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anti-inflammatory drugs
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Infection by influenza A viruses (IAV) is frequently characterized by robust inflammation
that is usually more pronounced in the case of avian influenza. It is becoming clearer that
the morbidity and pathogenesis caused by IAV are consequences of this inflammatory
response, with several components of the innate immune system acting as the main
players. It has been postulated that using a therapeutic approach to limit the innate
immune response in combination with antiviral drugs has the potential to diminish
symptoms and tissue damage caused by IAV infection. Indeed, some anti-inflammatory
agents have been shown to be effective in animal models in reducing IAV pathology as
a proof of principle. The main challenge in developing such therapies is to selectively
modulate signaling pathways that contribute to lung injury while maintaining the ability
of the host cells to mount an antiviral response to control virus replication. However, the
dissection of those pathways is very complex given the numerous components regulated
by the same factors (i.e., NF kappa B transcription factors) and the large number of players
involved in this regulation, some of which may be undescribed or unknown. This article
provides a comprehensive review of the current knowledge regarding the innate immune
responses associated with tissue damage by IAV infection, the understanding of which
is essential for the development of effective immunomodulatory drugs. Furthermore, we
summarize the recent advances on the development and evaluation of such drugs as well
as the lessons learned from those studies.
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Introduction

Influenza A virus (IAV) infection usually results in a mild and self-limiting disease that in some
individuals, commonly those with underlying medical conditions, can result in complications
leading to severe disease and death. Pneumonia, bronchitis, sinus infections, and ear infections
are examples of influenza-related complications (1). Thus, influenza has a significant economic
impact and is a very important public health concern, with a rate for the 2014–2015 season of 57.1
laboratory-confirmed influenza-associated hospitalizations per 100,000 people reported as ofMarch
14th, 2015 (2). The highest rate of hospitalization is among adults over 65 years old, followed by
children under 4 years old, and the average annual influenza-associated deaths in the United States
from 1976 to 2007 are 23,607 (3).
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Characteristics of the IAV genome, such as its negative-sense,
single-stranded segmented RNA, and its airborne transmission
in humans provides this virus with a great pandemic potential.
The co-circulation of different subtypes in animal reservoirs leads
to reassortment (antigenic shift), which may result in a novel
subtype that is able to transmit to the human population (4). The
circulating IAV subtypes in humans as of 2015 are H1N1 viruses,
which caused a pandemic in 2009, and H3N2 viruses; however,
several different subtypes have circulated in humans during the
last century. The natural hosts of IAV are aquatic birds, which
may sporadically transmit viruses to poultry. Humans are, on
occasion, infected by these viruses, causingwhat is known as avian
influenza, which is associated with severe disease and high fatality
rates (5, 6). The human-to-human transmission in these cases is
very limited, and the most important of these IAV are the H5N1
and H7N9 subtypes.

Uncomplicated cases of influenza are limited to attachment and
viral replication in the upper respiratory tract, and the symptoms
in these cases are nasal obstruction, cough, sore throat, headache,
fever, chills, anorexia, and myalgia. These symptoms are the con-
sequences of the inflammation induced upon viral infection (7).
Complications of IAV infection are more frequent in people with
underlying comorbidities, such as chronic pulmonary or cardiac
disease, asthma, immunosuppression, or diabetes mellitus. These
complications begin when the viral infection reaches the alveolar
epithelium in the lower respiratory tract, where severe tissue
damagemay occur and affect gas exchange. In alveolar tissue, type
I pneumocytes prevent fluid leakage across the alveolar–capillary
barrier, and type II pneumocytes resorb fluid from the alveolar
lumen and produce lung surfactant (8). Thus, damage of the alveo-
lar epithelium leads to respiratory dysfunction or acute respiratory
distress syndrome (ARDS), which often occurs in cases of severe
influenza. More extensive discussion on the contribution of the
different cell types to tissue damage during influenza infection has
been recently published in a very interesting review (9). Most of
the lung pathology during influenza virus-induced ARDS is asso-
ciated with the release of cytokines and other pro-inflammatory
mediators, and the contribution of the direct viral cytopathic
effect to the alveolar damage is still unclear (10, 11). H5N1 viruses
have also been reported to spread to extra-respiratory tissue,
although with limited or no viral replication (12).

Influenza complications are also frequently associated with
secondary bacterial infections, whichmay be explained by a series
of changes that the virus induces in the lung epithelial cells of the
host that predisposes to adherence and invasion as well as changes
in the immune response (13–15). For example, it is believed that
IAV infection upregulates CD200 receptor in lung myeloid cells,
which is involved in negative immune regulation upon interaction
with the ligand CD200, resulting in predisposition to secondary
bacterial infection (16).

Disease severity caused by IAV infection is greatly associated
with high levels of inflammation, with increasing evidence that
tissue damage is produced by an exaggerated innate immune
response. Thus, many researchers have proposed that treatment
with anti-inflammatory therapy could be beneficial. The primary
challenge to successfully establish this type of therapy is to down-
regulate specific mediators of the immune system that have a

detrimental effect while avoiding increased levels of viral replica-
tion. Here, a review of the innate immunity processes associated
with severe cases of IAV infection is provided. Specifically, we
discuss clinical studies that have been published regarding the
cytokines and chemokines shown to be upregulated in serum or
lung tissue of patients with severe disease. We also provide a brief
review of the most frequent of those immune mediators, includ-
ing signaling pathways activated by them and the cellular pro-
cesses that might lead to tissue damage and disease progression.
Finally, anti-inflammatory therapies that have been proposed and
tested, either in clinical, preclinical, or in vitro studies, are also
discussed.

Innate Immunity to IAV

The first barrier that IAV encounters when invading the host is the
mucus layer covering the respiratory and oral epithelia. If the virus
successfully overcomes this barrier, it can bind the respiratory
epithelial cells, be internalized, and start replicating (17). The
cellular defense mechanisms that are initiated upon pathogen
invasion involve the sensing of components of pathogens, or
pathogen-associated molecular patterns (PAMPs), by pattern-
recognition receptors (PRRs) in host cells. This recognition leads
to activation of subsequent signaling events that result in the
secretion of inflammatory cytokines, type I interferon (IFN),
chemokines, and antimicrobial peptides. There are several types of
PRRs with a cell-type specific distribution and sub-cellular local-
izations that may be cytoplasmic, endosomal, or in the plasma
membrane.

Cytoplasmic receptors include the retinoic acid-inducible gene
I (RIG-I)-like receptors (RLRs), the nucleotide oligomerization
domain (NOD)-like receptors (NLRs), and the less-characterized
cytosolic DNA sensors (18). These receptors are particularly
important in the context of viral infection. Within the RLR family,
the most important proteins are RIG-I, melanoma differentiation
factor 5 (MDA5), and laboratory of genetics and physiology 2
(LGP2), all of which are expressed in the cytosol of most cell types
and participate in the recognition of single-stranded and double-
stranded RNA (19). The most studied of the NLRs in the context
of virus infection is the NLR family pyrin domain containing 3
(NLRP3), which upon stimulation leads to the activation of the
inflammasome system, with important implications in inflam-
mation (20). NLRP3 is expressed in myeloid cell types, such as
monocytes, macrophages, dendritic cells (DCs), and neutrophils
and in lung epithelial cells (21). Several PAMPs and damage-
associated molecular patterns (DAMPs) have been proposed to
activate this receptor, including dsRNA (22), the M2 protein of
influenza virus (23), and reactive oxygen species (ROS) (24).

Another very important family of PRRs is the toll-like receptors
(TLRs). Some of these receptors, such as TLR1, TLR2, TLR4,
TLR5, and TLR6, are located in the plasma membrane and are
activated mainly by lipids, lipoprotein, and proteins. Other TLRs,
namely, TLR3, TLR7, TLR8, and TLR9, are expressed in endo-
somal compartments and recognize nucleic acids (25). TLRs are
highly expressed in antigen-presenting cells, such as DCs and
macrophages, and they are also known to be expressed in several
T cell subsets (26). For IAV and other RNA viruses, the most
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important of these TLRs are TLR3 and TLR7/8, which recognize
dsRNA and ssRNA, respectively (27).

Other PRRs that are expressed on the cell surface of antigen-
presenting cells are the C-type lectin receptors (CLRs), such as
the DC-specific intercellular adhesion molecule-3-grabbing non-
integrin (DC-SIGN) or dectin-1 and dectin-2. CLRs recognize
carbohydrate ligands and are also mainly expressed in antigen-
presenting cells (28). Several reports have shown an interaction
between IAV andDC-SIGN (29–31), which would facilitate infec-
tion of DCs.

Recognition of PAMPs by these PRRs leads to the activa-
tion of multiple signaling cascades initiating the innate immune
response. This response leads to the production of type I and
type III IFNs. Binding of these IFNs to their receptors in a
paracrine or autocrine manner leads to the establishment of an
antiviral response, characterized by the expression of hundreds
of genes that will counteract viral replication (32). Also, PAMP
sensing results in the release of pro-inflammatory cytokines and
chemokines by the cells that will contribute to the development
andmodulation of specific T cell responses and recruitment of dif-
ferent immune cells, such as monocytes, neutrophils, and natural
killer (NK) cells, to the infected tissue. In the case of antigen-
presenting cells, such as DCs and some subtypes of macrophages,
they also undergo maturation and migrate to the secondary lym-
phoid organs where antigen is presented to T (33) and B cells (34).
These adaptive immune responses initiated upon innate immune
activation are known to be necessary for protection and viral
clearance, as recently reviewed by Chiu and Openshaw (35).

Hence, in the current model of IAV-induced ARDS, IAV parti-
cles invade a new host and if, able to cross the mucosal barrier,
will infect tissue cells in the upper respiratory tract. In some
cases, the virus reaches the lung, where it can infect type I and II
pneumocytes, endothelial cells, and immune cells (9, 36–38). The
presence of the virus is detected by infected cells, which release
cytokines, chemokines, and other mediators in order to control
the infection and remove dead cells and stimulate the initiation
of adaptive immune responses. However, other effects of those
mediators, which are described in detail below, are detrimental
for the integrity of the tissue (11, 39).

While these alert systems are aimed to mount an effective
immune response to clear viral infection, there are also important
negative consequences of those responses that might compromise
tissue integrity. One of the most described of those consequences
is the production of ROS. Pro-inflammatory mediators induce
intracellular ROS by activating the nicotinamide adenine dinu-
cleotide phosphate (NADPH) oxidase activity. Also, work by Ye
et al. has shown that inhibiting ROS production in vitro results
in attenuation of release of pro-inflammatory cytokines (40, 41),
thereby amplifying the immune response. In addition to reacting
with DNA, proteins, and lipids resulting in structural cell and
tissue damage, ROS are known to be the second messengers that
participate in several signaling pathways and function as tran-
scriptional regulators (42). It is also known that pro-inflammatory
responses activate signaling pathways that result in the activation
of apoptosis and necrosis (43, 44). Accordingly, apoptotic alveolar
epithelial cells have been observed by histochemistry of lung tissue
from two patients who died by H5N1 infection (12).

Hypercytokinemia and Pathogenesis in
Severe Cases of Human Influenza

Several studies have characterized the profile of cytokines in
human cases of influenza in order to understand the connection
between innate immunity and pathogenesis. In cases of seasonal
influenza, complications are mostly associated with secondary
bacterial infection. Most cases of severe primary viral pneumonia
have been associatedwith pandemic influenza, such as 2009H1N1
or 1918 H1N1 influenza virus, and cases of avian influenza, such
as infections by H5N1 or H7N9 influenza viruses (45, 46).

Acute respiratory distress syndrome is the main cause of death
in IAV-infected patients (47, 48). Histopathology caused by com-
plicated IAV infection in the absence of bacterial pneumonia
consists of inflammation, congestion, epithelial necrosis of the
larger airways, and diffuse alveolar damage characterized by hya-
line membranes, interstitial and intra-alveolar edema, necrotizing
bronchitis and bronchiolitis, and in some cases, hemorrhage (49,
50). Autopsies from fatal cases of 1918 H1N1, H5N1, and the
2009 H1N1 pandemic virus show comparable pathological char-
acteristics (47, 50). Fatal infection with H7N9 influenza viruses in
humans also showed diffuse alveolar damage as one of the main
histopathology findings (51).

The majority of the patients infected by pandemic 2009 H1N1
virus experienced a mild disease with influenza-like symptoms
that typically resolved in a few weeks (47, 48). However, due to the
lack of pre-existing immunity against this virus, complications of
the disease occurred in some patients, mostly those with underly-
ing conditions (47). Gao et al. found the levels of seven proteins
markedly upregulated in lung tissue in fatal cases of influenza
virus 2009 H1N1 infection. Those proteins are interleukin (IL)1
receptor antagonist protein (IL1RA), IL6, tumor necrosis fac-
tor (TNF)-α, IL8, monocyte chemoattractant protein 1 (MCP1),
macrophage inflammatory protein (MIP) 1β, and IFNγ-inducible
protein-10 (IP10)(52). In this work, they also found high levels of
apoptosis in the lungs and airway by terminal deoxynucleotidyl
transferase dUTP nick end labeling (TUNEL) staining, as well as
marked levels of cleaved caspase 3 (52). A similar study by To
et al. showed significantly higher levels of granulocyte colony-
stimulating factor (G-CSF), IFNα2, IL1α, IL6, IL8, IL10, IL15,
IP10, and MCP1 in plasma samples of patients that developed
ARDS and died than in those patients that developed mild disease
at early times after onset of symptoms (48). High levels of IP10,
MCP1, andMIP1β were also found in a separate group of patients
infected by 2009 H1N1 influenza virus (53). In this study, elevated
levels of IL8, IL9, IL17, IL6, TNFα, IL15, and IL12p70 were found
specifically in patients that required hospitalization, and IL6, IL15,
and IL12 were markers of severe disease. In agreement, other
studies reported high levels of IL6, IL8, IL10, and the chemokine
MCP1 in 2009 H1N1 virus-infected patients (54) and correlated
serum levels of IL6 and IL1β with disease severity in children
infected by the same virus (55). An additional report showed ele-
vated levels of IL2, IL12, IL6, IL10, IL17, and IL23 in patients with
severe disease and correlation between clinical manifestations and
IL6 and IL10 serum levels in patients infected by 2009 H1N1 IAV
(56). Other studies reporting similar results are summarized in
Table 1 (54, 57, 58).
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TABLE 1 | Cytokines and chemokines detected in serum or lung tissue
samples of human subjects with severe disease infected by IAV.

IAV subtype Cytokines Chemokines Reference

2009 H1N1 IL6, TNFα, IL9, IL17,
IL15, and IL12

IL8 (53)

2009 H1N1 IFNα2, IL1α, IL6, IL10,
and IL15

IL8, IP10, and MCP1 (48)

2009 H1N1 IL6, TNFα, and IL15 IL8 (57)

2009 H1N1 IL2, IL12, IL6, IL10,
IL17, and IL23

(56)

2009 H1N1 IL6 and TNFα IL8, IP10, MCP1, and
MIP1β

(52)

2009 H1N1 IL6 and IL1b (55)

2009 H1N1 IL6 and IL10 IL8 and MCP1 (54)

H3N2 IL6, TNFα, and IL33 (58)

H5N1 IP10 and MIG (59)

H5N1 IL6, IL10, IFNγ IL8, IP10, MCP1, and MIG (60)

H5N1 IFNβ, IL6, IFNγ, and
TNFα

IL8, IP10, MCP1,
RANTES, MIP1α, and
MIG

(61)

H7N9 IL6 IL8 and MIP1β (62)

H7N9 IL6 IL8 and MIP1β (63)

Cytokine responses in H5N1-infected patients have also been
studied. Peiris et al. found elevated levels of IP10 and monokine
induced by IFNγ (MIG) in serum of H5N1-infected patients (59).
Similarly, de Jong et al. found the levels of IP-10, MIG, and MCP1
elevated in patients with H5N1 infections (60). Interestingly, in
both studies, they found large numbers of macrophages infiltrated
in the lung, in accordance with the functions of those chemokines.
de Jong et al. also found elevated levels of IL6, IL8, IL10, and IFNγ
in those patients (60). The level of cytokines was associated with
elevated levels of viral replication. Another study that evaluated
the levels of cytokines in two fatal cases of H5N1 infection found
high levels of regulated on activation, normal T cell expressed
and secreted (RANTES), MCP1, MIP1α, IP10, IL8, MIG, IFNβ,
IL6, IFNγ, and TNFα in the lungs and serum in one patient,
while no cytokine expression was detected in the other case (61).
However, the patient who did not show cytokine expression was
pregnant and treatmentwith glucocorticoidswas provided in both
cases, which may have affected the immune response although
it is unclear how these or other factors could have affected the
results (61).

Information regardingH7N9 IAV infections in humans ismore
limited given the recentness of the outbreak. However, a study
evaluating the cytokine responses in infected patients identified
early high levels of IL6, IL8, and MIP1β in serum as predictive
parameters of severe or fatal outcome (62). Another study found a
positive correlation of the same molecules (IL6, IL8, and MIP1β)
with pharyngeal virus load in H7N9-infected patients (63).

Most of these studies with human samples point to elevated
levels of cytokines and chemokines in IAV-infected patients.
Interestingly, there is a clear overlap in the cytokines that are
observed inmost of those studies. A summary of the cytokines and
chemokines found to be upregulated in humans infected by IAV
is provided in Table 1. Experiments performed in vitro also have
identified the production of similar cytokines in different systems,

including IL6, TNFα, IFNs, IL1β, RANTES, IL8, MIP1β, and
MCP1 (64, 65). Since the reported data indicate that the induc-
tion of these molecules might be associated with pathogenesis,
understanding the effects of those proteins in receptor-expressing
cells and the signaling pathways that they induce is important
for eventually translating that information to the identification
of efficient and safe treatment alternatives. Therefore, in the next
section, we focus on the functions of each one of those cytokines
and chemokines in more detail, as well as their participation in
tissue damage in other diseases or other models as an additional
indicator of their pathogenic potential.

Cytokines and Chemokines with Increased
Expression During Severe Influenza:
How They Work and Their Involvement in
Tissue Damage

Upon influenza infection, viral PAMPs are sensed by the cells and
multiple signaling pathways are activated as a part of the innate
immune response. The purpose of the innate immune response
is to lead to the clearance of viruses and infected cells, as well as
the activation of the adaptive immune response. However, these
events can also result in tissue destruction as a consequence of
excessive activation. Data discussed in the previous section indi-
cate an association between the activation of the innate immune
response, typically measured as the production of cytokines and
chemokines in serum, and a more severe pathogenesis or fatality
in many cases, supporting the hypothesis of causative relationship
between innate immunity and severe disease. To provide deeper
insights into these events and their connection, in this section we
will review the effects and signaling pathways associated with the
production of the main cytokines upregulated during influenza
infection. Because of the broad and numerous functions of these
cytokines, it is a challenging task to parse their functions as
many of them are redundant and regulated by complex networks
involving multiple transcription factors, adaptors, or secondary
mediators. In terms of their potential as therapeutic targets, some
therapies usingmonoclonal antibodies to neutralize the damaging
effects of those proteins have been developed and are already
in the clinic for treatment of anti-inflammatory diseases, while
other approaches, such as administration of pro-inflammatory
cytokines, small molecules, siRNA or shRNA, or gene therapy, are
under study (66).

Cytokines
TNFα

TNFα is the most studied of the cytokines, since it is involved in a
large number of functions with multiple effects, such as activation
of inflammatory responses, stimulation of adaptive immunity, cell
survival, apoptosis, proliferation, and cell differentiation (67, 68).

The receptors for TNFα are TNF-R1, which is constitutively
expressed in most cell types, and TNF-R2, which is expressed in
immune cells (67). Binding of TNFα to its receptor results in the
activation ofmultiple intracellular signaling pathways, which have
been extensively reviewed elsewhere (68, 69). Therefore, in this
review, we provide a general overview of these processes and the
related outcomes in terms of tissue damage and pathogenesis.
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TNFα leads to the activation of nuclear factor kappa-light-
chain-enhancer of activated B cells (NF-κB) pathway, which pro-
motes the expression of a large number of inflammatory genes.
In the classical NF-κB pathway, which is the one activated upon
TNFα engagement, NF-κβ is a dimer made up of two subunits,
p50 and p65. In a resting state, NF-κB is inactive in the cyto-
plasm, forming a complex with the inhibitor of nuclear factor
κB (IκB). Stimulation that activates the pathway results in the
degradation of IκB, allowing the p50/p65 dimer to translocate
to the nucleus where it interacts with DNA, leading to the reg-
ulation of gene expression (70). Other stimuli that activate NF-
κB transcription factors are viral genomic RNA or DNA, bac-
terial products, acidic pH, and stress-related molecules, such as
ROS among others. In addition, it is known that endogenous
or host-derived ligands that are generated during tissue dam-
age are also sensed by cell surface receptors, leading to NF-κB
activation (71).

Engagement of TNFα to its receptor also leads to the induction
of apoptosis. This occurs by several mechanisms, but the major
one involves recruitment of pro-caspase 8 to TNF-R1 through
the adaptors fas-associated death domain (FADD) and the TNF-R
superfamily member 1A (TNFRSF1A)-associated death domain
(TRADD), which leads to the auto-cleavage of caspase 8 to its
active form. These events then result in caspase 3 activation
and induction of apoptosis. Caspase 8 also leads to the release
of cytochrome c from the mitochondria, contributing to apop-
tosis induction through the “intrinsic pathway” (68, 72). Inter-
estingly, TNFα also induces caspase-independent cell death by
a mechanism involving receptor-interacting serine/threonine-
protein kinase 1 (RIPK1) by a kinase-regulated process, and it is
known as necroptosis (73–75).

Another described function for TNFα is to stimulate the pro-
duction of ROS (73, 74, 76), which are also inducers of apop-
tosis and necrosis (76). In addition, TNF signaling stimulates
the activity of the NADPH oxidases (Nox) in neutrophils and
macrophages, such as NOX2, resulting in the generation of super-
oxide (O−

2 ) (77, 78), which is important for clearing intracellular
microorganisms (74, 79).

On the other hand, TNFα signaling leads to activation of
the c-jun NH2-terminal kinase (JNK) that also regulates several
cellular functions including apoptosis, survival, and cell growth
by phosphorylating downstream transcription factors, such as c-
jun, activating transcription factor 2 (ATF2), or nuclear factor
of activated T cells (NFAT). Interestingly, ROS has also been
shown to be a co-activator of TNF-induced JNK activation and
cell death (76).

Given the multiple functions of TNFα in inflammation and
tissue damage, it is a very important target for immunomodula-
tory therapy in general. Indeed, antibodies that block its function
are used as a primary treatment in some autoimmune disor-
ders, such as rheumatoid arthritis (RA) and Crohn’s disease, and
several blocking agents are already approved and used in the
clinic for such disorders (80). In the case of influenza disease,
TNFα-blocking agents have also been tested for treatment of IAV-
induced inflammation. Mice treated with one of these agents,
etanercept, showed reduced lung inflammation and morbidity
after challenge with influenza virus (81).

IL6
IL6 has been attributed to both pro-inflammatory and anti-
inflammatory effects (82, 83). In addition, IL6 is involved in
the regulation of metabolism, bone homeostasis, and neural pro-
cesses. The production of IL6 is tightly regulated, and its contin-
uous production has been associated with numerous chronic and
autoimmune diseases. The synthesis of this cytokine is upregu-
lated during infection or stress, and its major roles involve the
production of acute phase proteins by hepatocytes and stimula-
tion of the adaptive response by inducing the differentiation of
activated B cells and CD4+ T cells (84).

Activation of IL6 signaling may take place through classic or
trans-signaling pathways. In the classical activation, IL6 inter-
acts with membrane-bound IL6 α-receptor (IL6R), while in the
trans-activation pathway, IL6R is soluble. In both scenarios, the
signal-transducing β-subunit glycoprotein gp130 forms part of
the receptor complex and plays a fundamental role in initiating
the signal. IL6R is expressed in a limited number of cells types,
namely macrophages, neutrophils, some types of T-cells, and hep-
atocytes (85). However, gp130 is ubiquitously expressed, allowing
IL6 signaling to take place in a broad range of tissues. It is believed
that trans-signaling accounts for the pro-inflammatory effects
of IL6, while the classic signaling is more associated with anti-
inflammatory effects. Therefore, this dual activity has interesting
implications when considering IL6/IL6R as a therapeutic target.
A very interesting review by Scheller et al. discusses the dual
functionality of classic versus trans-signaling (83).

Dimerization of gp130 leads to Janus kinases (JAK) activa-
tion, which results in phosphorylation of tyrosine residues in
the cytoplasmic region of gp130. Next, the signal transducer and
activator of transcription (STAT) 3 is phosphorylated, dimerizes,
and translocates to the nucleus to regulate the expression of mul-
tiple genes associated with the induction of cell growth, differ-
entiation, and survival (86). On the other hand, phosphatase Src
homology domains containing tyrosine phosphatase (SHP)2 are
recruited, leading to activation of the mitogen-activated protein
kinase (MAPK) pathway, including ERK1/2 (associated with sur-
vival), p38, and JNK (associated with stress). IL6 can also lead to
the activation of phosphatidylinositol-4,5-bisphosphate 3-kinase
(PI3K) (87), which is classically associated with survival and cell
growth. An important group of genes that are also regulated by
JAK/STAT3 IL6-mediated activation is the suppressor of cytokine
signaling (SOCS) family. Specifically, SOCS1 and 3, which are the
most related with IL6 activation, inhibit the phosphorylation of
gp130, resulting in a blockade of the JAK/STAT pathway (86).

Primarily, IL6 (but also IL1α/β and TNFα) is a potent inducer
of the synthesis and release of approximately 30 proteins known as
the acute phase proteins (88, 89). Acute phase proteins are secreted
mainly by hepatocytes, and have multiple immunomodulatory
effects. These proteins include the C-reactive protein (CRP),
serum amyloid P component (SAP), mannose-binding protein,
α1 antitrypsin, α1 antichymotrypsin, α2 macroglobulin, fibrino-
gen, prothrombin, and complement factors, among others. They
are structurally and chemically unrelated, and there is a broad
amplitude in their physiological functions, which ranges from
inhibition of pathogen growth, facilitation of their removal
by phagocytic cells, and elimination of infected cells to other
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unrelated functions, such as providing anti-inflammatory
feedback to the immune system or modulation of coagulation
(90). CRP is perhaps the most studied of these proteins, and
it is frequently used as a diagnostic marker for inflammation.
Interestingly, CRP is known to be released locally by cells of
the respiratory epithelia and the liver in response to cytokine
stimulation and that patients with ARDS have high levels of CRP
(91). CRP was identified as a biomarker of disease severity in
patients hospitalized with IAV infection at the time of admission
(92). However, another study indicates that, although the levels
of CRP are elevated in patients with acute lung injury, a higher
level of plasma CRP predicts a more favorable outcome in adult
patients (93). This protein has both pro-inflammatory and
anti-inflammatory functions, and its function remains to be
well characterized. Chronic overexpression of these acute phase
proteins is also characteristic of some chronic, autoimmune
pro-inflammatory diseases, such as RA.

Excessive production of IL6 has been associated with several
pathological manifestations, such as Castleman disease or RA. For
this reason, IL6 has been extensively investigated as a therapeutic
target, leading to the development of monoclonal antibodies, such
as tocilizumab, which has already been approved for the treatment
of these diseases (94). However, in the case of IAV infection, IL6
seems to have a protective role in the mouse model, promoting
viral clearance and limiting inflammation (95), indicating that
IL6 blocking agents might not be adequate for inflammation
treatment during IAV infection.

IL1β

IL1β belongs to the broad IL1 family. The precursor of IL1β (pro-
ILβ) is processed by caspase 1, which activation ismediated by the
action of the inflammasome. IL1β is produced by immune cells,
such as monocytes, tissuemacrophages, and skin DCs in response
to TLR activation, complement components, and other cytokines,
such as TNFα (96).

The receptor for IL1β, as well as for IL1α, is IL1 receptor type
I (IL1RI). The IL1RI presents a toll-IL1-receptor domain (TIR),
which is also present in TLRs, and it is necessary for signal trans-
duction. Engagement of IL1β/α to IL1RI leads to the recruitment
of the co-receptor chain IL1R accessory protein IL1RAcP. Next,
the adaptor proteinmyeloid differentiation primary response gene
88 (MyD88) interacts with the TIR domain, leading to phosphory-
lation of the IL1RI-associated kinases, IRAKs. Further phospho-
rylation steps involving the inhibitor of NF-κB kinase α and β
(IKKα/β) and the NF-kappa-B essential modulator (NEMO) lead
to the subsequent activation of the NF-κB transcription factors
(97). JNK and p38 MAPK pathways are also activated upon IL1RI
engagement (98). These events result in the induction of the
expression of inflammatory genes including IL1α and β, as well as
IL6 and RANTES among others, leading to an amplification loop.

While the main function of this cytokine is to mediate
inflammation through activation of the NF-κB transcription
factors, IL1β signaling has other additional consequences. For
instance, the activation of IL1RI include increased expres-
sion of cyclooxygenase-2 (COX-2), inducible nitric oxide syn-
thases (iNOS), prostaglandin 2 (PEG2) (71), and adhesion
molecules, such as intercellular adhesion molecule-1 (ICAM-1)
on mesenchymal cells and vascular-cell adhesion molecule-1

(VCAM-1) on endothelial cells. This latter property promotes the
infiltration of inflammatory cells into the extravascular space (99).

IL1 cytokines are highly associated with acute and chronic
inflammatory afflictions. As such, therapies to counteract the
effect of this cytokine have been developed and are under study.
In particular, treatment with an IL1R antagonist (IL1Ra), known
under the generic name anakinra, has been approved to relieve
symptoms and pain in patients with RA, and it is a standard
therapy for autoimmune syndromes in general (96, 100).

Several studies suggest that IL1β has important roles in tis-
sue damage in several mouse models of inflammation, including
induction of systemic inflammation with turpentine or zymosan-
induced peritonitis (101). There is also data indicating an exces-
sive activation of the inflammasome in lung pathology – which is
activated by the PB1-F2 protein of influenza virus (102), probably
as a consequence of subsequent NF-κB activation. Interestingly,
another study showed a positive effect on survival after adminis-
trating the IL1Ra to influenza virus-infectedmice (103). However,
in anothermodel of influenza virus infection, while IL1β-infected
mice showed reduced body temperature, mortality was higher in
IL1β knock out mice (104). In agreement with this, more recent
studies have suggested that the inflammasome, in which IL1β
has an important role, is important for mediating healing and
reducing lung damage, while it is not necessary for virus clearance
or humoral adaptive immune responses (105). Indeed, there is
increasing evidence that IL1β has an important role in epithelial
repair in patients with ARDS (106–108) and this effect seems
to be mediated by epidermal growth factor (EGF)/transforming
growth factor-α (TGF-α) pathway (109). More recently, it has
been shown that IL1β activates the expression of the early growth
response (Egr)1 transcription factor through activation of the EGF
receptor (EGFR) (110).

Therefore, excessive IL1β responses might contribute to lung
injury during severe cases of influenza, but its role in tissue repair
seems to be necessary to ensure recovery. Therapeutic strategies
targeting this aspect of pathogenesis are complicated given the
dual role of IL1β signaling in inflammation and in tissue repair,
and a better understanding of the mechanisms of action of IL1β
and consequences of altering its functions is needed.

Type I and Type III IFN
Themost important function of type I and type III IFN is to induce
the activation of an antiviral state in infected and neighboring
cells. For this reason, these cytokines are very important for pro-
tecting against acute viral infections. In addition, type I IFNs have
also an important role in the stimulation of adaptive immunity
(111, 112).

The most studied type I IFNs are IFNβ, expressed by virtually
all cells, and IFNα, produced primarily by hematopoietic cells.
Both IFNα and β interact with the IFNα/β receptor (IFNAR),
which results in the activation of the receptor-associated protein
tyrosine kinases (JAK1) and tyrosine kinase 2 (TYK2). Then,
the transcription factors, STAT1 and STAT2, are phosphory-
lated, dimerize, and translocate to the nucleus (113), where they
assemble with IFN-regulatory factor 9 (IRF9) to form the complex
IFN-stimulated gene factor 3 (ISGF3). This complex binds specific
sequences in the DNA and promotes transcription of hundreds of
ISGs, which leads to numerous changes in the transcriptome of the
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cell thus activating the antiviral response (114, 115). Also, under
certain conditions, type I IFNs are able to induce the formation
and phosphorylation of STAT1 homodimers, which may bind
gamma-activated sequences (GAS) and induce the expression of a
different set of genes (116). This GAS-stimulated gene response
is mainly activated by type II IFN as described below, and is
composed principally of pro-inflammatory genes. Interestingly,
type I IFN signaling also leads to STAT3 phosphorylation, which
downregulates type I IFN-mediated induction of inflammatory
mediators (such as MIG and IP10) while supporting ISGF3-
dependent induction of antiviral genes (117).

Type III IFN or IFNλ is a more recently discovered antiviral
IFN that triggers STAT1 activation through engagement of an
independent heterodimeric receptor, IL-28 receptor α/IL-10
receptor β (IL28Rα/IL10Rβ) complex (118, 119), found primarily
on epithelial cells of both the respiratory and gastrointestinal
tract. There are three IFNλ proteins, IFNλ-1, -2, and -3 (also
known as IL29, IL28A, and IL28B, respectively), all of which
signal through the same receptor. Signaling through type III
IFN receptor complex results in a cascade of signals similar to
that produced by ligation of the type I IFN receptor, which are
mediated by JAK1 and TYK2, leading to the formation of a
transcription factor complex, ISGF3. Therefore, the biological
responses induced by type I and type III IFNs are very similar
and mainly characterized by the induction of antiviral responses
with the main difference between them being the expression of
the receptor in different cell types (120).

While type I IFN is known to be a key mediator of virus
clearance during influenza virus infection (121), excessive IFN
signaling has detrimental effects on disease severity, mostly as
a result of overall increased inflammation (pro-inflammatory
cytokines and lung-infiltrating cells), cell death, and oxidative
stress that might have damaging effects on the host (122, 123).
The production of type I IFN and its pathological effects are
supported by its role in other immune diseases. In particular,
genetic and transcriptomic analysis of blood from systemic lupus
erythematosus (SLE) patients, has attributed type I IFN a cen-
tral role in the pathogenesis of this disease (124). Type I IFN
has also been implicated in the pathogenesis of RA (125) and
a type IFN I signature has been documented in patients with
Aicardi–Goutieres syndrome (126). It has been shown that the
type I IFN receptor sensitizes macrophages to death caused by L.
monocytogenes infection (127). Interestingly, type I IFN also has
been associated with endothelial dysfunction through induction
of endothelial nitric oxide synthase (128). However, the mecha-
nisms of type I IFN-mediated regulation of oxidative stress have
not been analyzed in detail.

While the damaging potential of type I IFN is evident, the
main feature of this family of cytokines is that they are crucial
inducers of the antiviral response and therefore they are absolutely
required to fight IAV infection. Studies performed in mice clearly
indicate that viral replication and disease severity are increased in
the absence of IFN, indicating that both type I and type III IFN
having protective roles (129). Given the importance of type I IFN
induction in defeating viral infection at the cellular level, desirable
anti-inflammatory therapies to treat IAV or other viral infections
should not fully blunt this type of response.

Type II IFN
Interferon-γ is the only member of the type II IFN family and is
mainly produced by T cells and NK cells. The production of IFNγ
is controlled by IL12 and IL18 released by antigen-presenting cells,
such as DCs and macrophages. Type II IFN plays important roles
in the stimulation of antigen presentation bymacrophages, in acti-
vating the cellular Th1 responses upon infection by intracellular
pathogens, and in regulating B cell functions (130).

The IFNγ receptor (IFNGR) comprises two different subunits,
IFNGR1 and IFNGR2. Activation results in signal transduction
through JAK1 and JAK2 and subsequent phosphorylation and
homo-dimerization of STAT1 transcription factors. STAT1dimers
subsequently translocate to the nucleus and activate the GAS ele-
ments (131), which lead to the expression of IFNγ-related genes.
Interestingly, some of these genes are transcription factors (such
as IRF1) that can lead to the activation of a second wave of genes
(such as IFNβ) (130) and thus there is significant overlap between
the IFNα/β- and IFNγ-regulated genes.

One of the most important functions of IFNγ is that it stim-
ulates antigen presentation by several mechanisms. Thus, IFNγ
upregulates the expression of the major histocompatibility com-
plex (MHC) class I (132) and MHC class II (133). Interest-
ingly, IFNγ also facilitates antigen processing by stimulating the
expression of several molecules associated with this function,
such as proteasome subunits, including LMP2 and LMP7 (134,
135) or of the regulator of the immunoproteosome proteasome
activator (PA) 28 (136). At the cellular level, activation of IFNγ
signaling promotes cell growth and proliferation, but also it has
been shown to be important in the upregulation of pro-apoptotic
molecules [such as protein kinase R (PKR), the death associ-
ated proteins (DAPs), cathepsin D, and surface expression of the
TNFα receptor]. A very important consequence of the activa-
tion of macrophages and neutrophils by IFN is the enhancement
of microbial killing processes, mainly mediated by induction of
the NADPH-dependent phagocyte oxidase system or respiratory
burst (release of ROS), stimulation ofNOproduction, and upregu-
lation of lysosomal enzymes (137, 138). This defense mechanism,
however, is also damaging for infected tissues and has been shown
to enhance the pathogenesis during IAV infections (41, 139). IFNγ
has also implicated in the pathology of diseases, such as systemic
lupus erythematous (140) or multiple sclerosis (141).

Chemokines
Chemokines are small chemotactic cytokines that play important
roles in driving many components of inflammation, the most
important of which is leukocyte migration. Chemokine receptors
in the cell surface are transmembrane G protein-coupled recep-
tors (GPCRs), and their activation leads to the transduction of
intracellular signaling pathways that promote migration toward
the chemokine source. Other functions mediated by chemokines
include regulation of cell viability, proliferation, differentiation,
and migration (142). The chemokine system is very promiscuous
in providing flexibility and specificity in the trafficking of immune
cells, and a specific chemokine may act on several leukocyte
populations to coordinate the recruitment of cells with related
functions.
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RANTES
RANTES also known as chemokine (C–Cmotif) ligand 5 (CCL5),
plays an active role in recruiting leukocytes to inflammatory
sites. In particular, it has been shown to induce the migra-
tion and recruitment of T cells, DCs, macrophages, monocytes,
eosinophils, NK cells, mast cells, and basophils (143–146). Also,
it induces the proliferation and activation of certain NK cells.
RANTES is produced by macrophages, DCs, T lymphocytes,
platelets, eosinophils, fibroblasts, endothelial, and epithelial cells.
In general, production of RANTES is associated with viral infec-
tions. Interestingly, RANTES is a co-receptor for HIV (147) and
for this reason, there is a field of intensive research to develop
pharmacological inhibitors of this receptor with the ultimate
goal of producing a therapeutic agent (148, 149). High levels of
RANTES have also been associated with extensive inflammation
of the lung in cases of avian influenza (150) and other viral infec-
tions. Deficiency of the receptor for this chemokine, CCR5, which
is also the receptor for MIP1α and MIP1β, resulted in increased
mortality in IAV-infected mice, suggesting that the function of
those chemokines is important for virus clearance, and therefore,
they are not promising targets to reduce inflammation (151).

IP10
IP10 or (C–X–Cmotif) ligand (CXCL) 10 is a protein highly asso-
ciatedwith the presence of viral infection. Several cell types release
IP10, including T lymphocytes, neutrophils, monocytes, DCs,
endothelial and epithelial cells, and fibroblasts. IP10 expression is
induced by IFN-γ and the gene features ISRE and NF-κB binding
sites in the promoter (152), allowing for direct upregulation upon
virus infection (153). IP10 interacts with the C–X–C receptor
(CXCR) 3 to activate the main target cells, which include T and
B lymphocytes, NK cells, DCs, and macrophages. As a conse-
quence of this interaction, signal transduction leads to chemotaxis
toward inflamed or infected areas, apoptosis, and proliferation
or cell growth inhibition (154). IP10 is known to contribute to
the pathogenesis of several infectious diseases (154) and of many
autoimmune diseases, such as type 1 diabetes, RA, psoriatic arthri-
tis, or SLE (155). Experiments in mice have shown that the lack of
IP10 or its receptor reduces the severity of ARDS during influenza
virus infection, suggesting the potential of this signaling pathway
as a therapeutic target for ARDS treatment (156).

IL8
IL8 or CXCL8 is a potent neutrophil attractant and activator, but
also acts on monocytes and mast cells, which express the IL8
receptors, CXCR1 and CXCR2. This chemokine is mainly pro-
duced bymacrophages, epithelial cells, and endothelial cells (157).
Interestingly, monocytes and macrophages produce low amounts
of IL8 during influenza virus infection (158), while epithelial cells
produce high levels of IL8 in vitro (159). Several transcription
factors activated upon viral recognition have been shown to bind
IL8 promoter and stimulate IL8 production. These include NF-
κB, the activator protein 1 (AP-1), the CCAAT-enhancer-binding
protein (C/EBP)-β, IRF1, and IRF3 (160, 161). IL8 has a signif-
icant role in ARDS, which is characterized by a large influx of
neutrophils to the lung during severe influenza (162). Neutrophils
protect against microbial infection through the release numerous

factors such as ROS, proteinases, and neutrophil extracellular
traps, molecules that, when produced in excess, might also have
damaging effects (163). In addition to the contribution of IL8
to pathogenesis through increased inflammation via neutrophil
recruitment, patients with ARDS also have been shown to present
auto-IL8 antibodies that complex with IL8. These complexes are
also able to induce chemoattraction of neutrophils, but inter-
estingly, they trigger superoxide and myeloperoxidase release
(neutrophil respiratory burst and degranulation) from human
neutrophils in a FcγRIIa-dependent way (164).

MCP1
MCP1 or CCL2 regulates the migration and infiltration of cells
expressing the receptor CCR2, which includes monocytes, mem-
ory T lymphocytes, and NK cells, and is produced either constitu-
tively or after induction by oxidative stress or pro-inflammatory
mediators. It also participates in the phenotypic polarization of
memory T cells toward a Th2 phenotype (165, 166). MCP1 is
produced by several different cell types, including endothelial,
fibroblast, epithelial, smooth muscle, and monocyte cells among
others, monocyte and macrophages being the main sources (167).
This chemokine has been implicated in the pathogenesis of several
diseases, such as asthma (168), RA, cardiovascular diseases, cancer
(169), and some neuropathologies (170). CCR2 signaling results
in the activation of PI3K, MAPK, and protein kinase C, and
therefore, elicits a broad range of cellular responses (171, 172). In
the context of IAV infection, conflicting results have been reported
regarding MCP1 function. On the one hand, one study showed
that neutralization of MCP1 in vivo reduced the immunopathol-
ogy in a mouse model (173). However, a different report showed
increased alveolar epithelial damage and apoptosis upon a similar
treatment (174). A separate report showed that CCR2−/− mice
infected with IAV presented decreased pathological signs, but
higher pulmonary titers early after infection (151). Thus, further
characterization on the role of this chemokine is necessary to
determine its potential as a target for anti-inflammatory therapy.

MIP1β

Macrophage inflammatory protein-1β or CCL4 is also involved
in the recruitment of multiple immune cells, such as mono-
cytes, T-lymphocytes, monocytes, eosinophils, basophils, DCs,
and NK cells (175). It also induces activation of these cells and
increased adhesion (176). Low levels are constitutively expressed
but its production is activated by multiple inducers (such as
PAMPs and cytokines) in different cell types, including mono-
cytes, macrophages, neutrophils, DCs, epithelial cells, fibroblast,
and multiple cells from the nervous system (175). The receptor
for MIP1β is CCR5, although it is known that a natural truncated
form of MIP1β, which lacks two N-terminal amino acids, also
binds and signals through CCR1 and CCR2B (177). Associations
with autoimmune diseases, such as SLE, have been also reported
for MIP1β (178).

Modulating the Innate Immune Response
During Severe IAV Infection

As described above, the current literature indicates a clear role for
hypercytokinemia during severe IAV infection. Initially, cytokine
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production is induced following detection of the virus by cellu-
lar PRRs (Figure 1). Therefore, the primary treatment of IAV
infection should be antiviral compounds, such as neuraminidase
inhibitors, which will limit viral replication and spread, and there-
fore minimize the production of pro-inflammatory cytokines.
Inflammation results in the induction of multiple cellular pro-
cesses that lead to increased oxidative stress, apoptosis, necrosis,
altered adhesion, and migration of immune cells to the lung. In
addition, these processes lead to the release of additional sec-
ondary mediators and induction of cytokines, which results in
amplified inflammation leading to increased damage (Figure 1).
Therefore, it is worth considering therapies that modulate these
detrimental processes in combination with antiviral agents. Tar-
geting some of the most prevalent cytokines or related signaling
pathways in severe influenza inmousemodels, using either knock
out animals or blocking agents, have been shown to reduce lung
damage and mortality in multiple studies as indicated in the pre-
vious section, supporting the idea that anti-inflammatory agents
inhibiting the same pathways could be beneficial in humans. One
of themost important parameters that should be evaluated among
these anti-inflammatory agents is that the treatment should reduce
the negative effects of inflammation but not the innate and
adaptive immune arms that are responsible for restricting viral
replication and spread. However, the pathways initiated by the
most prevalent cytokines are very redundant and dissecting these

complex responses is very challenging. Specifically, blockade of
TNFα and IL1β have shown a potential benefit in the mouse
model, while blocking other cytokines, such as type I or III IFN or
IL6-worsened disease outcome. Inhibition of specific chemokines
or their receptors are also possible strategies. A few reports have
been reported evaluating the consequence of blocking their func-
tion, which indicated that IP10 and MCP1 might have benefi-
cial effects on reducing morbidity due to inflammation, while
deficiency in RANTES expression seems to be detrimental. Fur-
ther studies in animal models should be performed to better
understand which of these pathways could be targeted as an anti-
inflammatory therapy during severe influenza disease. In addition
to cytokines and chemokines, other elements of the inflammatory
response are under consideration for this purpose. In this section,
we review those therapies that have been evaluated in the clinic
or that have shown promising results in preclinical studies, such
as broad-spectrum therapies, other signaling mediators or their
receptors, or molecules involved in the generation of oxidative
stress.

Corticosteroids
Corticosteroid treatment has been proven to be safe in patients
with ARDS and is associated with reduced inflammation and
improved clinical status (179). For this reason, the use of these
drugs has been considered for the treatment of severe influenza

FIGURE 1 | Activation of innate immune processes by IAV and
therapeutic opportunities to modulate the immune response. When IAV
invades a new host, it infects and replicates in cells of the respiratory tract.
Cellular sensors, such as TLRs, RLRs, NLRs, and CLRs, recognize the virus
PAMPs and initiate immune responses leading to the activation of defense
mechanisms to counteract viral infection. The development of the inflammatory

response is accompanied by multiple changes in gene expression that also
result in damage of the infected tissue. Antiviral treatment is the first opportunity
to reduce viral load and inflammation (indicated in green, left panel). The use of
anti-inflammatory drugs to reduce cytokine- and chemokine-induced damage
that could be used in combination with antiviral therapies is under investigation
(indicated in green, right panel).
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and has, in fact, been used in several cases of avian influenza
(H5N1) virus infection (180). In addition, corticosteroids are
regularly used in long-term treatment for asthma and chronic
obstructive pulmonary disease (COPD). Thus, understanding the
effect of these drugs during influenza virus infection is very rel-
evant not only for their anti-inflammatory use in cases of IAV
infection but also to determine the best methods to manage these
high risk patients in the clinical setting.

Several studies have evaluated the consequences of using cor-
ticosteroids in humans with influenza infection, with varying
results. A study by Quispe–Laime reported a reduction in lung
injury and multiple organ dysfunctions in H1N1 influenza virus-
infected patients treated with corticosteroids (181). However, as
recently reviewed by Hui and Lee, several clinical trials indicate
that the administration of these steroids during influenza virus
infection, either in the presence or absence of neuraminidase
inhibitors, has either no effect or even a detrimental effect (182).
A retrospective study by Kudo and colleagues evaluated the effect
of corticosteroid administration in patients with 2009 H1N1 IAV
infection with pneumonia and did not find a negative effect
of the steroid treatment (183). On the other hand, Lee et al.,
in a prospective study with adult patients infected with H3N2
IAV, showed that the administration of systemic corticosteroid to
reduce exacerbation of asthma or in patients with COPD corre-
lated with delayed viral clearance (184). Accordingly, another ret-
rospective study in adults infectedwith 2009H1N1 influenza virus
showed an association of corticosteroid treatment with increased
mortality (185). An interesting study by Thomas et al. showed
that glucocorticosteroid treatment prior to IAV infection inhibits
antiviral responses and the release of cytokines when tested in
cultured primary human airway cells, which resulted in increased
viral replication (186). Similarly, an in vivo experiment in the
same study showed higher replication in a mouse model after
treatment, which resulted in enhanced inflammation. This is in
agreement with the recent meta-analysis of the literature per-
formed by Zhang et al., where they concluded that corticosteroids
are likely to increase mortality and morbidity by influenza 2009
H1N1 virus (187).

Consequently, the current literature suggests that the corti-
costeroid treatment is not a good choice for the treatment of
acute inflammation during influenza virus infection, probably
due to increased viral replication as a consequence of reduced
antiviral responses (188). Accordingly, WHO discourage the use
of corticosteroid drugs as routine treatment for severe influenza
due to the paucity of evidence for beneficial effects (189). Further
research in this field should be done, given the routine use of
chronic corticosteroids treatment in some other medical condi-
tions, such as asthma and COPD, both of which are considered
high risk populations for influenza disease.

Statins
Statins are also a class of drugs with extensive use in the clinic
given their ability to decrease cholesterol levels, thus reducing
the risk of cardiovascular disease. These drugs are inhibitors of
the hydroxyl methylglutaryl-coenzyme A (HMG-CoA) reductase
enzyme, acting in the cholesterol synthesis pathway. Interestingly,
these drugs also have anti-inflammatory properties (190), which

have been analyzed in the context of influenza infection (191).
By altering the cholesterol synthesis route, statins also reduce the
synthesis of lipid intermediates necessary for isoprenylation of
multiple proteins. Consequently, multiple intracellular signaling
pathways activated during the development of the inflammatory
response are also affected (192).

An observational study that included more than 3000 patients
hospitalized with influenza in the United States identified an asso-
ciation of statin use with reduced mortality (193). Other clinical
studies have also shown that statin use could be beneficial in the
treatment of influenza (194, 195), while yet other studies did not
find supporting evidence for the use of this type of drug (196,
197). These retrospective studies, however, have the limitation
that patients who are prescribed statins are some of those who are
already at a higher risk for developing severe disease (due to pre-
existing cardiovascular disease) and timing, duration and dose of
the statin treatments are difficult to control. An interesting review
by Mehrbod et al. (198) provides more detailed information on
clinical trials evaluating the use of statins in IAV infections.

While the literature on this topic shows varied results, there is
increasing evidence for a possible beneficial effect of the use of
statins during influenza treatment, and further experimentation
to confirm a positive effect should be developed. This is supported
by several in vitro and in vivo studies that have indicated that,
in addition to diminishing the production of cytokines upon
influenza virus infection, statins also seem to result in decreased
levels of viral replication (198–200).

N-acetylcysteine
N-acetylcysteine is also a commonly used compound, which is
mainly known for its mucolytic as well as anti-oxidant proper-
ties. Interestingly, anti-inflammatory properties have been also
attributed to this molecule, which are probably associated with
its anti-oxidant function by diminishing oxidative stress dur-
ing inflammation. Related to this, animal models of systemic
endotoxin-induced shock or acute lung injury showed reduced
production of cytokines and tissue damage upon treatment with
N-acetylcysteine (201–203).

Although the effect of this molecule in the context of influenza
treatment has not been broadly studied, there are some reports
indicating a possible beneficial effect. One study by Geiler et al.
showed reduction of viral replication and pro-inflammatory
cytokines in human lung epithelial cell lines upon infection with
H5N1 influenza virus (204). Themechanism of inhibition seemed
to be related to reduced NF-κB and MAPK p38 activation. These
data were confirmed by a similar study where an H3N2 IAV and
an influenza B virus strain were evaluated (205). Data from in vivo
studies also seem to indicate that N-acetylcysteine might help
to protect against IAV-induced pathology (206). It is important
to note that in this case, contradictory reports have also been
published, such as the study by Garigliany and Desmecht, which
did not find an effect of the treatment in themousemodel (207). In
humans, de Flora et al. (208) showed a long-term positive effect of
N-acetylcysteine administration on the development of influenza
or influenza-like symptoms. Therefore, although the amount of
data reported is scarce, there seems to be evidence for a possible
safe and beneficial effect for the use of N-acetylcysteine to treat

Frontiers in Immunology | www.frontiersin.org July 2015 | Volume 6 | Article 36110

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


Ramos and Fernandez-Sesma Anti-inflammatory drugs for influenza treatment

inflammation by influenza without enhancing viral replication.
However, studies evaluating this molecule in humans are very
limited, and more extensive work is needed to obtain conclusive
information.

Macrolides
Macrolides, which are generally used for their antibacterial
activity, also have immunomodulatory properties. They have
been shown to reduce the expression of several cytokines and
chemokines, such as IL6, IL8, and TNFα during different inflam-
matory processes. The ability of macrolides to interfere with mul-
tiple signaling pathways accounts for these immunomodulatory
properties. For instance, some macrolides suppress NF-κB and
AP-1 signaling (209, 210), affect intracellular Ca2+ dynamics
(211), and inhibit the ERK1/2 pathway (212).

In vitro studies have shown that clarithromycin clearly reduces
viral replication in epithelial cell lines approximately 4–7 h after
viral adsorption (213). This effect is therefore also independent
of the anti-inflammatory activity and might be mediated by alter-
ation in cell signaling pathways. In vivo studies also support a
potential role for the macrolides in improving recovery upon
infection with IAV (214).

In the clinic, macrolides are sometimes administered in cases
of influenza to treat secondary bacterial infections and because
of their anti-inflammatory effects, clarithromycin being the most
frequently prescribed first-line drug (215). Higashi et al. (216)
analyzed the benefits of clarithromycin treatment in combination
with neuraminidase inhibitors in patients with influenza infec-
tion. Their data indicated a possible effect in reducing fever, but
they did not observe any differences in IL6 serum levels. However,
another study could not find any association between significant
improvement of symptoms and the use of macrolides.

In general, the number of studies evaluating macrolides in IAV
infection is very limited. While in vitro and in vivo data showed
promising results as indicated by a reduction of pro-inflammatory
molecules alongside reduced viral replication, the small number of
clinical studies does not suggest a significant benefit. Also, the use
of antibiotics should be limited to cases with secondary bacterial
infections, given the risk for emerging resistances. In addition,
mice studies have shown that treatment with a combination of
several antibiotics leads to impaired innate and adaptive immune
responses and delayed virus clearance as a consequence of changes
in the respiratory microbiota (217, 218) and therefore its use
during influenza virus infection in humans should be further
analyzed and cautiously used during severe infections.

COX-2 Inhibitors
Cyclooxygenase enzymes catalyze the conversion of arachidonic
acid to prostaglandins, which play important roles in modulating
immune responses and inflammation. While the isoform COX-1
is constitutively expressed, COX-2 is induced by several stimuli,
such as LPS, pro-inflammatory cytokines, and growth factors
(219). Importantly, COX enzymes are main targets for non-
steroidal anti-inflammatory drugs including aspirin, ibuprofen,
diclofenac, naproxen, and for selective COX-2 inhibitors, such as
celecoxib and nimesulide, and are therefore very available and
frequently used as treatment for other conditions.

Considering the well-described pro-inflammatory role of
COX-2, studies to understand its function in influenza patho-
genesis have been performed. COX-2 knock out mice infected
with IAV showed reduced levels of pro-inflammatory cytokines
and mortality, but also increased levels of replication (220).
Interestingly, COX-1 ablation showed opposite results, with aug-
mented and earlier inflammatory responses. COX-2 expression
was observed to be elevated in autopsy tissue samples from
patients infected by H5N1 IAV (182, 221). In vitro experiments
have shown that COX-2 inhibitors play a regulatory role in medi-
ating pro-inflammatory responses after H5N1 infection (221,
222) and have been shown to have a direct antiviral effect in
human macrophages infected with H5N1 influenza virus (223).
However, another in vivo study did not find a beneficial effect
from celecoxib treatment in mice infected with an H3N2 virus.
Therefore, data regarding COX-2 inhibitors are also controversial.
Another in vivo study did observe a positive effect of celecoxib
administration when used in combination with mesalazine or 5-
aminosalicylic acid (another anti-inflammatory drug) in addition
to a neuraminidase inhibitor in mice challenged with H5N1 IAV
(224), supporting the idea that a combination treatment might be
more efficient.

To date, there are no systematic human studies evaluatingCOX-
2 inhibitors for influenza treatment. The event that these studies
move forward is important to consider the selectivity for COX-2
inhibitors, since COX-1 inhibitors would have an opposite effect,
increasing inflammation, and pathogenesis. Indeed, an increased
risk of mortality during influenza virus infection was associated
with aspirin, paracetamol, and diclofenac in animal models in a
meta-analysis of the literature (225).

Peroxisome Proliferator-Activated Receptor
Agonists
Peroxisome proliferator-activated receptors (PPAR) are nuclear
receptors and ligand-activated transcription factors that control
a number of target genes upon assembly of a transcriptional
complex. There are several PPAR, but in general, they are regu-
lators of energy balance, including glucose homeostasis, fatty acid
oxidation, and lipid metabolism, and are frequently used in the
treatment of diabetes (226).

Several in vivo studies point to a possible benefit of the use
of these drugs in treating influenza infection. Moseley at al.
showed a reduction in morbidity and mortality in mice infected
with two different H1N1 strains and treated with PPAR ago-
nists (227). Similarly, PPAR agonist treatment of mice challenged
with an H5N1 or an H2N2 IAV led to decreased inflamma-
tion and morbidity, and increased survival (228–230), using
a cyclopentenone prostaglandin (prostanoid 15-deoxy-Δ12,14-
prostaglandin-j2), observed a reduction in the levels of cytokines
and chemokines in a mouse model of influenza in addition to a
reduction in viral titers, and this effect was shown to be mediated
by PPARγ (230).

While these drugs have not been thoroughly studied for
influenza treatment and no human studies have been performed
so far, exploring their potential would be of great interest given
their current use in the clinic and availability, which would facili-
tate their study in clinical trials (231).
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Sphingosine-1-Phosphate-1 Receptor Agonists
Sphingosine-1-phosphate (S1P) is a lipid signaling mediator syn-
thesized from ceramides. The laboratory of Dr. Oldstone at The
Scripps Research Institute (La Jolla, CA, USA) has focused on
the use of S1PR agonists as a possible therapeutic to alleviate the
inflammatory response arising during IAV infection, providing
very interesting insights about the mechanisms of immunopatho-
genesis. They were first able to demonstrate that the administra-
tion of a promiscuous S1P receptor agonist led to a significant
reduction of cytokines and chemokines upon influenza infection
in the mouse model (232–234). This reduction of the inflam-
matory response correlated with a decrease in lung injury and
improved survival upon infection (235). Importantly, the reduc-
tion of inflammation was not accompanied by a delayed clearance
of the virus, indicating a potential for the use of these drugs
as a therapeutic agent (234). Further work using S1PR agonists
led them to describe a central role for endothelial cells in the
generation of the cytokine storm (236). They further searched for
the signaling pathways that the S1PR agonists might use to exert
these anti-inflammatory-protective functions during IAV infec-
tion and found that the effect observed is independent of TLR3,
TLR7, or cytosolic signaling pathways (237). In addition, they
found an essential role for IL1R and MyD88/TRIF signaling in
cytokine amplification (237). Therefore, although S1PR agonists
are under investigation inmice and ferrets for influenza treatment
(238), results from these studies are promising as a possible future
treatment for hypercytokinemia in severe cases of influenza. One
S1PR agonist has been approved in the clinic by the FDA for
the treatment of relapsing–remitting multiple sclerosis. However,
adverse effects have been noted in the use of this drug, and the
safety profile of this and other S1PR agonists should be further
investigated (239).

Platelet-Activating Factor Receptor Antagonists
Platelet-Activating Factor (PAF) is a phospholipid mediator
involved in many cellular processes including cell motility and
synthesis of cytokines and other signaling mediators (240). PAF
signaling occurs through the PAF receptor (PAFR), which is a
single GPCR, expressed in the plasma and nuclear membranes of
leukocytes, endothelial cells, epithelial cells, smooth muscle cells,
and platelets (240). It is known that expression of PAFR in the
airway is upregulated by IAV infection, and it is believed that
this facilitates bacterial adherence and therefore susceptibility to
Streptococcus pneumonia (241).

The use of PAFR antagonists has been proposed in different
pathological settings, including influenza, mainly due to their
anti-inflammatory properties (242). Using PAFR knock out mice
and antagonists, Garcia et al. demonstrated that eliminating or
counteracting these receptors reduced lung injury, infiltration of
mononuclear cells and neutrophils, and the expression of IL12,
RANTES, and IFNγ while not affecting the levels of IL6 and
increasing IL1β production (243). This overall reduced immune
response did not result in an elevated level of viral replication. A
mechanistic analysis showed activation of TLR7/8 during infec-
tion was dependent on PAFR. While according to these data,
PAFR antagonists could be candidates to treat inflammation

during influenza, further characterization of the effect of these
drugs should be performed.

Other Candidates
Other anti-inflammatory therapies have been tested in animal
models resulting in reduced inflammation, morbidity, and mor-
tality. While these studies support the potential positive effect
of immunomodulatory therapy in severe influenza, the scientific
data in this field are very preliminary, and extensive investigation
is needed to develop these treatments for human use. Here we
discuss some of these treatments.

NADPH oxidases, enzymes that are involved in ROS pro-
duction, have also been proposed as targets for reducing IAV-
induced inflammation. There is evidence that activation of NOX2
promotes lung oxidative stress, inflammation, injury, and dys-
function resulting from infection with IAV ranging from low to
high pathogenicities (244). Apocynin, a NOX2 inhibitor, inhibited
influenza-induced hypercytokinemia and ROS production in air-
way epithelial and immune cells in vitro, while not affecting viral
replication (41).

A study by Sharma et al. analyzed the effect of other two
orally available and approved anti-inflammatory drugs, a
phosphodisesterase-4 inhibitor and a selective serotonin reuptake
inhibitor. This study showed a clear reduction in the levels of
cytokines and chemokines, lung infiltration, alveolitis, and overall
lower mortality in H1N1-infected mice, all while not affecting
the levels of viral replication (245).

Another research group further explored the combination of
antiviral and anti-inflammatory therapy and generated a novel
compound with these two properties by conjugating two drugs,
zanamivir (a neuraminidase inhibitor) and caffeic acid (cytokine
suppressor) (246). This innovative method provided improved
protection in mice against H1N1 and H5N1 IAV.

Concluding Remarks

There is substantial information in the literature supporting the
association of influenza pathogenesis with high levels of inflam-
mation andproduction of cytokines and chemokines, highlighting
the opportunity to identify immunomodulatory drugs that could
reduce the inflammation-associated damage in the lung seen in
severe cases of influenza. These therapies should be evaluated in
combination with antivirals, which control virus replication and
spread. Reduction of viral load with antiviral drugs also acts to
decrease inflammation by lowering the presence of PAMPs to be
sensed by cellular PRRs. In addition, one crucial aspect to assess
when testing these drugs is to assure that the treatment does not
provide an environment for enhanced replication due to a general
shutdown of the innate and adaptive immunity.

To date, the therapies studied in humans have commonly used
broad-spectrum anti-inflammatory drugs, which are frequently
used for other affections. Corticosteroids are a good example
of those therapies, which are frequently used in patients with
asthma and COPD, and have been evaluated in multiple studies
with conflicting results. Some of those studies point to a possible
detrimental role of treatment with corticosteroids, and their use
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should be avoided if possible until their effect is better understood.
Other broad-spectrum anti-inflammatory drugs that could be
beneficial are statins, N-acetylcysteine, and COX-2 inhibitors.
However, there is no sufficient data in the current literature to
justify their use. More specific treatments that have been explored
in animal models include blocking cytokines, such as TNFα or
IL1β, reducing the oxidative stress through NADPH inhibitors,
or the use of inhibitors for receptors for secondary inflammatory
mediators, such as PAFR or S1PR. As for the last examples, target-
ing cell surface receptors in immune cells is an attractive approach
since this would facilitate cellular accessibility of the drug. Further

research to bring these therapies closer to the clinic in the context
of IAV infection is needed, as well as for the identification of novel
immunomodulatory agents.
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