompanied by greater increase in the levels of
NCL pre-mRNA. However, as a control, the pre-mRNA
level of an untargeted gene, Ago2, was not substantially al-
tered by treatment with the NCL ASO (110080) (Figure
1D). Similarly, the levels of mRNA and pre-mRNA of an-
other untargeted gene, SOD1, was not substantially affected
by transfection of the NCL ASO 110093, although this
ASO reduced the level of NCL mRNA and increased the
level of NCL pre-mRNA (Supplementary Figure S1A, C).
In addition, transfection of an ASO targeting Ago2 mRNA
(Figure 1E), or three ASOs targeting Drosha mRNA (Sup-
plementary Figure S2), did not alter the levels of mRNA or
pre-mRNA of NCL, suggesting that increase in the level of
NCL pre-mRNA is specific to the NCL mRNA-targeting
ASOs, and not unexpected side effects caused by transfec-
tion of ASOs. Increased pre-mRNA levels were confirmed
using different qRT-PCR primer probe sets that span differ-
ent intron–exon regions of NCL pre-mRNA (Supplemen-
tary Figure S3). One primer probe set (I12E13) was used
throughout this study.

Though the NCL pre-mRNA increase is specific to the
NCL targeting ASOs, not all ASOs that reduced NCL
mRNA levels increased the pre-mRNA level. For example,
the 3′ UTR-targeting ASOs, which reduced the mRNA lev-
els, did not substantially increase pre-mRNA levels (Figure
1A). These observations suggest that NCL mRNA reduc-
tion is not sufficient to trigger pre-mRNA increase. Indeed,
reduction of NCL mRNA by treatment with an siRNA tar-
geting the ASO110074 binding site in CDS did not increase
NCL pre-mRNA level, and both an ASO and an siRNA
targeting the same site in 3′ UTR did not increase the level
of NCL pre-mRNA (supplementary Figure S4). However,
reduction of NCL mRNA appears to be required for the
pre-mRNA increase, as can be seen from the dose response

studies (Figure 1B, C and Supplementary Figure S1A, B).
In addition, kinetic studies showed that reduction of NCL
mRNA preceded the increase in its pre-mRNA. Note that
significant reduction of mRNA was observed at the first
time point (45 min) and maximum reduction was achieved
by 135 min after transfection and increases in pre-mRNA
began shortly after robust mRNA reduction was achieved
(Figure 1F, G), further suggesting that reduction of the ma-
ture mRNA is a prerequisite for pre-mRNA increase. How-
ever, at these early times after ASO treatment, the NCL pro-
tein level was not substantially affected (Figure 1H), most
likely due to the protein stability, indicating that increase in
NCL pre-mRNA level was not due to reduced NCL protein
level.

To determine whether the observed pre-mRNA increase
is specific to HeLa cells, two ASOs were transfected into
HEK293 cells. Similarly, increased NCL pre-mRNA levels
were observed (Supplementary Figure S5A). In addition,
NCL pre-mRNA increase was also detected in A431 cells
when the two ASOs were delivered into cells by free up-
take, i.e. incubation of the ASOs with cells in the absence of
transfection reagents (Supplementary Figure S5B). More-
over, several ASOs that are complementary to the CDS of
both human and mouse NCL mRNAs were transfected into
mouse MHT cells. These ASOs also dose-dependently re-
duced the levels of the NCL mRNA and increased the lev-
els of its pre-mRNA in MHT cells (Supplementary Figure
S5C, D), suggesting that the observed pre-mRNA increase
is not specific to a single cell type or a single species. In addi-
tion, those ASOs that caused greater mRNA reduction also
showed higher pre-mRNA increase in MHT cells, further
suggesting that mRNA reduction is related to the increase
of pre-mRNA level.

ASO-induced increases of pre-mRNA are translation depen-
dent

As described above, several ASOs targeting the 3′ UTR of
NCL mRNA did not increase NCL pre-mRNA levels. This
was further confirmed in a more detailed dose response
study. Transfection of three ASOs targeting the 3′ UTR did
not increase NCL pre-mRNA level in HeLa cells, although
NCL mRNA was reduced (Figure 2A and Supplementary
Figure S4). Consistently, an ASO (1441119) targeting the 3′
UTR of mouse NCL mRNA also did not increase the pre-
mRNA level in MHT cells (Supplementary Figure S6A, B).
Similar effects of the 3′ UTR targeting ASOs on the lev-
els of NCL mRNA and pre-mRNA were observed when
ASOs were delivered by free uptake in MHT cells (Supple-
mentary Figure S6C, D), which exhibit potent ASO activity
upon free uptake (33). In addition, a CDS targeting ASO
increased pre-mRNA levels in MHT cells upon free uptake,
similar to what was observed when the ASO was transfected
(Supplementary Figure S5D).

As the coding region, and not the 3′ UTR, of an mRNA
is normally translated, the above observations suggest that
ASO-induced pre-mRNA increase may be translation de-
pendent. To evaluate this possibility, HeLa cells transfected
with a CDS targeting ASO were subsequently treated for
2 h with cycloheximide (CHX), that inhibits translation by
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Figure 2. Pre-mRNA increase induced by gapmer ASOs is translation dependent. (A) qRT-PCR quantification of NCL mRNA and pre-mRNA levels in
HeLa cells transfected for 4 h with three different ASOs targeting 3′ UTR of NCL mRNA. (B, C) qRT-PCR quantification of NCL pre-mRNA (panel B)
and mRNA (Panel C) levels in HeLa cells transfected with 25 nM ASO110074 for 3 h, followed by treatment with either ethanol (EtOH) or 100 �g/ml
CHX for an additional 2 h. (D, E) qRT-PCR quantification of NCL pre-mRNA (Panel D) or mRNA (panel E) levels in HeLa cells transfected with 25 nM
ASO110074 or ASO110080 for 3 h, followed by treatment with either ethanol (EtOH) or 40 �g/ml puromycin (PUR) for 2 h. (F) qRT-PCR quantification
of NCL mRNA and pre-mRNA levels in HeLa cells transfected for 3 h with 25 nM ASO110093, followed by treatment with ethanol or 40 �g/ml puromycin
for 2 h. (G) qRT-PCR quantification of NCL mRNA and pre-mRNA levels in HeLa cells transfected for 3 h with 25 nM ASO110108, followed by treatment
with either ethanol or 40 �g/ml puromycin for 2 h. The error bars in each panel are standard deviations from three independent experiments. P values
were calculated based on F-test using Prism.

causing ribosome arrest on mRNAs. CHX treatment signif-
icantly attenuated pre-mRNA increase by the ASO (Figure
2B). In addition, CHX treatment also modestly increased
the ASO induced reduction of the levels of NCL mRNA
(Figure 2C), consistent with our previous observations that
translation can affect the activity of ASOs targeting the
CDS of efficiently translated mRNAs (32). To exclude the
possibility of unexpected effects of CHX treatment, cells
transfected with two CDS targeting ASOs were treated with
puromycin, another translation inhibitor that causes disas-

sembly of ribosomal subunits (34). Consistent with CHX,
puromycin treatment also attenuated pre-mRNA increase
by these two ASOs (Figure 2D), and increased the ASO ac-
tivities in reducing NCL mRNA levels (Figure 2E). Sim-
ilar effects of translation inhibition on the ASO-induced
pre-mRNA increase were also observed with two additional
ASOs tested (Figure 2F, G). Consistent with previous re-
port that the half-life of RNase H1 protein is longer than 12
h (35), translation inhibition by CHX or puromycin for 2 h
did not substantially reduce the level of RNase H1 protein
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(Supplementary Figure S7A), nor the activity of an ASO
targeting Malat1, a nuclear RNA (Supplementary Figure
S7B), in agreement with our previous observations (32),
indicating that the attenuated pre-mRNA increase upon
translation inhibition was not due to reduced level or activ-
ity of RNase H1 protein. Together, these results suggest that
ASO-induced pre-mRNA increase is translation dependent
that may be related to ribosomes translating the CDS of
mRNAs.

ASO-induced pre-mRNA increases are RNase H1 dependent

As reduction of NCL mRNA using an siRNA targeting
the same ASO binding site did not increase pre-mRNA
levels (Supplementary Figure S4), it is possible that ASO-
mediated RNase H1 cleavage of the target mRNA, and
not the degradation of the mRNA itself, is involved in in-
creasing pre-mRNA levels. To demonstrate this possibility,
RNase H1 was reduced by siRNA treatment (Figure 3A).
Reduction of RNase H1 protein did not substantially affect
the levels of mRNA and pre-mRNA of NCL (Figure 3B).
As expected, reduction of RNase H1 significantly decreased
the activity of ASO110074 in degrading NCL mRNA (Fig-
ure 3C). Interestingly, reduction of RNase H1 inhibited the
increase of NCL pre-mRNA levels (Figure 3D), suggesting
the RNase H1-dependency of ASO-induced pre-mRNA in-
crease. Indeed, reduction of RNase H1 attenuated the in-
crease of NCL pre-mRNA levels by multiple ASOs tested
(Figure 3E). Detailed dose response studies with different
ASOs all showed diminished pre-mRNA increase and re-
duced activity in degrading NCL mRNA upon RNase H1
depletion (Figure 3F–H). In addition, reduction of RNase
H1 with a different siRNA also inhibited the pre-mRNA
increase (Supplementary Figure S8), whereas reduction of
RNase H2, which is not involved in gapmer ASO-mediated
RNA cleavage (1,5), did not alter the effects of the ASO on
mRNA and pre-mRNA levels. Together, these results indi-
cate that ASO-induced pre-mRNA increase is RNase H1
dependent.

In RNase H1 reduced cells, the transfected ASOs should
still retain the ability to hybridize with mRNA targets, thus
implying that ASO-mRNA hybridization is not sufficient
to trigger pre-mRNA increase. To confirm this possibil-
ity, and to further confirm RNase H1 dependency, ASOs
were designed that have the same sequence as gapmer ASO
110074, but with different chemical modifications to inac-
tivate RNase H1 cleavage (Figure 4A). These ASOs either
contain several 2′-MOE modified nucleotides in the gap re-
gion or are uniformly modified with 2′-O-methyl (OMe).
These 2′-modifications in theory can increase the binding
affinity to target RNA, with approximately 0.5◦C per MOE
or OMe modification (36). As expected, these ASOs did
not reduce the levels of NCL mRNA when transfected into
HeLa cells, and no substantial pre-mRNA increase was
observed (Figure 4B). These results indicate that RNase
H1-mediated cleavage is required, and that ASO-RNA hy-
bridization is not sufficient to trigger pre-mRNA increase.
Consistently, PS or phosphodiester (PO) backbone ASOs
that have the same sequence as ASO110074 but are uni-
formly modified with 2′MOE to inactivate RNase H1 cleav-
age (29), did not affect the levels of mRNA or pre-mRNA of

NCL (Figure 4C). On the other hand, a 5–10–5 MOE gap-
mer ASO (ASO 985705) that converts the PS backbone of
ASO110074 to PO backbone still supports RNase H1 cleav-
age, as expected, leading to reduction of NCL mRNA (Fig-
ure 4D). This PO-MOE gapmer ASO also increased NCL
pre-mRNA level, similar to the PS-MOE gapmer ASO
counterpart, suggesting that pre-mRNA increase induced
by the gapmer PS ASOs was not due to unexpected effects
of binding to cellular proteins, as PO backbone ASOs have
much weaker protein binding affinity compared with PS
ASOs (37–40). Together, these results confirmed that NCL
pre-mRNA increase is dependent on ASO-induced RNase
H1 cleavage of NCL mRNA.

Pre-mRNA increases induced by gapmer ASOs are not me-
diated by the XRN1-CNOT pathway

Next, we sought to determine what potential mechanism(s)
is involved in ASO-induced increase in pre-mRNA levels.
As pre-mRNA increase triggered by ASOs is dependent on
translation, a cytoplasmic event, and ASO-induced mRNA
degradation by RNase H1 cleavage at this early time mainly
occurs in the cytoplasm (5,32), a feed-back mechanism(s) of
gene expression regulation should be involved to increase
the levels of pre-mRNAs. It has been reported that cyto-
plasmic factors required for mRNA degradation, such as
XRN1 and CCR4–CNOT complex (17), can shuttle be-
tween the cytoplasm and the nucleus, and enhance tran-
scription upon mRNA degradation by binding to the pro-
moter regions (25), thus coupling mRNA degradation and
transcription (24). In addition, XRN1 has also been shown
to be involved in degradation of RNA fragments generated
by ASO-induced RNase H1 cleavage (8), we thus evaluated
whether XRN1 and the CCR4–CNOT pathway is involved
in ASO-induced pre-mRNA increase.

XRN1 and another protein, huR, which affects mRNA
stability (41), were reduced by siRNA treatment in HeLa
cells (Supplementary Figure S9A). However, reduction of
XRN1 or huR did not substantially affect the increase of
NCL pre-mRNA level induced by different ASOs tested
(Supplementary Figure S9B, C). In addition, a CCR4–
CNOT complex protein, CNOT1, was also reduced by
siRNA treatment in HeLa cells, without substantial effects
on pre-mRNA increase triggered by two different ASOs
(Supplementary Figure S9D–F). Similar observations were
made when these proteins were reduced using different siR-
NAs (data not shown). Together, these results suggest that
NCL pre-mRNA increase by gapmer ASOs is not mediated
by the feed-back regulation pathway related to XRN1 and
CCR4–CNOT complex.

ASO-mediated pre-mRNA increases require UPF3A

Another reported pathway of feed-back upregulation of
transcription is the GCR pathway that was first reported
in zebrafish where a deleterious mutation, but not gene-
knockdown, can lead to transcriptional upregulation of
homologues genes to assume the function of the mutated
gene (42). More recently it was demonstrated that GCR
is triggered by the degradation of PTC containing mR-
NAs (26,28). The GCR pathway requires an NMD fac-
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Figure 4. Pre-mRNA level was not increased by ASOs that do not support RNase H1 cleavage. (A) ASOs that contain different modifications in the gap
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tor UPF3A and components of a histone methylation com-
plex COMPASS including WDR5 (28). We thus examined
whether these GCR factors are involved in pre-mRNA in-
crease mediated by gapmer ASOs. UPF3A mRNA was re-
duced by siRNA treatment in HeLa cells (Figure 5A). At-
tempts to detect UPF3A protein levels failed even with sev-
eral different antibodies tested, most likely due to the low
abundance of UPF3A protein in HeLa cells, as this pro-
tein is known to be highly expressed in early embryogenesis
but very poorly expressed in most adult tissues (21). Nev-
ertheless, compared with a control siRNA, UPF3A siRNA
treatment significantly attenuated pre-mRNA increase trig-
gered by three different ASOs tested, with no substantial
effects on the activity of ASOs targeting NCL mRNA (Fig-
ure 5B, C; and Supplementary Figure S10A). Further, re-
duction of UPF3A using a different siRNA also inhibited
pre-mRNA increase induced by gapmer ASOs (Supplemen-

tary Figure S10B–D), suggesting that the observed atten-
uation of pre-mRNA increase is not due to potential off-
target effects of UPF3A siRNAs. Together, these results in-
dicate that UPF3A is involved in gapmer ASO-induced pre-
mRNA increase.

Next, we evaluated whether WDR5, which is also re-
quired for GCR, is involved in ASO-induced pre-mRNA
increase. WDR5 was reduced by siRNA treatment (Fig-
ure 5D). However, depletion of WDR5 did not affect
pre-mRNA increase or mRNA reduction triggered by
the gapmer ASOs (Figure 5E, F). Similarly, reduction of
another COMPASS protein, ASH2, also did not affect
ASO-induced pre-mRNA increase (Supplementary Figure
S11), indicating that this process requires UPF3A, but not
WDR5 and ASH2. This is mechanistically different from
that observed for GCR, which requires both UPF3A and
WDR5 proteins (28).
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NMD and NGD pathways appear not to be required for pre-
mRNA increase by gapmer ASOs

As UPF3A is involved in NMD most likely as an NMD
repressor (21,43,44), we evaluated whether NMD pathway
is required for pre-mRNA increase induced by the gapmer
ASOs. UPF3B, an UPF3A paralog that has opposite roles
in modulating NMD activity compared with UPF3A (21),
was reduced by siRNA treatment (Supplementary Figure
S12A). However, reduction of UPF3B did not affect ei-
ther pre-mRNA increase or mRNA reduction triggered by
ASOs (Supplementary Figure S12B). In addition, reduc-
tion of UPF2 (Supplementary Figure S12C), another NMD
factor, also had no substantial effect on ASO-induced pre-
mRNA increase (Supplementary Figure S12D). Similar ob-
servation was made with other ASOs tested upon UPF3B
and UPF2 reduction (data not shown).

As NMD pathway may have different branches that reg-
ulate different targets or act at different physiological con-
ditions (18), we thus reduced a core NMD factor, UPF1,
by siRNA treatment (Supplementary Figure S12E). Like
UPF2, reduction of UPF1 did not affect the pre-mRNA in-
crease by ASOs (Supplementary Figure S12F). We note that
under the experimental conditions, NMD pathway was al-
ready impaired by reduction of UPF1, as the mRNA levels
of ATF4 and Smg5, known NMD targets (45), were signif-
icantly increased (Supplementary Figure S12G). These re-
sults together suggest that NMD pathway is not required for
ASO-induced pre-mRNA increase, and UPF3A may have a
distinct function in mediating pre-mRNA increase.

In addition to NMD, mRNAs can also be degraded
through the no-go decay (NGD) pathway due to translation
block and ribosome collision (46,47). Previously we have
found that non-gapmer ASOs that do not induce RNase
H1 cleavage can trigger NGD in an ASO-mRNA hybridiza-
tion dependent manner, when targeting certain sequences
in the coding regions of mRNAs (29). As ASOs designed
to inactivate RNase H1 cleavage still maintain hybridiza-
tion potential and do not trigger pre-mRNA increase (Fig-
ure 4), it seems unlikely that NGD pathway is involved. To
further exclude this possibility, an NGD core factor, PELO
(Dom34) (48), was reduced by siRNA treatment (Supple-
mentary Figure S13A). PELO reduction did not substan-
tially alter the effects of the tested gapmer ASOs on the lev-
els of NCL pre-mRNA and mRNA (Supplementary Figure
S13B-D), indicating that NGD pathway is not required for
the gapmer ASO-induced pre-mRNA increase, as expected.

ASO treatment can enhance NCL transcription

Next, we evaluated whether ASO treatment affected NCL
transcription. HeLa cells were mock transfected or trans-
fected with ASO 110074, followed by incubation with ethy-
lene uridine (EU), with can be incorporated into nascent
RNAs (Figure 6A). Total RNA was prepared and EU-
containing nascent RNAs were labeled with biotin through
click reaction (49). The nascent RNAs were isolated with
streptavidin beads, and the levels of total and nascent NCL
transcripts in input and isolated RNA samples were quanti-
fied using qRT-PCR. As expected, transfection of the ASO
significantly increased the level of total NCL pre-mRNA
and the level of precipitated nascent pre-mRNA (Figure

6B). In addition, transfection of the ASO reduced the level
of total NCL mRNA (input), as well as the level of nascent
NCL mRNA as seen in the co-isolated samples (Figure 6C).
Though ∼90% of total NCL mRNA was reduced by the
ASO treatment, the nascent NCL mRNA was reduced by
∼65%, suggesting that the nascent NCL mRNA was also
able to be degraded. As a control, transfection of the NCL
ASO did not affect the levels of total or nascent pre-mRNA
of an untargeted gene, Drosha (Figure 6D).

To further determine if ASO treatment increases nascent
pre-mRNA synthesis, we evaluated an additional ASO,
110093, using a kinetic study by EU labeling of nascent
RNAs for different times. The levels of nascent pre-mRNA
and mRNA of NCL were quantified by qRT-PCR and nor-
malized to the mRNA and pre-mRNA levels, respectively,
of an untargeted gene, SOD1, which were not affected by
ASO treatment (Supplementary Figure S1C). The results
showed that in control cells, the levels of nascent pre-mRNA
increased over time after EU addition, as expected (Figure
6E). However, in ASO110093 treated cells, a greater rate of
increase in the nascent pre-mRNA levels was observed than
that in control cells, suggesting faster pre-mRNA synthesis
upon ASO treatment. On the other hand, nascent mature
NCL mRNA levels also increased over time in both control
and ASO treated cells, as calculated by the relative recovery
rates based on the total level of NCL mRNA in control cells
(Figure 6F). ASO treatment significantly reduced the levels
of nascent mRNA when compared with the nascent NCL
mRNA level in control cells at the same time points. Similar
reduction (∼35–40% remaining) of nascent NCL mRNA
was observed at different time points after EU labeling, es-
pecially at 30 and 45 min. This is also consistent with the
∼65% reduction observed at ∼20 min shown in Figure 6C.

Increased pre-mRNA levels may result from enhanced
transcription or impaired processing or degradation. The
similar reduction rate of nascent mRNA at different times
during EU labeling may suggest that maturation of pre-
mRNA to mRNA is not substantially impaired by ASO
treatment. To evaluate this possibility, transcription was
inhibited by DRB treatment in cells either mock treated,
or transfected with an NCL ASO or a control ASO, to
determine the reduction of pre-mRNA levels over time,
which reflects the rate of pre-mRNA processing and/or
normal degradation. As expected, treatment with the NCL
ASO, and not the control ASO, significantly reduced NCL
mRNA levels (Figure 6G) and increased the pre-mRNA
level before DRB treatment (Figure 6H). Upon DRB treat-
ment, the levels of NCL mRNA were not substantially re-
duced due to its long half-life. However, the levels of NCL
pre-mRNA were reduced over time, as expected, due to
short half-lives of pre-mRNAs. Interestingly, a slower re-
duction of NCL pre-mRNA was observed with the NCL
ASO treated samples, compared with that in mock treated
or control ASO treated samples, suggesting a slower pre-
mRNA processing upon NCL ASO treatment, though it
was not detected in the nascent RNA labeling experiments.

To further confirm that the CDS-targeting ASO in-
creased transcription of NCL gene as determined us-
ing nascent RNA labeling, chromatin-immunoprecipitation
(ChIP) was performed using an antibody against histone
3 trimethylated at lysine 4 (H3K4me3), the level of which
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Figure 6. ASO treatment enhanced transcription of NCL gene. (A) Schematic representation of the experimental procedure of EU labeling. (B) qRT-PCR
quantification of total and isolated nascent NCL pre-mRNA in control mock treated (UTC) or ASO treated HeLa cells. The relative levels were calculated
based on the level of total NCL pre-mRNA in control cells. (C) qRT-PCR quantification of total and isolated nascent NCL mRNA in input total RNAs
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trend lines were generated using Excel based on linear regression. (F) qRT-PCR quantification of isolated nascent NCL mRNA from control (UTC) or
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each time point were calculated based on the level of NCL mRNA and pre-mRNA, respectively, in control cells at time point 0. (I) qRT-PCR quantification
of DNA levels co-isolated by ChIP using H3K4me3 antibody or IgG control from cells treated with CDS-targeting ASO 110093 or 3′UTR-targeting ASO
110128. Primer probe sets specific to the promoter and transcription start site (TSS) regions of NCL, or specific to TSS of Drosha, were used. The error
bars in each panel are standard deviations from three independent experiments. P values were calculated based on t-test using Prism. NS, not significant.
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positively correlates with transcription activity (50). Signif-
icantly increased levels of H3K4me3 at promoter region or
transcription start site (TSS) of NCL gene were observed
upon treatment with the CDS-targeting ASO (110093), and
not with the 3′ UTR-targeting ASO (110128) (Figure 6I). As
a control, the H3K4me3 level at the TSS region of the untar-
geted Drosha gene was not affected by either ASO. Together,
these results suggest that NCL ASO treatment specifically
enhances NCL transcription, and likely also causes slower
pre-mRNA processing, leading to an increase in the levels
of NCL pre-mRNA.

An ASO that induced pre-mRNA increase showed decreased
activity after repeated dosing in mice

Since some ASOs can enhance transcription, next we eval-
uated whether such ASOs exhibit tolerance effect, i.e., re-
duced antisense activity over time in animals. For this
purpose, a CDS-targeting ASO (110095) and a 3′UTR-
targeting ASO (1441119) were tested. These two ASOs
could reduce NCL mRNA level in mouse MHT cells upon
free uptake, and only the CDS-targeting ASO caused pre-
mRNA increase (Supplementary Figure S6C, D). These
ASOs were subcutaneously injected into mice (N = 3), ei-
ther once, or twice a week for one or two weeks (Fig-
ure 7A), at 100 mg/kg for ASO110095 and 33 mg/kg for
ASO1441119, approximate ED50 doses pre-determined in
pilot experiments for a 48 h treatment (data not shown).
Mice were sacrificed at different times, and no plasma ALT
or AST elevation was observed in all animals tested (data
not shown). Total RNAs and proteins were prepared from
liver samples. The levels of NCL mRNA and pre-mRNA
were determined by qRT-PCR.

The results showed that, in general, the CDS-targeting
ASO caused greater reduction of NCL mRNA than the
3′UTR-targeting ASO under these treatments. For the
CDS-targeting ASO, similar reduction of NCL mRNA was
observed at 96 h and 1 week after dosing, however, signifi-
cantly reduced activity was found at 2 weeks after four times
dosing (Figure 7B). The CDS-targeting ASO also increased
the pre-mRNA level, especially at 2 weeks after dosing (Fig-
ure 7C). As a control, no significant reduction in the anti-
sense activity was found over time for the 3′UTR-targeting
ASO, as shown by the levels of mature NCL mRNA at dif-
ferent times. This 3′UTR-targeting ASO did not cause pre-
mRNA increase, rather, it slightly reduced the pre-mRNA
level, consistent with in vitro results (Supplementary Fig-
ure S6). As expected, an untargeted mRNA, PTEN, was
not significantly affected by the treatments with the NCL
ASOs (Figure 7D). Under these conditions, the NCL pro-
tein level was not increased after 2 weeks treatment with
the CDS-targeting ASO compared with that after one week
treatment (Figure 7E). This is not surprising, since, despite
of reduced activity of the CDS-targeting ASO at 2 weeks,
the NCL mRNA level is still lower (∼28%) than that in
3′UTR-targeting ASO treated samples (∼44%), in which
the protein level was already dramatically reduced (Figure
7F). Nevertheless, these results indicate that the ASO that
increased the pre-mRNA level showed decreased ASO ac-
tivity in degradation of the mRNA over time after repeated
dosing.

Gapmer ASOs targeting other mRNAs can also increase pre-
mRNA levels

To determine whether similar mechanism applies to ASOs
targeting other genes, approximately 70 ASOs targeting
5′ UTR, CDS, or 3′ UTR of SOD1 mRNA were syn-
thesized (Figure 8A). These ASOs were transfected into
HeLa cells for 4 h at 25 nM final concentrations. Though
these ASOs did not exhibit great activity in reducing the
mRNA levels under the experimental conditions, a few
ASOs, e.g. ASO 150457 and 150461, increased the level
of SOD1 pre-mRNA, with a meaningful reduction of the
mRNA levels (Figure 8A). Both these two ASOs target the
CDS. No ASOs targeting the 3′ UTR of SOD1 mRNA that
substantially reduced the levels of the mRNA caused sig-
nificant increase in pre-mRNA levels, consistent with what
observed with the NCL ASOs.

Increase in the levels of SOD1 pre-mRNA by the two
SOD1 mRNA-targeting ASOs was confirmed in dose re-
sponse studies (data not shown and Figure 8B-C). As a con-
trol, these two ASOs did not substantially affect the levels of
mRNA and pre-mRNA of the untargeted NCL gene (Sup-
plementary Figure S14A), consistent with the specificity
observed with the NCL ASOs that did not affect SOD1
mRNA or pre-mRNA levels (Supplementary Figure S1C).
In addition, puromycin treatment also inhibited SOD1 pre-
mRNA increase by the SOD1 ASOs, similar to the NCL
ASOs, suggesting a translation dependent effect (Supple-
mentary Figure S14B). Interestingly, reduction of UPF3A
and RNase H1, but not UPF2, by siRNA treatment sig-
nificantly attenuated pre-mRNA increase induced by the
two SOD1 ASOs, as compared with that in control siRNA
treated cells (Figure 8B, C). These results suggest that these
SOD1 ASOs can increase the level of SOD1 pre-mRNA in
a RNase H1 and UPF3A dependent manner, once again
consistent with what was observed for the NCL ASOs. To-
gether, these results indicate that the mechanism of pre-
mRNA increase is not unique to a particular ASO or to a
particular mRNA target, although the frequency of ASOs
that could increase pre-mRNA levels may differ between
different target mRNAs.

DISCUSSION

RNase H1 dependent gapmer ASOs have been well stud-
ied and the mechanisms of action are well characterized
(2). Nevertheless, it is still important to better understand
the factors that may influence the ability of PS ASOs to re-
duce target RNAs. In previous studies, we identified key fac-
tors that define sites that are accessible to ASOs, define the
specificity of ASOs, and affect the ability of RNase H1 to
access the heteroduplex (12,51,52). The impact of multiple
cognate sequences in a single RNA, the kinetics of ASO ac-
tivity and various proteins that influence the behaviors of PS
ASO have also been determined (10,38,53–57). Though it is
axiomatic, the introduction of a drug to a biological system
may lead to tolerance, which is known to occur in response
to drugs of all types (58). Therefore, it is important to under-
stand if and how tolerance occurs during ASO pharmaco-
logical interventions. Several observations suggest that tol-
erance to ASOs might occur. For example, some transcripts
are relatively difficult to reduce with RNase H1 activating
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ASOs (12) (Andy Watt, personal communication). For oth-
ers, the duration of action is shorter than can be explained
based on the pharmacokinetics of the ASO (59) (Youngsoo
Kim, personal communication). Consequently, we have sys-
tematically searched for evidence of tolerance to RNase H1
activating ASO and attempted to understand the potential
mechanism. In this manuscript, we report for the first time
that some RNase H1 activating ASOs targeting the coding
region of mRNAs can cause pre-mRNA increase that may
blunt total activity.

We found that some gapmer ASOs targeting NCL
mRNA reduced the levels of the target mRNA and signif-
icantly increased the levels of NCL pre-mRNA in differ-
ent types of cells. This observation is ASO sequence- and
target-specific, as control ASOs targeting other mRNAs did
not substantially alter the levels of NCL mRNA and pre-
mRNA. In addition, NCL-targeting ASOs that increase
NCL pre-mRNA levels did not affect the levels of mRNA
and pre-mRNA of untargeted genes. Furthermore, ASOs
delivered to cells by free uptake also caused pre-mRNA
increase. These results indicate that increase in NCL pre-
mRNA level is not an unexpected global effect of transfec-
tion of ASOs. In addition, the pre-mRNA increase induced
by the ASOs is dependent on the mRNA position targeted
by the ASOs, since not all ASOs that degraded NCL mRNA
increased the pre-mRNA level, especially when targeting 3′
UTR.

The increase in pre-mRNA levels by the ASOs ob-
served here appears to be due to enhanced transcription,
as demonstrated by nascent RNA labeling and ChIP as-
says, and slower processing of the pre-mRNA may also con-
tribute. More rapid synthesis of NCL pre-mRNAs and in-
creased H3K4me3 level at the TSS region of the targeted
gene were observed in cells treated with ASOs targeting the
CDS of NCL mRNA, indicating an enhanced transcrip-
tion. Importantly, an ASO that caused pre-mRNA increase
showed decreased activity in reducing the target mRNA lev-
els in mice over time after repeated dosing, whereas no ac-
tivity loss was found for a control ASO that did not increase
the pre-mRNA level. This observation suggests that the
ASO that caused increase in the pre-mRNA exhibited re-
duced total activity in degrading the corresponding mRNA
during repeated dosing, a phenotype consistent with drug
tolerance.

Though required for pre-mRNA increase, reduction of
mRNA levels is not sufficient to trigger pre-mRNA in-
crease. Some ASOs causing similar mRNA reduction did
not increase NCL pre-mRNA levels. In addition, reduction
of NCL mRNA using a siRNA did not increase the pre-
mRNA levels, although an ASO targeting the same mRNA
sequence significantly increased pre-mRNA levels. On the
other hand, the pre-mRNA increase seems to be indepen-
dent of the reduction in NCL protein since transcription
increased before meaningful reduction of the protein was
observed.

The pre-mRNA increase triggered by gapmer ASOs is,
however, dependent on RNase H1 activity. Reduction of
RNase H1 significantly decreased the activity of ASOs in
degrading targeted mRNAs and in increasing pre-mRNA
levels. These observations suggest that after ASO-RNA hy-
bridization, RNase H1 recruitment and cleavage of target

mRNA may be required to trigger pre-mRNA increases, yet
ASO-RNA hybridization itself does not induce pre-mRNA
increases. This conclusion is further supported by the results
showing that gap disabled ASOs that do not support RNase
H1 cleavage did not increase pre-mRNA levels, although
such gap disabled ASOs have the same sequence and similar
or even better binding affinity to the target RNA than the
parental gapmer ASO (12). These observations also indi-
cate that the pre-mRNA increase is not due to steric block-
ing effects of ASO hybridization to the target mRNA that
may cause processing defects. Additionally, both PO and PS
backbone gapmer ASOs that triggered RNase H1 cleavage
caused similar mRNA reduction and pre-mRNA increases,
further supporting the dependency on RNase H1-mediated
cleavage.

On the other hand, the pre-mRNA increase appears to
be translation dependent. Treatment of cells with either
CHX or puromycin significantly inhibited ASO-triggered
pre-mRNA increase, whereas under the same experimental
conditions, the level and nuclear activity of RNase H1 were
not affected. These observations suggest a link between
ASO-mRNA hybridization, RNase H1 cleavage, and trans-
lating ribosome in the cytoplasm (Figure 9). Previously we
have shown that RNase H1 is present in both the nucleus
and the cytosol and that gapmer ASOs are robustly active in
both compartments (5). As cytoplasmic mRNAs are trans-
lated by the ribosomes and translation can affect ASO activ-
ity (32), it is not surprising that translation and ASO action
are interconnected. ASO-mediated RNase H1 cleavage of
mRNAs in ribosomes has been demonstrated (32). Thus, it
is possible that ASO-guided RNase H1 cleavage of mRNAs
that are being translated may be sensed by the ribosomes,
triggering subsequent events that lead to gene specific in-
crease of pre-mRNA levels due to enhanced transcription
(Figure 9).

Although the XRN1–CNOT pathway has been shown
to be involved in the feed-back regulation loop of mRNA
degradation and transcription (25), this pathway is not
required for ASO-mediated mRNA reduction and pre-
mRNA increase, as demonstrated by depletion of these pro-
tein factors. However, we found that reduction of UPF3A
significantly inhibited pre-mRNA increase by ASOs, with-
out affecting the ASO-induced mRNA reduction. Although
UPF3A is involved in GCR, which also requires the COM-
PASS complex including WDR5 (28), the ASO-mediated
pre-mRNA increase seems not to occur similarly through
this pathway, as reduction of WDR5 or ASH2 did not
affect the ASO-induced pre-mRNA increase. Increased
H3K4me3 level was detected at promoter and TSS regions
of NCL gene upon ASO treatment, however, this histone
methylation may not be involved in pre-mRNA increase in-
duced by ASOs. This is not unexpected, since it has been
reported that in certain cases, transcription activity de-
termines the level of H3K4me3 (60), and H3K4me3 level
may not affect transcription (61,62). In addition, though
UPF3A is involved in NMD, reduction of other NMD fac-
tors, such as UPF1, UPF2 and UPF3B, did not affect pre-
mRNA increase or mRNA reduction by ASOs, indicating
that the NMD pathway is not required. This is not unex-
pected, as mRNA degradation induced by gapmer ASOs is
carried out by RNase H1. Thus, it is possible that UPF3A
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Figure 9. Proposed model of gapmer ASO-induced pre-mRNA increase. After transcription, pre-mRNA is processed in the nucleus to mature mRNAs,
which are exported to the cytoplasm and are translated by the ribosome. Gapmer ASOs can trigger RNase H1 cleavage of target mRNA in the cytoplasm,
though ASO may also degrade nuclear mRNAs. ASO-mediated RNase H1 cleavage of cytoplasmic mRNA by RNase H1 may be recognized by the
ribosome when targeting coding region, signaling back to the nucleus to enhance transcription of the corresponding gene, in a UPF3A dependent manner,
through unknown factors that provide specificity to the target gene.

may play a distinct role in this process other than NMD
(Figure 9). Indeed, it has been shown that compared with
UPF3B, the role of UPF3A in NMD is marginal (43) and
may have an opposite effect as UPF3B during development
(21).

The ASO-induced pre-mRNA increase and the potential
underlying mechanism are not unique to ASOs targeting
NCL mRNA, as similar observations were also made with
ASOs targeting SOD1 mRNA, suggesting similar effects
may occur when targeting other mRNAs. Currently it is un-
clear what signals may trigger gene specific enhancement
of transcription and how UPF3A mediates pre-mRNA in-
crease by gapmer ASOs. It is possible that this protein (and
other proteins) may bind the mRNA fragments generated
by RNase H1 cleavage, and translocate from the cytoplasm
to the nucleus to induce gene specific upregulation of tran-
scription. This possibility is supported by previous findings
that UPF3A can bind mRNAs and can shuttle between
cytoplasm and nucleus (44). In addition, it is also unclear
how an RNase H1 activating ASO that degrades the ma-
ture mRNA on the ribosome, but not pre-mRNA in the
nucleus can cause slower processing of the corresponding
pre-mRNA. Elucidating additional details about this mech-
anism and biological functions of UPF3A in RNA quality
control and in the regulation of increased transcription me-
diated by some ASOs awaits further investigation. Never-
theless, we identified one potential mechanism accounting
for tolerance. Also remaining to be better understood is the
frequency at which this mechanism of tolerance is encoun-

tered. Further, the identification of this tolerance mecha-
nism suggests that other mechanisms of tolerance may ex-
ist and offer potential explanations of anomalous behaving
ASOs.
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