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Non-alcoholic steatohepatitis (NASH) develops from non-alcoholic fatty liver disease
(NAFLD). Currently, around 25% of the population is estimated to have NAFLD, and
25% of NAFLD patients are estimated to have NASH. NASH is typically characterized by
liver steatosis inflammation, and fibrosis driven by metabolic disruptions such as obesity,
diabetes, and dyslipidemia. NASH patients with significant fibrosis have increased risk of
developing cirrhosis and liver failure. Currently, NASH is the second leading cause for liver
transplant in the United States. More importantly, the risk of developing hepatocellular
carcinoma from NASH has also been highlighted in recent studies. Patients may have
NAFLD for years before progressing into NASH. Although the pathogenesis of NASH is not
completely understood, the current “multiple-hits” hypothesis suggests that in addition to
fat accumulation, elevated oxidative and ER stress may also drive liver inflammation and
fibrosis. The development of clinically relevant animal models and pharmacological
treatments for NASH have been hampered by the limited understanding of the disease
mechanism and a lack of sensitive, non-invasive diagnostic tools. Currently, most pre-clinical
animal models are divided into threemain groupswhich includes: genetic models, diet-induced,
and toxin + diet-induced animal models. Although dietary models mimic the natural course of
NASH in humans, the models often only induce mild liver injury. Many genetic and toxin + diet-
induced models rapidly induce the development of metabolic disruption and serious liver injury,
but not without their own shortcomings. This review provides an overview of the “multiple-hits”
hypothesis and an evaluation of the currently existing animal models of NASH. This review also
provides an update on the available interventions for managing NASH as well as
pharmacological agents that are currently undergoing clinical trials for the treatment of NASH.
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INTRODUCTION

First discovered in 1980, non-alcoholic steatohepatitis (NASH) is a type of fatty liver disease
characterized by excessive liver fat accumulation, hepatic inflammation and fibrosis (Ludwig et al.,
1980; Kleiner et al., 2005; Diehl and Day, 2017). NASH is falls within the large, overarching theme of
non-alcoholic fatty liver disease (NAFLD) which encompasses varying degrees of liver injury
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(Friedman et al., 2018a). NASH is histologically distinct from a
simple fatty liver, where there is only an accumulation of fat
without the presence of inflammation and fibrosis (Brunt et al.,
2011).

EPIDEMIOLOGY OF NON-ALCOHOLIC
STEATOHEPATITIS

The growing epidemics of obesity, dyslipidemia and insulin
resistance serve as major risk factors for the development of
NASH (Saklayen, 2018). Epidemiological studies show that
roughly 82% of NASH patients are obese, 83% exhibit
hyperlipidemia and 48% are diagnosed with type 2 diabetes
(Younossi et al., 2016b). NAFLD tends to be more prevalent
in middle-aged to elderly patients as older patients exhibit more
characteristics of metabolic syndrome (Frith et al., 2009;Williams
et al., 2011). Nevertheless, NAFLD can also be diagnosed in
children/adolescences who are as young as 13 years old (Goyal
and Schwimmer, 2016). According to the survey conducted by

the National Health and Nutrition Examination in the United
States, the incidence of NAFLD in adolescent and young adults
(aged 19–35) have risen by approximately 2.5 times in the last
20 years (Welsh et al., 2013). More importantly, longitudinal
follow-up studies suggest that adolescent diagnosed with
NAFLD/NASH have increased risk of cirrhosis and mortality
compared to age-matched average population (Feldstein et al.,
2009; Goyal and Schwimmer, 2016; Doycheva et al., 2017).
Currently, it is estimated that approximately 25% of the world
population has NAFLD, and further, 20–25% of this NAFLD
patient population will go on to develop NASH (Younossi et al.,
2016a; Estes et al., 2018) (Figure 1). If left untreated, the risk of
developing cirrhosis, and subsequently liver failure and
hepatocellular carcinoma will increase and eventually causing
death (Alexander et al., 2019). NASH-induced cirrhosis has been
recognized as one of the fastest-growing liver diseases, and is the
second greatest contributor to an indication for liver
transplantation in the United States (Wong et al., 2015). Based
on current trends, there will be an estimated global NAFLD
incidence of 101 million by 2030, and the number of NASH cases

FIGURE 1 | Different phases of NAFLD: progressing from healthy to cirrhosis NAFLD represents a spectrum of fatty liver diseases ranging from fatty liver to
cirrhosis. Approximately 25% of the population worldwide is estimated to have fatty liver, characterized by more than 5% fat accumulating in the liver. If left untreated,
fatty liver can progress onto the more severe form; NASH, defined by severe liver injury and inflammation in addition to fat. Currently, a further 25% of the NAFLD
population is estimated to have NASH (which is roughly calculated to be 6.3% of the population). NASH patients are estimated to have a higher risk of developing
cirrhosis, which is the extensive liver tissue scarring. Figure is designed and drawn using Inkscape (http://www.inkscape.org/.).
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is projected to increase to 27 million by 2030 (Estes et al., 2018).
In parallel with the development and progression of obesity and
type 2 diabetes a recent study highlighted that the annual health
care cost associated with NAFLD in the United States was
approximately US$103 billion, and €35 billion in four
European countries combined (Germany, Italy, United
Kingdom., and France) (Younossi et al., 2016a). These costs
are estimated to rise to US$908 and €302 billion in the United
States and in these European countries, respectively within
10 years (Younossi et al., 2016a). Thus, early detection,
diagnosis and treatment of fatty liver disease are of paramount
importance in controlling the impact of this disease.

DIAGNOSIS AND DETECTION METHODS

NASH itself can often be asymptomatic, although patients with a
high body mass index (>25 kg/m2) and T2DM features such as
hyperglycemia and insulin resistance are encouraged to be
screened for the presence of fatty liver disease (Chalasani
et al., 2012; Friedman et al., 2018a). Nevertheless, a recent
population study has highlighted that NASH patients have a
higher incidence of fatigue and abdominal discomfort which are
shown to be correlated with hepatic lobular inflammation (Huber
et al., 2019). This may be because that hepatic inflammation is
associated with elevated plasma inflammatory cytokines (Ajmera
et al., 2017) which creates a metabolically inflamed milieu that
can negatively affect the mood (Rethorst et al., 2014; Huber et al.,
2019).

Patients consuming less than the excessive alcohol intake
threshold of >20–30 g/day are classified as having NAFLD,
and patients who consumed above that threshold would be
diagnosed as having alcoholic fatty liver disease (AFLD),
typically treated by alcohol abstinence (Scaglioni et al., 2011).
Although NAFLD/NASH is not a result of excessive alcohol
intake, it shares many histological similarities with AFLD,
such as liver steatosis and inflammation (Williams et al.,
2011). Nevertheless, it might not be possible to determine
whether low alcohol use contributes to the development of
NAFLD/NASH (Scaglioni et al., 2011).

Elevation in the plasma of the liver enzymes alanine
transaminase (ALT) and aspartate aminotransferase (AST) in
a routine blood test is generally the first line of diagnosis (Kim
et al., 2008; Siddiqui et al., 2018). ALT and AST are highly
expressed in hepatocytes. In the event of hepatocyte necrosis,
ALT and AST leak into the circulation, and are thus biomarkers
for liver injury (Kew, 2000). Nevertheless, NASH patients may
have normal plasma ALT/AST levels and the presence of other
diseases, such as viral hepatitis, may also induce ALT and AST
elevation (Dyson et al., 2014). ALT and AST are thus
insufficiently specific and sensitive enough to determine the
presence or severity of NASH (Friedman et al., 2018a). To
confirm the presence of fatty liver, computed tomography
(CT) scan or magnetic resonance imaging (MRI) can
potentially be used as a non-invasive diagnostic tool to assess
the percentage of fat in the liver (Friedman et al., 2018a).
However, using MRI as a diagnostic tool in the clinic may not

be practical due to the high cost and limited availability. Patients
in rural/regional areas and/or from low socioeconomic areas
would be unlikely to be able to access it (Friedman et al.,
2018a). More importantly, the percentage of hepatic fat
alone does not indicate the level of liver inflammation,
hepatocyte damage and tissue fibrosis. Thus pathologist
scoring of liver biopsy histological features remains the gold
standard for determining the presence and severity of NASH
(Siddiqui et al., 2018). Liver hematoxylin and eosin staining
are assigned an ordinal score on a scale of 0–3 for steatosis, 0–3
for inflammation and 0–2 for ballooning hepatocytes by a
panel of pathologists (Table 1). Ordinal scores of these 3
parameters are combined to give a total NAFLD activity
score (NAS). In both clinical and preclinical studies, there
is a general consensus that a total NAS ≥5 is classified as
definitive NASH rather than a simple fatty liver disease
(Kleiner et al., 2005). Nevertheless, the invasive nature of
liver biopsy has made the histological diagnosis method less
favored. Further studies in elucidating the molecular
mechanisms of NASH to discover sensitive and highly
NASH-specific biomarkers are warranted.

PATHOGENESIS OF NON-ALCOHOLIC
STEATOHEPATITIS

Day and James (1998) hypothesized the “two-hit”NASHmodel,
i.e., that obesity, as an external stressor, can increase the
accumulation of fat in the liver, but is normally not sufficient
to cause inflammation and fibrosis. Hence a “second-hit” is
required to further exaggerate liver injury. Recent findings on
NASH shed a new light on the disease pathogenesis, shifting
from the traditional “two-hit” model to a model where multiple
parallel pathogenic influences are present that may act
synergistically to drive the development of NASH, as
indicated in Figure 2 (Buzzetti et al., 2016). Although the
exact mechanism of disease pathogenesis remains to be
elucidated, epidemiological studies have highlighted
common metabolic comorbidities of NAFLD/NASH patients
including obesity, insulin resistance and hyperlipidemia
(Younossi et al., 2016a). In support of this concept, several
clinical studies have suggested that NAFLD/NASH may have a
role in the development of other metabolic diseases including
cardiovascular diseases (Targher et al., 2010; Labenz et al.,
2020) and chronic kidney disease (Kaps et al., 2020).

Recently, there has been increasing interest in the role of
metabolic inflammation and the crosstalk network between
liver and other organs in driving metabolic diseases (Gehrke
and Schattenberg, 2020; Wang et al., 2020). The elevated
pro-inflammatory gut microbes influencing the liver during gut
dysbiosis may initiate and/or exacerbate hepatic inflammation
(Hildebrandt et al., 2009; Ogawa et al., 2018). Moreover, the
presence of disrupted metabolism such as insulin resistance in the
adipose tissue is known to be associated with increased
hepatic steatosis as well as hepatic macrophage activation
(Rosso et al., 2019; Gehrke and Schattenberg, 2020). In
addition to extrahepatic stressors, intrahepatic cellular
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stressors such as liver oxidative stress and endoplasmic
reticulum (ER) stress are also known to be part of the
multiple parallel influences mechanism which may lead to
the development of NAFLD/NASH (Sanyal et al., 2001;
Friedman et al., 2018a; Lebeaupin et al., 2018a). Adding to
the complexity of the disease, the likelihood of NASH
development also appears closely associated with genetic
factors (Eslam et al., 2018).

The Role of Genetics and Ethnicity
Familial studies indicate that children from parents with higher
hepatic fat contents are more likely to develop NAFLD and
cirrhosis (Schwimmer et al., 2009). Twin studies demonstrated
a significantly higher intra-pair correlation between the level of
liver fat and plasma ALT in monozygotic twin than dizygotic
twins (Makkonen et al., 2009). In addition, genome-wide
association studies have recently identified numerous genetic

TABLE 1 | NAFLD Activity Score (NAS) system with representative H&E images. The NAS system is an internationally recognized method of determining the severity of fatty
liver disease (see text for references). Steatosis score represents the percentage of lipid droplets present in each field of view, inflammation score represents the number
of inflammatory cell clusters (1 cluster � 1 foci) and the ballooning score is indicative of the number of hepatocytes that have altered cell structure due to excess lipid
accumulation. The pathologist can give a score between 0 and 3 for each of steatosis and inflammation, and 0–2 for ballooning, based on the characteristics of the samples.
Combining the scores from each of the parameters give rise to the total NAS. H&E-stained representative images are provided by our laboratory. All images were taken
under ×200 magnification. Black arrows are marking the specific location of the histological features.

Features Score Description

Healthy None Healthy liver

Hepatocytes are nicely arranged and densely packed

Steatosis

0 <5% of liver tissue (per field of view)
1 <33% of liver tissue (per field of view)
2 34–66% of liver tissue (per field of view)
3 >66% of liver tissue (per field of view)

Inflammation

0 None
1 1–2 foci
2 3–4 foci
3 >4 foci

Ballooning

0 None
1 Few
2 Many
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factors that associate strongly with the development of NAFLD.
Genetic variants in genes such as transmembrane six superfamily
member 2 (TM6SF2) (Mahdessian et al., 2014), glucokinase
regulatory protein (GCKR) (Petta et al., 2014) and patatin-like
phospholipase domain-containing-3 (PNPLA3) are found to
associate with NAFLD and NASH, with PNPLA3 classified as
one of the most common genetic variations (Eslam et al., 2018).

Patients who have the PNPLA3 genetic polymorphism produce a
truncated lipase enzyme which impedes triglyceride breakdown
and subsequently reduces liver triglyceride (TG) secretion in the
form of very-low-density lipoproteins (VLDL) (Dongiovanni,
2013). Interestingly, a population study conducted in the
United States revealed differences in susceptibility to
triglyceride accumulation, and the development of NAFLD, in

FIGURE 2 | Proposed mechanism of NASH FFAs released from adipose tissue due to insulin resistance and dietary-sugar-induced DNL increase the FFA pool in
the liver. FFAs can be stored as TG in the hepatocyte or be metabolized into lipotoxic lipids. Lipid mediators may induce oxidative stress and ER stress, which ultimately
results in cell injury and inflammation. Cell injury induces inflammatory cell recruitment and activation. A leaky gut due to gut dysbiosis can further contribute to liver
inflammation. The combination of inflammation and tissue damage triggers HSC activation and collagen deposition. FFA: free fatty acid, KC: Kupffer cell, HSC:
hepatic stellate cell, TG: triglyceride, DNL: de novo lipogenesis, IL-18: interleukin 18, IL-1β: interleukin one beta, TNF-α: tumor necrosis factor α, ATF6: activating
transcription factor 6; TXBP-1: total X-box protein-1; CHOP: C/EBP Homologous Protein, eIF2α: eukaryotic translation initiation factor 2α. Figure is designed and drawn
using Inkscape (http://www.inkscape.org/.).
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different ethnic groups. The PNPLA3 I148M polymorphism is
more frequently present in the Hispanic population, less in those
of European descent, and lowest in African-American
populations (Romeo et al., 2008). Investigators suggested that
the lower frequency of the PNPLA3 I148M polymorphism offers
a potential explanation for the lower prevalence of NAFLD
observed in the African-American population, despite a higher
rate of obesity and diabetes (Romeo et al., 2008; Chinchilla-lópez
et al., 2019). Notably, gene polymorphisms alone do not
completely confer full NAFLD/NASH development (Diehl and
Day, 2017). Rather, genetic predisposition combined with
environmental factors such as obesity, increased abdominal fat
mass and excessive carbohydrate and sugar consumption may
confer a higher risk of developing NASH (Davis et al., 2010).

The Role of Obesity and Systemic Insulin
Resistance
Epidemiological studies have revealed a strong link between
obesity and type 2 diabetes with the development of NASH,
suggesting that an insulin-resistant milieu may be an important
initial driving force for the development of NASH (Lomonaco
et al., 2012; Younossi et al., 2016b). Nevertheless, accumulating
evidence suggests that lean subjects, particularly from the Asian
ethnic group, may also develop NAFLD, commonly referred to as
having “lean NAFLD” (Das and Chowdhury, 2013; Feng et al.,
2014; Chen et al., 2020). Lean NAFLD subjects often exhibit
excess visceral white adipose tissue despite a normal BMI (25 kg/
m2 in Caucasian and 23 kg/m2 in Asian populations) (Ruderman
et al., 1998; Feng et al., 2014; Chen et al., 2020). Excess white
adipose tissue associated with increased plasma and adipose
tissue pro-inflammatory cytokines such as TNF-α and IL-6 has
been reported in both patients with NAFLD and in animal
models of NAFLD (Hotamisligil et al., 1993; Hotamisligil
et al., 1995; Weisberg et al., 2003). In addition to contributing
to chronic low-grade systemic inflammation, adipose-tissue-
derived cytokines are also reported to induce systemic insulin
resistance, by impeding downstream insulin signaling (Peraldi
et al., 1996; Xu et al., 2003). Upon insulin binding, insulin
receptor activation initiates tyrosine phosphorylation of the
downstream cytosolic insulin receptor substrate (IRS) (White,
1997). This signaling cascade is transduced by IRS as it
phosphorylates phosphoinositide 3-kinase (PI3K) and Akt to
further elicit insulin-mediated effects (White, 1997). TNF-α
inhibits insulin downstream signaling by activating c-Jun
NH2-terminal kinase (JNK) which phosphorylates IRS-1 at
Ser307 (Aguirre et al., 2000). As a result of insulin resistance,
adipose-tissue-released free fatty acids (FFA) accumulate in the
plasma (Morigny et al., 2016). Clinical studies of NAFLD patients
have revealed a positive correlation between insulin resistance
and elevated hepatic TGs, suggesting that the adipose-tissue-
released FFAs may ultimately be taken up by the liver and
metabolized into TG (Lomonaco et al., 2012). In addition to
adipose-tissue-derived FFAs, increased dietary fat and
carbohydrate uptake (especially fructose) can also contribute
to steatosis in the liver (Faeh et al., 2005; Lomonaco et al.,
2012; Lambert et al., 2014).

The Role of Dietary Fat Intake and de novo
Lipogenesis
Steatosis is defined as excess TG deposition in the liver, which
gives rise to lipid droplets scattered through the liver tissue
(Figure 2). Notably, of all TGs found in the liver of NAFLD
patients, 59% are derived from plasma FFAs, whereas 15% and
26% are derived from dietary fat and de novo lipogenesis,
respectively (Donnelly et al., 2005). This is consistent with the
role of dietary fat intake and de novo lipogenesis in triggering liver
steatosis, in addition to adipose-tissue-derived FFAs (Lomonaco
et al., 2012; Lambert et al., 2014; Luukkonen et al., 2018). In
support of this, a dietary study using a stabilized isotope tracer
demonstrated that human subjects on a diet rich in saturated-fat
exhibited increased adipose tissue triglyceride storage and
increased intrahepatic TG levels (Luukkonen et al., 2018).
Moreover, long-term consumption of diets with 45–68%
energy derived from fats has been reported to elevate
intrahepatic TG in rodents (Wang et al., 2006; Koppe et al.,
2009). Apart from direct fat uptake, TGs derived from de novo
lipogenesis are reportedly elevated in subjects who were on a high
carbohydrate diet (Faeh et al., 2005; Luukkonen et al., 2018).
Dietary studies in rodents fed with a high fructose diet showed
activation of the lipogenic transcription factor, sterol regulatory
element-binding protein 1c (SCREBP1c), which is responsible for
inducing the transcription of lipogenic enzymes for catalyzing TG
synthesis (Aragno et al., 2009; Softic et al., 2016). Overall, hepatic FFA
accumulation contributes to the development of fatty liver disease. It is,
however, suggested that the ensuing hepatic lipotoxicity is potentially
driving the development of liver injury and inflammation that is
characteristic of NASH (Neuschwander-Tetri, 2010).

The Role of Hepatic Lipotoxicity
Many patients with fatty liver disease show only steatosis for
many years without additional characteristics of NASH
(Calzadilla Bertot and Adams, 2016). Although the exact
mechanism that drives the development of NASH from simple
steatosis is unclear, lipotoxic lipid-inflicted cell injury is proposed
to be a major contributor (Neuschwander-Tetri, 2010). In
agreement with this hypothesis, common lipotoxic lipids such
as cholesterol, TG and DAG are reported to be significantly
elevated in the liver of NASH patients when compared to control
subjects (Puri et al., 2007; Magkos et al., 2012). Animal studies,
where rodents were fed a high fat or high cholesterol diet revealed
that liver resident macrophages can be activated by engulfing
cholesterol crystals resulting in liver inflammation (Van Rooyen
et al., 2011; Mridha et al., 2017). DAG is known for its ability to
exacerbate hepatic insulin resistance by interfering with insulin
signaling via PKC activation (Samuel et al., 2004; Mota et al., 2016).
Moreover, the accumulation of TG in the liver leads to steatosis, which
is a hallmark of fatty liver disease (Thomas et al., 2005). The role of
other FFA-derived lipid species such as ceramide is inconclusive.
NAFLD animal models showed elevated levels of ceramide and
inhibition of ceramide synthesis attenuated liver inflammation
(Jiang et al., 2019; Montandon et al., 2019). Nevertheless, clinical
observations from Magkos et al. (2012) reported that the severity of
NAFLD/NASH is not correlated with hepatic ceramide content,
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although it is worth noting that this clinical study only included a small
patient population of 16 subjects (Magkos et al., 2012). Interestingly,
another study reported an elevated ceramide in the adipose tissue of
obese and insulin resistant human subjects (Turpin et al., 2014).
Clinical studies involving a wider patient cohort is warranted to
confirm the findings from preclinical studies.

The Role of Hepatic Oxidative Stress
Oxidative stress-induced hepatocyte damage and apoptosis have
been reported as one of the main drivers of tissue injury in NASH
patients (Masarone et al., 2018). As an adaptation to minimize
hepatic steatosis, the rate of the disposal of fatty acid via
mitochondrial ß-oxidation was reported to be significantly
upregulated in NAFLD and NASH patients (Sanyal et al.,
2001). However, studies comparing mitochondrial function in
NAFLD and NASH patients have highlighted that this adaptation
is lost in later stage-NASH patients, due to excessive ROS-
induced mitochondrial dysfunction (Kojima et al., 2007;
Koliaki et al., 2015). Apart from mitochondria-derived ROS,
NADPH oxidase 2 (NOX2) activation in liver-infiltrating
macrophages is also reported to contribute to oxidative stress-
induced liver damage in NAFLD (Kim et al., 2017). More
importantly, Yesilova and colleagues (2005) documented that
NAFLD/NASH patients exhibit the reduced activity of
antioxidative mechanisms such as coenzyme Q10 and
superoxide dismutase. In addition, the reduced glutathione:
oxidized glutathione (GSH:GSSG) ratio in animals with diet-
induced with NASH also highlights an imbalance between ROS
and antioxidants (Iruarrizaga-Lejarreta et al., 2017).
Compromised antioxidant capacity enables the generation of
reactive oxygen/nitrogen species such as hydroxyl radical
(•OH), superoxide anion (O2

−•) and peroxynitrite (ONOO−)
to accumulate and readily react with intracellular
biomolecules, such as FFAs and DNA (Fujita et al., 2010;
Mello et al., 2016). As a result, by-products of reactive oxygen
species (ROS)-induced damage such as 4-hydroxynonenal and 3-
nitrotyrosine was significantly enhanced in the plasma and liver,
respectively in NAFLD/NASH patients (Loguercio et al., 2001;
Kojima et al., 2007).

The Role of Hepatic ER Stress
Similar to oxidative stress, upregulated hepatic ER stress is closely
associated with NASH (Lake et al., 2014). Kuo et al. (2012)
provided evidence that an ER stress response is provoked in
response to an increase in FFA accumulation in hepa. Consistent
with this observation, Xiao et al. (2013) demonstrated that mice
deficient in activating transcription factor 4 (ATF4), a major ER-
stress mediator, were protected from high fructose diet-induced
hepatic steatosis, highlighting the necessity of the ER stress
response in driving the accumulation of fat in the liver. In
general, when the concentration of intracellular unfolded
proteins reaches a critical threshold, the ER initiates the
unfolded protein response (UPR) in an attempt to maintain
normal cell function (Lebeaupin et al., 2018). The UPR
encompasses three main pathways: reduced protein translation
by activating protein kinase RNA-like endoplasmic reticulum

kinase-eukaryotic initiation factor 2 alpha (PERK-eIF2α)
signaling (Harding et al., 1999); enhancing protein folding via
the inositol-requiring enzyme 1 (IRE1) and X-box binding
protein 1 (XBP1) signaling cascade (Ning et al., 2011), and
inducing apoptosis and ER-associated degradation by
activating transcription factor 6 (ATF6) associated pathway
(Lebeaupin et al., 2018). However, prolonged unresolved ER
stress is thought to induce the expression of the pro-apoptotic
transcription factor C/EBP Homologous Protein (CHOP)
(Zinszner et al., 1998). In an ER-stress induced NASH model
induced by major urinary protein urokinase-type plasminogen
activator (MUP-uPA, discussed in detail later), animals exhibit
high levels of XBP1s as well as CHOP (Nakagawa et al., 2014).
Although apoptosis was elevated together with increased CHOP
expression, liver injury was not ameliorated in mice with CHOP
ablation (Soon et al., 2010; Nakagawa et al., 2014). It is possible
that CHOP is a downstream product of ER stress but not an active
driver of liver injury in NAFLD/NASH. Clinical studies displayed
varying degrees of ER stress gene and protein expression in
NASH patients (Puri et al., 2008; Lake et al., 2014). It is
noteworthy that both studies showed high variability within
the NASH patient cohort, with Puri et al. (2008) having 21
NASH patients and Lake et al. (2014) having 13 NASH
patients. Given the complexity of NAFLD/NASH pathology,
the expression levels of ER stress mediators may be influenced
by many different factors. The different results observed in these
studies may be attributed to patient variability. Recruitment of a
larger patient cohort and effective patient stratification may
provide a better understanding of the drivers underpinning
ER-stress-driven liver injury.

The Role of c-Jun N-Terminal Kinase
Signaling
There are numerous in vitro and in vivo studies highlighting the
pleiotropic role of intracellular signaling pathways such as JNK in
the development of NASH (Gehrke and Schattenberg, 2020). In
particular, JNK activation by TNF-α has been implicated in
mediating insulin resistance by interfering with the IRS
signaling pathway (Aguirre et al., 2000). In addition, FFA-
induced JNK activation resulted in cell apoptosis in both cell
line cells and primary mouse hepatocytes (Malhi et al., 2006). In
contrast, hepatocytes that are isolated from JNK1 deficient mice
had reduced apoptosis compared to cells from wild type animals
when exposed to FFAs (Malhi et al., 2006). In support of this
finding, mice genetically deficient in JNK1 exhibit attenuated
hepatic steatosis compared to their wild type counterparts in a
dietary model of NASH (Schattenberg et al., 2006). Interestingly,
it has been reported that JNK1 deficiency in the adipose tissue
indeed protects animals against hepatic steatosis (Sabio et al.,
2009). However, JNK1 deficiency in the liver gave rise to glucose
intolerance and insulin resistance in these animals with diet-
induced NASH (Sabio et al., 2009). Therefore, future therapeutic
targeting of the JNK pathway may need to take into consideration
the differential effects that JNK1 blockade might have at different
target organs.
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The Role of Hepatic Inflammation
Inflammation is one of the features that distinguishes NASH from
fatty liver disease (Kleiner et al., 2005). Although the exact
mechanism that triggers inflammation in NASH patients is not
well characterized, several key contributing factors have been
suggested (Kleiner et al., 2005; Younossi et al., 2011). Adipose
tissue-derived cytokines, such as TNF-α, are suggested to
contribute to hepatic inflammation (Hotamisligil et al., 1993; Tilg
and Moschen, 2006). In addition, gut dysbiosis caused by long-term
HFD consumption can result in a leaky gut, enabling endotoxins,
such as lipopolysaccharide to travel to the liver, triggering/enhancing
liver inflammation during NASH (Hildebrandt et al., 2009; Ogawa
et al., 2018). Moreover, metabolism associated molecular patterns
(MAMPS) including FFAs and cholesterol have been reported to
initiate inflammasome-induced inflammatory cell death in
hepatocytes (Csak et al., 2011; Mridha et al., 2017; Wang et al.,
2020). The resulting danger-associatedmolecular patterns (DAMPs)
from inflammatory cell death can stimulate the activation of liver
resident macrophages known as Kupffer cells (Seki and Brenner,
2008; Baffy, 2009). Activated Kupffer cells secrete TNF-α (Tosello-
Trampont et al., 2012), a pro-inflammatory cytokine that mediates
pleiotropic actions including amplifying insulin resistance and
regulating NF-κB activation (Schütze et al., 1995; Peraldi et al.,
1996). NF-κB has been suggested as a key player in exacerbating
liver inflammation, as phosphorylated NF-κB levels are also elevated
in preclinical models of NASH (dela Peña et al., 2005; Nakagawa
et al., 2014). Moreover, pharmacological inhibition of NF-κB
activation significantly reduced the expression of NF-κB
downstream inflammatory genes in animal models of NASH
(Leclercq et al., 2004). In addition to NF-κB activation, TNF-α
also induces the expression of monocyte chemoattractant protein-
1 (MCP-1) which is reported to be elevated in NASH patients
(Haukeland et al., 2006; Greco et al., 2008; Tosello-Trampont et al.,
2012). MCP-1 and its corresponding receptor, C-C chemokines
receptor type 2 (CCR2), are important for the hepatic recruitment of
Ly6C+ monocytes, which can amplify inflammation as they mature
into macrophages (Baeck et al., 2012; Miura et al., 2012). In addition
to monocytes and Kupffer cells, neutrophil-secreted
myeloperoxidase has been proposed to exacerbate liver
inflammation by generating oxidative stress (Rensen et al., 2009).
In agreement with these findings, Zang and colleagues (2015)
discovered that neutrophils are responsible for contributing to
liver inflammation during early stages of NASH. Animals with
Ly6G+-neutrophil depletion in the early stages of NASH
displayed significantly reduced serum ALT, as well as reduced
pro-inflammatory gene expression compared to diseased mice
(Zang et al., 2015). Recent studies demonstrate that patients who
progress to NASH exhibit a high level of natural killer T-cells and
CD8+-T-cells (Tajiri et al., 2009; Gadd et al., 2014). A potential role
for T-helper cells in mediating NASH progression and initiation of
fibrogenesis has indeed been proposed (Rolla et al., 2016).

The Role of Hepatic Fibrosis
Hepatic fibrosis one of the hallmarks of NASH, is characterized
by extensive accumulation of connective tissue which following
extensive tissue damage (Kleiner et al., 2005). The process of

fibrogenesis in the liver is thought to be mainly regulated by
hepatic stellate cells (HSCs), a type of liver progenitor cell
that is quiescent under physiological conditions (Tsuchida
and Friedman, 2017). HSC can be activated to produce
collagen I in response to elevated ER stress by
overexpressing XBP1 (Kim et al., 2016). Apart from ER
stress, liver-specific overexpression of NACHT, Leucine-
rich-repeat and pyrin domain-containing protein 3
(NLRP3) induced marked HSC activation and fibrosis,
indicating a possible role of inflammatory cell death in
inducing HSC activation (Wree et al., 2014). Moreover, it
has been elucidated that engulfment of apoptotic cell bodies
induces HSC activation (Canbay et al., 2003). The activated
HSC transforms from a dormant cell into an active
myofibroblast which is characterized by increased
production of collagen I, collagen III and transforming
growth factor-β (TGF-β) (Dooley et al., 2000; Inagaki et al.,
2001; Zhan et al., 2006). More importantly, TGFβ acts in a
paracrine/autocrine fashion to activate quiescent HSCs, while
also amplifying collagen deposition from activated HSCs
(Hellerbrand et al., 1999). The increased collagen I and III
gradually alters the composition of liver extracellular matrix
and gave rise to tissue scarring (Maher and McGuire, 1990;
Mak and Mei, 2017). If liver injury is not resolved, the
continuous supply of inflammatory cytokines and
apoptotic cell bodies will perpetuate the fibrogenic actions
of HSC and promote further tissue remodeling (Bachem
et al., 1992). When the collagen deposition is evident in
most of the liver tissue, the disease has officially
progressed beyond NASH to cirrhosis (Kleiner et al.,
2005). Moreover, results from longitudinal studies
suggested that NAFLD/NASH patients with severe liver
fibrosis have increased risk of HCC and mortality
compared to those with mild fibrosis (Ekstedt et al., 2015;
Alexander et al., 2019).

PRECLINICAL MODELS OF
NON-ALCOHOLIC STEATOHEPATITIS

NASH is a disease that encompasses a broad array of systemic
metabolic disruptions as well as liver-specific abnormalities
induced by a multitude of processes (Buzzetti et al., 2016).
The complex nature of the disease has made it challenging to
recapitulate the full spectrum of the disease phenotype in animal
models (Friedman et al., 2018a). The currently establishedmodels
are broadly categorized into three main areas: dietary-induced,
diet-toxin-induced and diet-genetically mutated models
(Table 2).

Genetically Induced Non-Alcoholic
Steatohepatitis Models
Genetically-induced obese mouse models of diabetes and pre-
diabetes, such as ob/ob, db/db and foz/foz exhibit are also being used as
models of NASH/NAFLD as they exhibit obesity, insulin resistance
and hyperglycaemia (Bleisch et al., 1952; Marshall et al., 2011).

Frontiers in Pharmacology | www.frontiersin.org December 2020 | Volume 11 | Article 6039268

Peng et al. NASH Mechanisms, Model, Medical Treatment

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


ob/ob and db/db Models
The ob gene transcribes leptin, an adipocyte hormone involved in
the regulation of food intake and insulin sensitivity (Friedman
et al., 1991). In ob/obmice, there is a deficiency in the production
of functional leptin (Friedman et al., 1991; Zhang et al., 1994).
Therefore, animals with this genetic alteration develop
hyperphagia and insulin resistance (Friedman and Halaas,
1998). Sutter and colleagues (2015) demonstrated that ob/ob
mice fed with an HFD rapidly gained weight and developed
insulin resistance and most of the liver NASH features except
fibrosis. Complementing this finding, another study by Leclercq
et al. (2002) reported that leptin is essential to promote liver
fibrosis. Thus, the ob/obmodel is deemed unsuitable for studying
NASH due to this paradoxical shortcoming. Having a similar
metabolic phenotype to the ob/ob animals, the db/db model
exhibits leptin resistance caused by premature termination of
leptin receptor transcription (Chen et al., 1996). Disruption in
transcription gave rise to faulty leptin receptors which precluded
normal leptin signaling (Chen et al., 1996). The db/dbmodel gave
rise to severe obesity, glucose intolerance and liver steatosis.
Nonetheless, liver inflammation and fibrosis in this model
were reported to be mild (Trak-Smayra et al., 2011). Several
studies use db/db mice coupled with a methionine-choline-
deficient (MCD) diet feeding to induce more severe liver
injury (Sahai et al., 2004; Rinella et al., 2008; Staels et al.,
2013). More importantly, it has been proposed that whilst ob/
ob and db/db mice can be good models for studying obesity and
insulin resistance, both ob and db mutations are rare in humans,
therefore, these mice may be less clinically-relevant as animal
models of NASH (Carlsson et al., 1997; Wang et al., 2014).

foz/foz Model
The foz/foz mice have also been used as an obese and diabetic
NASH model (Van Rooyen et al., 2011; Haczeyni et al., 2017;
Mridha et al., 2017). The foz/foz mice were generated from a
recessive mutation on the AlstrÖm syndrome 1 (Alms1) gene
which encodes proteins involved in ciliary function (Marshall
et al., 2011). Mice that have genetic mutation typically develop
hyperinsulinemia, hyperglycaemia, and hypercholesterolemia
together with liver inflammation (Van Rooyen et al., 2011).
Nevertheless, obeticholic acid (OCA), an FDA-approved drug
for NASH (discussed in detail below), did not improve liver
histology of foz/foz mice, like it did in NASH patients (Haczeyni
et al., 2017; Younossi et al., 2019). This finding raises a question
regarding the use of animal models that are merely a “phenocopy”
of human NASH, as humans do not normally develop NASH due
to the rare autosomal recessive Alms1 mutation (Marshall et al.,
2011).

Apolipoprotein E Knock-Out and Knock-In Models
ApoE is a multifunctional protein that plays an important role in
lipid transport, abnormality in the type 2 ApoE results in type III
hyperlipoproteinemia (Huang and Mahley, 2014). Mice that are
ApoE deficient (ApoE−/−) are commonly used as an animal
model for atherosclerosis (Song et al., 2011). Although weight
gain and abnormal glucose tolerance can be achieved in ApoE−/−
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animals, the model by itself only gave rise to negligible hepatic
steatosis, inflammation and fibrosis (Schierwagen et al., 2015).
Only when ApoE deficiency is combined with a high caloric diet,
or a MCD diet does it then induce extensive liver injury
(Schierwagen et al., 2015; Zang et al., 2015). Furthermore,
hApoE2-knock-in mice, where the human ApoE2 gene
replaced the murine gene, is used as another model for
NASH studies (Shiri-Sverdlov et al., 2006; Staels et al.,
2013). Interestingly, despite inflammatory and fibrotic
genes both being upregulated in the liver, only mild
steatosis was observed in the hApoE2 mice (Shiri-Sverdlov
et al., 2006). Noteworthily, there are few clinical studies
examining the association between ApoE2 polymorphism
and NAFLD. In one clinical study 57 NAFLD patients from
a Turkish ethnic background showed no significant
association between ApoE2 and NAFLD (Sazci et al., 2008).
Results from this study are consistent with a case controlled
study by Demirag et al. (2007) involving 237 NAFLD patients,
where subjects with ApoE2 polymorphism showed a
significant association with dyslipidaemia but not with
NAFLD. The ability to generate a model with
dyslipidaemia was what made ApoE−/− and hApoE2 KI
mice a potential model for the study of NAFLD/NASH
(Sazci et al., 2008). However, Severson et al. (2016) in their
systematic clinical review concluded that ApoE
polymorphism may not play as important a role as other
genetic polymorphisms such as PNPLA3.

Phospholipase Domain-Containing-3
Variant-Knock-In Model
Recently, there have been attempts to develop a fatty liver disease
mouse model by introducing the human PNPLA3 polymorphism
in mice to mimic human genetic mutant-induced NASH
(Smagris et al., 2015). However, mice with human PNPLA3
variant knock-in (KI) only showed elevated hepatic fat when
fed a HFD, whereas the extent of liver inflammation and fibrosis
in PNPLA3 variant KI mice was comparable to wildtype animals
(Smagris et al., 2015). It has been suggested that this model may
be suitable for the study of fatty liver disease and hepatic insulin
resistance (Kumashiro et al., 2013). Further studies of the
PNPLA3 polymorphism in the context of NASH in humans
and its mechanism of action are required, to confirm whether
murine models with this genetic mutation are good preclinical
models of NASH.

Major Urinary Protein Urokinase-Type Plasminogen
Activator Model
A relatively new NASH model has been developed by transiently
upregulating ER stress in the liver by delivering major urinary
protein urokinase plasminogen activator (MUP-uPA) into the
hepatocytes via adeno associated virus coupled with a HFD
(Nakagawa et al., 2014; Febbraio et al., 2019). The method of
generating MUP-uPA-transgenic mice was first described by
Weglarz et al. (2000). The MUP-uPA transgenic mice is
generated by delivering adeno-associated virus containing the
uPA protein specifically to hepatocytes. This results in an

accumulation of uPA protein in the ER of hepatocytes and
thus transiently upregulates ER stress in the hepatocytes
(Nakagawa et al., 2014). The MUP-uPA mice placed on a
HFD exhibited significantly upregulated liver injury markers of
NASH, including ER-stress, fibrosis and inflammation at
24 weeks (Nakagawa et al., 2014; Lebeaupin et al., 2018).
Furthermore, MUP-uPA mice spontaneously progress from
NASH to HCC by 32 weeks of age, exhibiting markers
frequently observed in humans HCC tissues such as alpha
fetoprotein and p62 (Nakagawa et al., 2014). In support of this
finding, Shalapour et al. (2017) observed an elevation of
immunosuppressive IgA+ cells, interleukin 10 and
programmed cell death ligand-1 in both NASH-derived HCC
patients and theMUP-uPAmice that were placed on HFD. More
importantly, some degree of transcriptomic alignments were
observed between human NASH/HCC subjects and the MUP-
uPA model, highlighting the clinical relevance of this model
(Febbraio et al., 2019).

Diet-Induced Models
Other than genetic predisposition, a diet high in fat and sugar is
one of the major factors that is strongly associated with the
development of NASH in humans (Faeh et al., 2005; Luukkonen
et al., 2018). Diet-induced NASH models include, but are not
limited to, MCD diet (Rinella et al., 2008), HFD (HFD) (Kohli
et al., 2010), western diet (WD) (Bruckbauer et al., 2016) and
Amylin diet (AMLN) (Clapper et al., 2013; Asgharpour et al.,
2016) with only the most widely used models summarized here.
MCD is a dietary model used for inducing NASH-like liver
features with 40% of sucrose and 10% energy derived from lipids
but is deficient in methionine and choline (Anstee and Goldin,
2006). Methionine and choline are essential nutrients for
growth and development in humans (Zeisel and Da Costa,
2009). Feeding a diet which is deficient of these two
nutrients can lead to the rapid development of hepatic
lesions such as hepatic steatosis, inflammation and fibrosis
(Oz et al., 2008). Nevertheless, Rinella et al. (2004) showed
significantly lower body weight and unaltered plasma insulin in
MCD diet-fed mice, highlighting the absence of key metabolic
characteristics of NASH such as insulin resistance and obesity in
this model. Overall, the field has reached a consensus that the
MCD can exhibit histological features that are not only similar
to, but are equally severe, as those in human NASH, though key
metabolic features are missing (Leclercq et al., 2000; Rinella and
Green, 2004; Rinella et al., 2008; Wortham et al., 2008). There
have been attempts to use only methionine-deficient (MD) or
choline deficient (CD) diets to induce NASH (Caballero et al.,
2010). Despite animals on MD and CD had reduced weight loss,
metabolic features that are present in NASH in human was not
observed (Caballero et al., 2010; Febbraio et al., 2019). To
develop a NASH model that mimics both systemic and
hepatic pathology, many attempts have been made using
varying degrees of fat (∼40–70% energy derived from fat)
and 0.1–2% cholesterol in the diet (Anstee and Goldin,
2006). The use of high-fat content alone is normally referred
to as the HFD model (Kohli et al., 2010), whereas WD
represents a type of HFD with the addition of cholesterol
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(Machado et al., 2015; Bruckbauer et al., 2016). Models that
received HFD or WD feeding develop weight gain, insulin
resistance and hepatic steatosis which are concordant with
the insulin resistance and hyperglycaemia of humans who
have NASH (Zheng et al., 2008; Kohli et al., 2010).
However, in some cases, HFD and WD models are reported
to have minimal fibrosis (Febbraio et al., 2019). In recent years,
the ALMN diet-induced NASH model developed by Amylin
Pharmaceuticals (hence ALMN model), composed of 40%
lipids, 2% cholesterol and water supplemented with fructose,
has been reported to display both systemic and liver-specific
characteristics of human NASH at 28–30 weeks of AMLN diet
feeding (Clapper et al., 2013; Boland et al., 2019). Overall,
NASH animal models induced by dietary interventions alone
require a long time to achieve a mild to moderate NASH
phenotype. Characteristics such as moderate to severe liver
injury and fibrosis may take up to 20–30 weeks of dietary
feeding (Charlton et al., 2011; Clapper et al., 2013).
However, the longer the study period of animal experiments,
the higher the chance of animals dying due to aging and age-
related complications. In addition, such models are resource-
draining and less time-effective. Thus, other alternative models
are being explored in the attempt to induce severe liver injury in
a shorter period.

Diet and Toxin-Induced Models
To increase the severity of liver injury in rodent NASH models,
toxins such as streptozotocin (STZ) (Fujii et al., 2013),
diethylnitrosamine (DEN) (Park et al., 2010) and carbon
tetrachloride (CCL4) (Tsuchida et al., 2018) have been added
to the modified diet.

STAM Model
In the STAM model, a single dose (200 μg) of the pancreatic
ß-cell toxin STZ is administered subcutaneously to 2 day old
neonatal C57BL/6 mice followed by 4–6 weeks of HFD
feeding (Fujii et al., 2013; Saito et al., 2017; Middleton
et al., 2018). By destroying pancreatic ß-cells, the STZ-
induced hyperglycaemia is coupled with HFD to drive liver
damage feeding (Fujii et al., 2013; Saito et al., 2017;
Middleton et al., 2018). Although the STAM model gives
rise to liver steatosis, inflammation and fibrosis, these
animals develop conditions that resemble type 1 rather
than type 2 diabetes, as indicated by the overt
hyperglycaemia (blood glucose 600 mg/dl) and a lack of
hyperinsulinemia, a sign of insulin resistance (plasma
insulin <0.5 ng/ml) (Saito et al., 2017). Although the
STAM model has been discussed in other reviews,
consideration of the combination of STZ and HFD (STZ +
HFD) where STZ was delivered at a later stage of the animal’s
life is less frequently noted (Friedman et al., 2018a; Farrell
et al., 2019; Oligschlaeger and Shiri-Sverdlov, 2020). FVB/N
mice which received STZ (55 mg/kg) at 6 weeks old coupled
to a HFD displayed hyperinsulinemia (Tate et al., 2019).
Moreover, rats fed with a HFD before receiving STZ
injection also showed hyperinsulinemia (Reed et al.,
2000). The contradictory findings in the literature may be

partially explained by variable susceptibility toward STZ in
different mouse strains (FVB/N Vs C57BL/6) (Saito et al.,
2017; Tate et al., 2019; Marshall et al., 2020). Noteworthily,
the STZ model has also been criticized for its ability to
damage other organs such as the kidney and the liver via
DNA alkylation (Lenzen, 2008). STZ-induced liver injury is
thought to be direct rather than secondary to the natural
course of NASH-induced liver injury (driven by T2D and
obesity) which is one of the major issues limiting the utility
of the STAM model (Middleton et al., 2018; Farrell et al.,
2019).

Diethylnitrosamine + HFD Model
The hepatic carcinogen DEN has been shown to induce severe
hepatic injury, by inducing mutagenic DNA damage and
upregulating ROS production (Williams et al., 1996). After
receiving 25–30 mg/kg of DEN at 14 days old, rodents which
were fed a HFD for 4–6 weeks were reported to display severe
liver injury characterized by elevated inflammatory gene
expression and hepatocyte ballooning (Wang et al., 2009;
Park et al., 2010). An important caveat of this model is that
DEN+HFD-treated animals rapidly develop hepatocellular carcinoma
(HCC) due to the potential carcinogenic effects of DEN (Wang et al.,
2009).

Western Diet + Carbon Tetrachloride Model
Another NASHmodel is induced by the hepatotoxin CCL4 which
rapidly causes severe liver inflammation and fibrosis (Hellerbrand
et al., 1999; Baeck et al., 2012). The use of CCL4 coupled with a WD
is also reported to give rise to weight gain and severe liver histological
features similar to those of NASH patients (Tsuchida et al., 2018).
Although this model is capable of inducing stage 3 fibrosis after
12 weeks of HFD feeding and CCL4 treatment, CCL4 induces severe
liver injury via oxidative DNA damage, which is distinctly different
from the natural course of NASH (Alkreathy et al., 2014; Calzadilla
Bertot and Adams, 2016).

NASH is a heterogenous disease characterized by both liver
injury and systemic metabolic disruptions (Friedman et al.,
2018a). Currently, although diet-induced models such as
HFD and ALMN diet-induced NASH models are time
consuming and only show mild liver injuries, they recapitulate
the natural course of NASH development in humans (Friedman
et al., 2018a). The MUP-uPA model, although not widely-used at
the moment, does mimic aspects of NASH in humans as oppose to
the MCD diet and some toxin-induced NASH models (Febbraio
et al., 2019). A summary of all the frequently used animal models of
NASH is provided in Table 2.

CURRENT INTERVENTIONS IN
NON-ALCOHOLIC STEATOHEPATITIS
MANAGEMENT

Lifestyle Modification
Management of fatty liver diseases has been addressed by lifestyle
modifications, including regular physical exercise and consuming
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a hypocaloric diet (Vilar-Gomez et al., 2015). Often, a reduction
of ≥5–10% of the subject’s body weight is required to achieve
attenuation of NASH (Vilar-Gomez et al., 2015; Younossi et al.,
2018). Nevertheless, a study also noted a lack of patient
compliance with the proposed exercise and nutritional
recommendations after the study period (Eckard et al., 2013).
More importantly, lifestyle changes alone are insufficient to stop
disease progression, especially for patients who are at later stages
of the disease where there are ongoing liver inflammation and
fibrosis (Promrat et al., 2010). Patients with progressed fibrosis
have an increased risk of developing cirrhosis and liver failure,
and it is currently the second leading cause of liver transplant
(Wong et al., 2015).

Pharmacological Treatments
Apart from lifestyle modifications, obeticholic acid (OCA),
originally approved for the treatment of primary biliary
cholangitis (PBC), is the only FDA-approved treatment for
NASH (Vilar-Gomez et al., 2015; Younossi et al., 2019). OCA
is a farnesoid X receptor (FXR) agonist which regulates the
expression of transcription factors that reduce bile acid
synthesis and hepatic steatosis (Pellicciari et al., 2002; Jiao
et al., 2015). In the FLINT trial (NCT01265498), OCA has
been shown to improve liver inflammation with no worsening
of liver fibrosis (Neuschwander-Tetri et al., 2015). In the recent
18 months phase III clinical trial REGENERATE
(NCT02548351), 23% (71/308) of the patient cohort who
received 25 mg daily achieved reduction of NAS by at least
one score without worsening of fibrosis compared to 12% (37/
311) in the placebo group (Eslam et al., 2019). The trial results
enabled OCA to be granted accelerated approval from the FDA
(Younossi et al., 2019). Although, there were 19 deaths observed
in PBC patients who received obeticholic acid due to incorrect
dosing (Eslam et al., 2019). Within in the 19 cases of death, 8 cases
were reported. The cause of death for seven patients were due to
the worsening of PBC, and the other patient due to cardiovascular
complications (FDA website). A safety warning has been issued
by the FDA for patients and health professionals regarding the
use of obeticholic acid for its potential effect of worsening liver
disease in patients.

Vitamin E is an anti-oxidant which acts by reducing the ROS and
inflammation-induced liver damage (Singh et al., 2005). Results from a
96weeks multicenter, placebo-controlled trial showed improvements
of liver histology such as inflammation, steatosis and ballooning in 43%
(34/84) of the non-diabetic NAFLD subjects treated with 800IU
vitamin E daily compared to 19% (16/83) treated with placebo
(Sanyal et al., 2010). However, concerns that long-term vitamin E
use may be associated with hemorrhagic stroke are also highlighted in
the study (Sanyal et al., 2010). Alarmingly, in a separate study where
vitamin E (400IU/d) was administered for 7–11 years showed
increased risk of prostate cancer was identified in healthy men with
long-term vitamin E treatment (Klein et al., 2011).

Pioglitazone primarily targets the PPARγ receptor which
ameliorates insulin resistance, an independent predictor of
NASH (Belfort et al., 2006). In a 96 weeks placebo-controlled
trial, 30 mg of pioglitazone daily also improved the liver histology
in 34% (27/80) of non-diabetic NASH patients, although an

average of 4.7 kg weight gain was reported in the treatment
group (Sanyal et al., 2010; Chalasani et al., 2012). Whilst a
recent 18 months study showed that pioglitazone treatment
combined with a hypocaloric diet (500 kcal/day deficit)
improved liver histology in 51% (26/50) of patients with
NASH and diabetes, its efficacy still needs to be evaluated in
larger patient cohorts (Cusi et al., 2016).

Currently, both pioglitazone and vitamin E are currently
prescribed in a case-by-case manner, as the risk of all-causes
of liver-related mortality of these two drugs still need to be
evaluated in a larger patient cohort (Sanyal et al., 2010;
Chalasani et al., 2012; Younossi et al., 2018). A summary
of NASH/NAFLD-related drug treatment is displayed in
Table 3.

Pharmacological Treatments Under Clinical
Trial
Most phase IIb and phase III clinical trials of NASH generally
have two primary clinical endpoints: 1) resolution of NASH
without worsening of liver fibrosis and/or 2) improving liver
fibrosis without worsening of NASH (clinicaltrials.gov).
Resolution of NASH generally refers to a reduction of NAS,
whereas improvement of liver fibrosis refers to reduction in
fibrosis scores by liver histology (Kleiner et al., 2005). Many
pharmacological treatments are undergoing clinical trials
(Smeuninx et al., 2020). Drug candidates from their
corresponding pharmaceutical companies and the pathways
they are targeting are presented in Figure 3.

Glucagon-Like Peptide 1 Receptor Agonists
Synthetic long-acting glucagon-like peptide 1 (GLP-1) receptor
agonists such as liraglutide and semaglutide were originally
approved for treatment of type 2 diabetes (Pearson et al., 2019).
Recently, both liraglutide and semaglutide have gained
attention for their efficacy in attenuating insulin resistance,
hyperglycemia and liver lipotoxicity in NASH patients
(Armstrong et al., 2013; Armstrong et al., 2016). GLP-1, a
hormone secreted by the small intestine after a meal, has been
observed to restore insulin sensitivity and attenuate
hyperglycemia in humans (Garber et al., 2009). Treatment
of NASH with GLP-1 receptor agonists was reported to
ameliorate liver steatosis in both preclinical and clinical
studies (Ding et al., 2006; Armstrong et al., 2013). Novo
Nordisk has completed its 48 weeks phase II clinical trial
(NCT02970942) assessing the efficacy of 1.8 mg liraglutide
given daily and it is preparing for its phase III clinical trial.
Moreover, semaglutide, a structurally-related analogue of GLP-
1 receptor agonist, significantly reduced body weight and liver
enzymes in obese and T2D patients (Newsome et al., 2019).
Information from a 72 weeks multicenter phase II trial for
semaglutide (NCT02970942) showed that, 33 of 56 NASH
patients who received 0.4 mg semaglutide had NASH
resolution compared to 10 of 58 patients on placebo
(Newsome et al., 2020). Semaglutide was well tolerated with
the reported adverse event being gastrointestinal events
(Newsome et al., 2020).
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TABLE 3 | Summary table of drugs for NASH treatment.

Drug name Target Mechanism of
action

Trial phase
NCT no

Trial population Outcome (estimated
completion date)

References

Aramchol SCD1 inhibitor ↓DNL synthesis Phase III NCT04104321 NASH TBD FDA website
June 2022

↓Steatosis Phase II NCT01094158 NAFLD/NASH/MS Complete (Safadi et al., 2014)
Reduced the percentage of liver fat at

Cenicriviroc CCR2/5 dual
inhibitor

↓Inflammation Phase III NCT03028740 NAFLD/NASH/MS TBD FDA website
October 2021

Phase II NCT02217475 NAFLD/NASH/MS Complete (Friedman et al., 2018b)
Reduced fibrosis with no worsening of inflammation and steatosis

Elafibranor PPARα/δ agonist ↓Inflammation Phase II,I NCT02704403 NAFLD/NASH/MS Complete (unsuccessful) (GENFIT S.A, 2020)
High placebo effect, no difference between placebo arm and
treatment arm

↓Fibrosis Phase IIb, NCT01694849 NAFLD/NASH/MS Complete (Ratziu et al., 2016)
Well tolerated in patients. No significant change between placebo and
treatment

↓Insulin
resistance

Phase II, NCT01275469 Obese/pre-diabetic Complete (Cariou et al., 2011)
Improved insulin resistance, decreased fasting TG and blood glucose.
Increased HDL

Emricasan Pan-caspase
inhibitor

↓Inflammation Phase II NCT02686762 NAFLD/NASH/MS Complete (unsuccessful) (Ratziu et al., 2012; Harrison
et al., 2020a)No improvement in liver histology in patients with NASH, and may

exhibit worsened fibrosis and ballooning
GR-MD-02 Galectin-3

inhibitor
↓Fibrosis Phase II NCT02462967 NASH, cirrhosis, and portal

hypertension
Complete (unsuccessful) (Chalasani et al., 2020)
No improvement in hepatic venous pressure and liver histology
compared to placebo

Liraglutide GLP-1 agonist ↓Insulin
resistance

Phase II NCT01237119 NASH/NAFLD/MS Complete (Preparing for phase III) (Armstrong et al., 2016)

↓Blood glucose Reduced body weight and liver steatosis, and plasma ALT/AST
↓Body weight

Semaglutide GLP-1 agonist ↓Insulin
resistance

Phase II NCT02453711 Obese/Type 2 diabetic Complete (successful, not for NASH) (Newsome et al., 2019)

↓Blood glucose Reduced plasma ALT and significant weight loss
↓Body weight

Obeticholic
acid

FXR agonist ↓Bile acid
synthesis

FDA-approved PHASEIII
NCT02548351

NASH/NAFLD/MS Complete (successful) (Eslam et al., 2019)

↓Inflammation 23% patients in the 25 mg group had improved fibrosis, but had
increased pruritus↓Fibrosis

Selonsertib ASK1 inhibitor ↓Cell apoptosis Phase III NCT03053050
NCT03053063

NASH/NAFLD/MS Complete (unsuccessful) (Harrison et al., 2020b)
↓Inflammation Neither trial improved fibrosis without worsening of NASH
↓Fibrosis

Pioglitazone PPARγ agonist ↓Insulin
resistance

NCT00063622 Phase III Non-diabetic NAFLD Completed (successful) (Sanyal et al., 2010)
Lowered plasma ALT/AST, liver inflammation and steatosis

Vitamin E Antioxidant ↓Oxidative stress NCT00063622 Phase III Non-diabetic NAFLD Completed (successful) (Sanyal et al., 2010)
Lowered plasma ALT/AST, liver inflammation and steatosis

MS: metabolic syndrome; TG: triglyceride; HDL: high-density lipoprotein; SCD1: stearoyl CoA desaturase 1, CCR2/5: C-C chemokines receptor type 2/5, GLP-1: glucagon-like peptide-1, FXR: Farnesoid X receptor, ASK1: Apoptosis signal-
regulating kinase 1, PPARc: peroxisome proliferator-activated receptor c.

Frontiers
in

P
harm

acology
|w

w
w
.frontiersin.org

D
ecem

ber
2020

|V
olum

e
11

|A
rticle

603926
13

P
eng

et
al.

N
A
S
H

M
echanism

s,
M
odel,

M
edicalTreatm

ent

https://clinicaltrials.gov/ct2/show/NCT04104321
https://clinicaltrials.gov/ct2/show/NCT01094158
https://clinicaltrials.gov/ct2/show/NCT03028740
https://clinicaltrials.gov/ct2/show/NCT02217475
https://clinicaltrials.gov/ct2/show/NCT02704403
https://clinicaltrials.gov/ct2/show/NCT01694849
https://clinicaltrials.gov/ct2/show/NCT01275469
https://clinicaltrials.gov/ct2/show/NCT02686762
https://clinicaltrials.gov/ct2/show/NCT02462967
https://clinicaltrials.gov/ct2/show/NCT01237119
https://clinicaltrials.gov/ct2/show/NCT02453711
https://clinicaltrials.gov/ct2/show/NCT02548351
https://clinicaltrials.gov/ct2/show/NCT03053050
https://clinicaltrials.gov/ct2/show/NCT03053063
https://clinicaltrials.gov/ct2/show/NCT00063622
https://clinicaltrials.gov/ct2/show/NCT00063622
https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


DNL Enzyme Inhibitors
De novo lipogenesis pathway enzymes are another popular target
for pipeline drugs. Aramchol, is a synthetic molecule created by
conjugating bile acid and arachidic acid (Safadi et al., 2014).
Aramchol acts by inhibiting the SCD-1 enzyme, which is a key
rate limiting enzyme that is responsible for converting FA into
TG (Softic et al., 2016). Aramchol has displayed antioxidative,
and anti-fibrotic effects in animal studies whilst reducing hepatic
steatosis (Iruarrizaga-Lejarreta et al., 2017). A phase II clinical
trial for (NCT01094158) showed that NASH patients treated with
300 mg aramchol daily had liver fat reduced by 12.6–22.1% as
compared to the placebo group in which case the liver fat
increased by 6.4–36.3% (Safadi et al., 2014). Aramchol is
currently undergoing phase III trial (NCT04104321) with an
estimated completion date of June 2022.

Anti-Inflammatory and Anti-Apoptotic Drugs
Liver inflammation, one of the hallmarks of NASH is also one of
the popular targets of pipeline drugs. Several agents targeting
inflammation, such as emricasan, a pan caspase inhibitor were
observed to be unsuccessful in meeting the primary clinical trial
endpoints (Harrison et al., 2020a). Similarly, apoptosis signal-
regulating kinase 1 (ASK1) inhibitor selonsertib which acts to
prevent hepatocyte apoptosis, displayed promising results in
reversing fibrosis and lowering liver inflammation in various
preclinical models (Alexander et al., 2019; Challa et al., 2019).
However, selonsertib did not reach its primary clinical endpoint,
i.e., reversing fibrosis, in either of its phase III trials (STELLAR3:

NCT03053050, STELLAR4: NCT03053063). It is worth noting
that animal models have limited life-span compared to humans.
It is difficulty to accurately determine whether the treatment in
animal models is reducing fibrosis or merely delaying its
progression.

Cenicriviroc, a CCR2/CCR5 dual-inhibitor is currently
undergoing phase III trial with an estimated completion date
around October 2021 (NCT03028740). CCR2 is one of the
major mechanisms for the recruitment of extrahepatic
inflammatory cells (Karlmark et al., 2009; Miura et al., 2012).
Inhibition of CCR2 has been shown to exhibit anti-
inflammatory effects in the liver in animal studies (Baeck
et al., 2012; Krenkel et al., 2018). More importantly, 20%
(23/145) of patients receiving 150 mg of cenicriviroc daily
had reduced fibrosis as opposed to 10% (14/144) of subjects
receiving placebo in its phase II clinical trial (Friedman et al.,
2018b; Lefere et al., 2020). Overall, the level of inflammation was
reduced in patients receiving cenicriviroc compared to controls
(Friedman et al., 2018b; Lefere et al., 2020).

PPAR Agonist
Elafibranor, a peroxisome proliferator-activated receptor α/δ
(PPARα/δ) dual agonist, was one of the drugs that demonstrated
efficacy in improving NASH histology in its phase II trial with 274
patients (Ratziu et al., 2016). Preclinical models used for validation
of elafibranor include db/db mice, CCL4-induced liver fibrosis
model and hApoE2-KI mice coupled to WD (Staels et al., 2013).
PPARα activation improves NASH by increasing FFA ß-oxidation

FIGURE 3 | Current NASH/NAFLD pipeline drugs with targeted pathways Pipeline drugs labeled with its pharmaceutical company are placed in their
corresponding trial phases. The circle color indicates its targeted pathway(s) as shown in the legend within the figure. Information are gathered from clinicaltrials.gov and
pharmaceutical company websites. Figure is designed and drawn using Microsoft Powerpoint.
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(Stienstra et al., 2007) and lowering inflammation via negative
cross-talk with NF-κB (Delerive et al., 1999). PPARδ is responsible
for improving hepatic and systemic insulin sensitivity (Lee et al.,
2006). Elafibranor attenuated fibrosis in the CCL4-induced liver
fibrosis model (Staels et al., 2013; Tsuchida et al., 2018). Moreover,
elevated TG, VLDL and inflammatory gene expression exhibited by
theWD-fed hApoE2-KI model were also normalized by elafibranor
(Shiri-Sverdlov et al., 2006; Staels et al., 2013). However, neither of
the CCL4 and the WD + hApoE2-KI models exhibit obesity or
hyperglycemia (Shiri-Sverdlov et al., 2006; Tsuchida et al., 2018).
Elafibranor’s efficacy in improving glucose homeostasis and insulin
sensitivity was separately demonstrated in obese db/db mice (Hanf
et al., 2014). Nevertheless, elafibranor did not achieve its primary
clinical endpoint in its recently completed 72 weeks phase III trial
(RESOLVE-IT: NCT02704403). Results and interim analysis of the
RESOLVE-IT trial showed no significant difference between the
placebo arm and the treatment arm (120 mg/daily) (GENFIT S.A,
2020). Although, the full dataset will not be released until the second
half of 2020 at an international hepatology congress (GENFIT S.A,
2020). While many reasons may have contributed to the failure for
candidate drugs to successfullymove from pre-clinical studies to the
clinic, the use of animal models that are only partially mimicking
the NASH phenotype (as highlighted in themodels’ section)may be
an important factor. Nevertheless, the full dataset from the phase III
clinical study of elafibranor will not be released until the second half
of 2020 at an international hepatology congress (GENFIT S.A,
2020). Further analysis of the existing clinical data is required to
determine the therapeutic effect of long-term elafibranor treatment
in a large trial population.

Plant-Based Natural Products
In recent years, there has been growing interests in using plant-
based natural products or extracts for the treatment of NASH
(Jadeja et al., 2014). Many of these products are widely-used as
traditional Chinese medicine and are now being investigated for
their potential beneficial effect for NASH in preclinical models (Jadeja
et al., 2014; Sun et al., 2017). Plants includingAcanthopanax senticosus
(Siberian Ginseng) (Park et al., 2006) and glycyrrhizic acid (Sun et al.,
2017) showed reduced hepatic de novo lipogenesis and improved
insulin sensitivity in mouse models of NASH. Likewise, a series of
natural-product-derived analogues are also being tested for
therapeutic potential in mice with diet-induced NASH and have
been shown to lower hepatic lipogenesis as well as ER stress and
oxidative stress (Rao et al., 2015; Rao et al., 2019; Rao et al., 2020).
Moreover, the use of herbal medicine for the induction of
autophagy as a treatment for NASH/NAFLD has been
thoroughly reviewed by Zhang et al. (2018). Nevertheless, large-
scale clinical trials involving participants from multiple ethnic
background are required to confirm the therapeutic potential of
plant-based natural products for counteracting NASH.

PERSPECTIVES

In order to further bridge the gap between preclinical and clinical
studies, animal studies should exploit publicly-available gene
profiling data derived from biopsies of healthy controls and

NASH patients to verify the animal models (Morrison et al.,
2018). The “multiple-omits” approach, incorporating proteomics
and lipidomics into the preclinical studies may give an integrated
understanding of the animal model and can better assess its
translatability as a preclinical model for human NASH (Hasin
et al., 2017). Currently, proteomics and lipidomic analyses have
often been used for the identification of potential non-invasive
biomarkers of NASH in humans, which can also potentially shed
light on patient stratification (Puri et al., 2007; Puri et al., 2009;
Niu et al., 2019). In addition, validation of non-invasive
diagnostic tools such as MRE for its ability to quantify liver
fibrosis in a larger patient population would also largely benefit
the assessment of clinical trial outcome and longitudinal follow-
up studies (Allen et al., 2020).

Furthermore, clinical relevance of a disease model can be
further validated by proven efficacy of pharmacological interventions
that have shown to be beneficial in clinical trials. Currently, pipeline
drugs such as aramchol, GLP-1 receptor agonists, and cenicriviroc as
well as OCA have all shown efficacy in improving NASH liver
histology in NASH patients (Safadi et al., 2014; Armstrong et al.,
2016; Friedman et al., 2018b; Eslam et al., 2019). The development of
preclinical models can also leverage on clinical trial results where
ideally, the use of these drugs in the animal model should display
similar effects to those that are observed in the human studies. The
converse is equally important, whereby drugs failing to show efficacy
in human trials should ideally also fail in animal models that have
both sensitivity and specificity.

Epidemiological studies indicate that the incidence of NAFLD
and NASH is estimated to rise to 101 million and 27 million cases
respectively by 2030 (Estes et al., 2018). Patients with progressed
NASH have an increased risk of developing cirrhosis and liver
failure, which is currently the second leading cause of liver
transplantation (Wong et al., 2015). The enormous discrepancy
between clinical trial results and preclinical data remain a
prominent issue in the field of NASH research. The complexity
of NASH disease pathology warrants the development of a clinically
relevant NASH model for studying the mechanism of pathogenesis
and drug evaluation.
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