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Abstract
Lacticaseibacillus paracasei K56 (L. paracasei K56) is a probiotic with weight-loss effects. However, symbiosis research 
on the combined effects of Lacticaseibacillus paracasei K56 and prebiotics is lacking. Therefore, the aim of this study 
was to investigate the effects of L. paracasei K56, xylooligosaccharide (XOS), galactooligosaccharide (GOS), polyglucose 
(PG), and their synbiotic combinations (XOS + K56, GOS + K56, and PG + K56) on metabolism and gut composition in 
children with obesity, using an in vitro fermentation model. Fecal samples were collected from 14 children with obesity for 
in vitro fermentation, and the effects of the various treatments in gas production and short chain fatty acid synthesis (SCFAs) 
were assessed. Treatment with probiotics, prebiotics, and synbiotics regulated gut microbiota and metabolites in children 
with obesity. GOS and XOS had higher degradation rates than PG + K56 synbiotics in the gut microbiota of children with 
obesity. Moreover, treatment with XOS, GOS, and their synbiotic combinations, (XOS + K56) and (GOS + K56), signifi-
cantly reduced the production of gas, propionic acid, and butyric acid compared with PG + K56 treatment. Treatments with 
GOS + K56 and XOS + K56 altered the composition of the gut microbiota, improved the abundance of Bifidobacteria and 
Lactobacilli, and reduced the abundance of Escherichia/Shigella. Overall, this study provides a theoretical foundation for 
the use of K56-based synbiotics.
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Introduction

Global statistics published in 2016 and 2017 indicate an 
increase in the incidence of obesity, with the number of 
obese people overtaking the number of underweight indi-
viduals [1, 2]. During the 40 years from 1975 to 2016, the 
incidence of obesity among children and adolescents world-
wide has increased from 0.7 to 5.6% for girls and from 0.9 to 
7.8% for boys [2], which is equivalent to 340 million over-
weight or obese children and adolescents [3]. Obesity poses 
a serious threat to human health, and is a risk factor for 
diabetes, cardiovascular diseases, certain cancers, and other 
chronic diseases [4]. The harmful effects of childhood obe-
sity cannot be underestimated as children with obesity are at 
an increased risk for metabolic diseases, as well as cardio-
vascular maladies and adulthood cancers [5, 6]. Obesity is 
usually accompanied by chronic inflammation, insulin resist-
ance, lipid metabolism disorders, and other health-related 
issues [7], including imbalanced gut microbiota [8]. Most 
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current treatments for obesity center on lifestyle interven-
tions, which are influenced by several factors, resulting in 
limited clinical effects [9].

Probiotics and prebiotics improve obesity by adjusting 
gut microbiota [10] and are more advantageous compared 
to lifestyle interventions. Bäckhed et al. [11] reported that 
germ-free mice of normal weight showed weight gains and 
fat accumulation following the transplantation of gut micro-
biota obtained from obese mice. Based on this finding, the 
association between obesity and gut microbiota has been 
attracting considerable research attention. Children with 
obesity have a lower gut microbiota diversity than normal 
children, with significant differences in the relative abun-
dance of specific gut microbiota between both groups [12, 
13]. Recent findings indicate obesity-associated dysbiosis 
as well as dysfunction in host immune response and energy 
metabolism can be corrected via reasonable supplementation 
with probiotics, prebiotics, synbiotics, and other dietary sup-
plements [14], which may help reverse obesity. Probiotics 
are active microorganisms that benefit the host by colonizing 
the body and altering the composition of the host microbiota. 
Prebiotics are organic compounds that are neither digested 
nor absorbed by the host; instead, they specifically promote 
the metabolism and proliferation of beneficial bacteria in the 
body, thereby improving the health of the host [15]. A synbi-
otic is defined as a mixture comprising live microorganisms 
and substrate(s) selectively utilized by host microorganisms 
[16], which can exert positive effects on the health of hosts. 
Synbiotics are believed to confer greater benefits than either 
prebiotics or probiotics alone [17].

Lactobacillus is a probiotic widely used for the treat-
ment of obesity [18]. Lacticaseibacillus paracasei K56 (L. 
paracasei K56), a probiotic isolated from the intestines of 
children, is resistance against gastric acid and intestinal flu-
ids. Notably, L. paracasei K56 can regulate immunity, alle-
viate intestinal inflammation, and balance gut microbiota, 
among other functions, showing potential for application in 
fermented milk, solid drinks, and health food. Moreover, 
animal experiments have demonstrated that L. paracasei 
K56 effectively mitigates weight gain, reduces fat accumu-
lation, alleviates insulin resistance, and restores pancreatic 
β-cell function by modulating the gut microbiota [19, 20]. 
However, studies on the compatibility of synbiotics based 
on L. paracasei K56 are lacking. To explore the suitabil-
ity of L. paracasei K56 for use with prebiotics, this study 
selected three prebiotics with beneficial effects on obesity: 
xylooligosaccharide (XOS), galactooligosaccharide (GOS), 
and polyglucose (PG). This study was aimed at investigat-
ing the effects of L. paracasei K56, XOS, GOS, PG, and 
their synbiotic combinations (XOS + K56, GOS + K56, and 
PG + K56) on metabolism and gut composition in children 
with obesity. Specifically, we measured the degradation rate, 
gas production, and short-chain fatty acid (SCFA) output of 

synbiotics, and analyzed the composition of the microbiota 
to identify prebiotics with beneficial effects that could be 
suitable for the growth of L. paracasei K56. Our findings 
indicated that the abundances of Bifidobacterium and Lac-
ticaseibacillus are increased in the gut microbiota of the 
GOS, GOS + K56, XOS, and XOS + K56 groups, and that 
these prebiotics and synbiotics may inhibit the production 
of propionic and butyric acids, thereby enabling weight loss. 
The findings of this study may provide a theoretical basis for 
the formulation and use of a novel L. paracasei K56-based 
synbiotic.

Materials and Methods

Sample Collection and Participants

Fourteen children with obesity (boys, n = 6; girls, n = 8) aged 
9 years were recruited for this study. These volunteers con-
sumed Chinese modern dietary pattern (with high intake of 
wheat, processed meat and fast food) [21], and none were 
vegetarians. They had not received antibiotics, probiotics, 
or prebiotics for at least 3 months prior to sample collec-
tion. This research was approved by the Ethics Commit-
tee of Hangzhou Normal University (No. 20190061). The 
participants provided their written informed consent to par-
ticipate in this study. Fecal samples, collected from the 14 
volunteers, were placed in sterile collection tubes and trans-
ported to the laboratory within 4 h under low temperature 
for further analysis.

In Vitro Fermentation Test

All samples were subjected to batch culture and fermenta-
tion experiments using the method described by Wu et al. 
[22]. Fresh fecal samples (0.8 g) were treated with 8 mL 
of 0.1 M anaerobic phosphate-buffered saline (pH 7.0), 
following which the feces were homogenized and filtered 
using a HALO-F100 fecal processor (Suzhou Hailu Bio-
technology, Jiangsu, China) to obtain a 10% fecal suspen-
sion. Thereafter, each sample was inoculated with yeast 
extract–casein hydrolysate–fatty acid medium (YCFA) 
modified growth medium containing the following [23]: 
10 g/L of tryptone, 2.5 g/L of yeast extract, 10 mg/L of 
hemin, 1 g/L ofL-cysteine hydrochloride, 0.9 g/L of NaCl, 
0.009 g/L of MgCl2·6H2O, 0.45 g/L of KH2PO4, 0.45 g/L 
of KH2PO4, 1 mg/L of resezurin, 1 μg/L of biotin, 1 μg/L 
of cobalamin, 3 μg/L of p-aminobenzoic acid, 5 μg/L of 
folic acid, and 15 μg/L of pyridoxamine. In this study, a 
novel strain of L. paracasei K56 sourced from the gut micro-
biota of healthy infants in China by Inner Mongolia Yili 
Industrial Group Co., Ltd. was utilized. K56 (L. paracasei 
K56 [3 × 108 CFU/mL]), GOS (4 g/L), XOS (4 g/L), and 
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PG (4 g/L), obtained from Yuanye Biotechnology Co., Ltd. 
(Shanghai, China). GOS + K56 (GOS [4 g/L], L. paracasei 
K56 [3 × 108 CFU/mL]), XOS + K56 (XOS [4 g/L], L. para-
casei K56 [3 × 108 CFU/mL]), and PG + K56 (PG [4 g/L], 
L. paracasei K56 [3 × 108 CFU/mL]) were placed in eight 
different culture media fermentation flasks, and treated with 
fecal culture from the YCFA culture medium, as the control. 
Following inoculation, the culture flasks were placed in a 
37 °C incubator and fermented for 24 h. Subsequently, the 
samples were used for testing and further analysis.

Determination of Degradation Rates and Gas 
Measurement

The degradation rates of prebiotics and synbiotics were 
quantified using thin-layer chromatography (TCL Silica gel 
60 F254, Merck, Germany) [24], the degradation rate was 
calculated based on the integration of the gray value of each 
sample on the chromatography plate.Total gas release and 
H2, CO2, CH4, and H2S concentrations during in vitro fer-
mentation were evaluated using a gas analyzer (HL-QT01, 
Hailu Biotech, Hunan, China) [25].

Detection of SCFAs

The concentration of SCFAs in each fermentation broth was 
measured using a gas chromatograph (GC-2010 Plus, Shi-
madzu, Japan) coupled with a DB-FFAP column (0.32 mm * 
30 × 0.5 mm) (Agilent Technologies, USA) and an H2 Flame 
ionization detector. Crotonic acid (trans-2-butenoic acid) 
was used as the internal standard for the determination of 
the concentrations of acetic, propionic, butyric, isobutyric, 
valeric, and isovaleric acids [22]. The total acid production 
is the sum of the concentrations of the aforementioned six 
SCFAs.

16S rRNA Gene Sequencing

Bacterial genomic DNA was extracted from fecal and fer-
mented samples using a QIAamp DNA fecal kit (Qiagen, 
Germantown, MD, USA). The V3–V4 region (bacterial 16S 
rRNA gene) of the extracted DNA was amplified using the 
barcode primers, 341F (5′-CCT​AYG​GGRBGCASCAG-3′) 
and 806R (5′-GGA​CTA​CNNGGG​TAT​CTAAT-3′) [22]. An 
Illumina HiSeq 2500 system (Beijing, China) was used for 
next-generation sequencing, while the QIME (quantitative 
insight into microbial ecology) pipeline was used to iden-
tify the sequence through a barcode Recognition sequence. 
Sequences with 97% similarity were categorized into opera-
tional taxonomic units (OTUs) using Mothur software and 
annotated using the SILVA database. Sequencing data were 
analyzed using Genomics Software (Visual Genomics Soft). 
A sequence from each OTU was selected for representative 

purposes. The ribosome database project (RDP) classifier 
technique and SILVA database were used to classify repre-
sentative sequences. Mothur was used to calculate suitable 
coverage, α diversity (including the Simpson and Shan-
non indices), and richness (observed number of OTUs). 
β-diversity was calculated using weighted principal coordi-
nate analysis (PCoA), while α-diversity was calculated using 
the Shannon index. The correlation between the species, 
SCFA, and gases were illustrated using a heatmap based on 
the Spearman rank correlation coefficient.

Statistical Analysis

All data are represented as mean ± standard deviation 
(M ± SD). Significance differences between groups were 
calculated using one-way analysis of variance (ANOVA), 
followed by least significance difference (LSD) test. Statisti-
cal significance was set at p < 0.05. All statistical analyses 
were performed using the Statistical Package for the Social 
Sciences (SPSS) software (version 23.0; SPSS Inc. Chicago, 
IL, USA). All charts were constructed using the GraphPad 
Prism 8 software (GraphPad Software Inc., San Diego, CA, 
USA).

Results

Prebiotic Degradation Rate

The degradation rates of the three prebiotics and synbiot-
ics fermented in vitro are shown (Fig. 1a). The degradation 
rates of XOS, GOS, and PG by fecal bacteria from chil-
dren with obesity were 70.41 ± 22.35, 49.79 ± 20.33, and 
68.58 ± 20.33%, respectively. Following the addition of K56, 
the degradation rates of XOS, GOS, and PG decreased to 
64.88 ± 27.69, 40.33 ± 25.3, and 59.03 ± 18.51%, respec-
tively, although this trend was not significant. Notably, GOS 
and XOS had significantly higher (p < 0.05) degradation 
rates than PG + K56.

Total Gas Production Volume and Percentage of CO2, 
CH4, H2, and H2S

Gas production in each group was measured after 24 h of 
in vitro fermentation (Fig. 1b–f). Gas production was sig-
nificantly lower (p < 0.05) in the GOS + K56, XOS, and 
XOS + K56 groups than in the PG and PG + K56 groups. 
Specifically, the volume of gas produced in the XOS, PG, 
and GOS groups decreased following the addition of K56, 
although the decrease was not significant. An analysis of 
the gas fractions showed that CO2 output was significantly 
lower (p < 0.05) in the GOS + K56 and PG + K56 groups 
than in the PG group, CH4 output was significantly lower 
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(p < 0.05) in the GOS group than in the PG group, while H2 
output was significantly lower in the XOS + K56 group than 
in the PG + K56 group. Additionally, H2S output was sig-
nificantly lower (p < 0.0001) in the GOS, GOS + K56, XOS, 
and XOS + K56 groups than in the YCFA, YCFA + K56, PG, 
and PG + K56 groups. However, there was no significant 
difference in H2S output between the GOS and GOS + K56 
groups, as well as between the XOS and XOS + K56 groups, 
indicating that GOS and XOS were beneficial for reducing 
H2S production.

Acid Production Analysis

There were significant differences (p < 0.05) in the concen-
trations of different SCFAs (Fig. 2a–f), as well as the total 
acid production among the eight media. Notably, total acid 
output was significantly higher (p < 0.05) the PG group than 
in XOS + K56 group. Although there was no significant dif-
ference in acetic acid output among the eight culture media, 
there was a significant difference (p < 0.0001) in the propor-
tions of acetic acid produced. The proportion of acetic acid 
produced in the XOS, XOS + K56, and GOS + K56 groups 
was significantly higher than that produced in the PG, 
PG + K56, YCFA, and YCFA + K56 groups. Additionally, 
the GOS group produced a higher proportion (p < 0.05) of 
acetic acid than the PG and YCFA + K56 groups. Moreover, 

the GOS, GOS + K56, XOS, and XOS + K56 groups had 
lower concentrations (p < 0.05) of propionic and butyric 
acids than the PG group. Additionally, the GOS + K56 and 
XOS + K56 groups had lower concentrations (p < 0.05) of 
propionic acid than the PG + K56 group.

Microbial Diversity and Principal Component 
Analysis

There were no significant differences in the number of 
OTUs and Ace, Chao1, Shannon, and Simpson indices 
among the groups (Fig. 3a–e), indicating that prebiotics 
and synbiotics failed to alter the gut microbiota diversity. 
PCoA indicated that the total genera of gut microbiota in the 
GOS, GOS + K56, XOS, and XOS + K56 groups were sig-
nificantly different from those in the YCFA, YCFA + K56, 
PG, PG + K56 groups (Fig. 3f). Compared with that in the 
YCFA group, the GOS, GOS + K56, XOS, and XOS + K56 
groups had a significantly higher abundance (p < 0.05) of 
Bifidobacterium (Fig. 4), but a lower abundance (p < 0.05) 
of Escherichia/Shigella. However, there were no significant 
differences (p > 0.05) the abundances both bacterial genera 
between the K56 and YCFA groups. Notably, Lacticasei-
bacillus spp. was significantly enriched in the GOS + K56, 
PG + K56, and XOS + K56 groups.

Fig. 1   Degradation rate (a), total gas production (b), and CO2 (c), 
CH4 (d), H2 (e), and H2S (f) production ratio in various groups. Sta-
tistical significance of the differences between groups was calculated 

using one-way ANOVA with LSD test, *P < 0.05, **P < 0.01, and 
***P < 0.001 were considered with significant difference, and no 
mark means there is no significance
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Correlation Analysis of Degradation Rate and Gas 
Production

In the GOS + K56 group, Bifidobacterium was correlated 
with a decrease in CO2, H2, and total gas output, Escheri-
chia/Shigella were associated with higher CO2 production 
(Fig. 5a1), Megamonas was correlated with increased propi-
onic acid synthesis, and Prevotella was positively correlated 
with isovaleric acid synthesis but negatively correlated with 
the total acid content (Fig. 5a2). Bifidobacteria were nega-
tively correlated with the production of propionic acid and 
butyric acid (Fig. 5a2).

In the XOS + K56 group, Bifidobacterium was correlated 
with a decrease in CO2 and CH4 production, Lacticaseiba-
cillus was negatively correlated with CO2 and its degrada-
tion rate (Fig. 5b1), Lactobacillus was negatively correlated 
with propionic acid production, Escherichia and Shigella 

were associated with butyric acid synthesis, Megamonas 
was associated with propionic acid production, and Entero-
coccus was positively associated with isobutyric acid output 
(Fig. 5b2).

In the PG + K56 group, Bacteroides was positively corre-
lated with CH4 output, Escherichia/Shigella were negatively 
correlated with CH4 production, while the degradation rate 
of Lacticaseibacillus was negatively correlated with CH4 
(Fig. 5c1). In SCFA metabolism, Bacteroides was positively 
correlated with acetic, butyric, and total acid contents. 
Prevotella increased the content of isobutyric acid, which 
is related to the synthesis of propionic acid, Megamonas 
was correlated with propionic acid synthesis, Enterococcus 
was negatively correlated with valeric acid output, Lactica-
seibacillus was positively correlated with valeric acid, while 
Limosilactobacilli were negatively correlated with valeric 
and isovaleric acids synthesis (Fig. 5c2).

Fig. 2   Total (a), acetic (b), propionic (c), butyric (d), isobutyric 
(e), and isovaleric (f) acid contents in different groups. Total acid 
includes the concentrations of acetic, propionic, butyric, isobutyric, 
valeric, and isovaleric acid. Statistical significance of the differences 

between groups was calculated using one-way ANOVA with LSD 
test, *P < 0.05, **P < 0.01, and ***P < 0.001 were considered with 
significant difference, and no mark means there is no significance
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Fig. 3   PCoA plots for α-diversity indices in different groups, including the OUT (a), Ace (b), Shannon (c), Chao1 (d), and Simpson index (e), 
and β-diversity analysis (f)

Fig. 4   Histogram of species composition at the genus level and relative abundance of dominant species in different groups
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Fig. 5   Spearman correlation heatmaps of microorganisms at GOS + K56 (a1, a2), XOS + K56 (b1, b2), PG + K56 groups (c1, c2) with total, ace-
tic, propionic, butyrate, isobutyric, and isovaleric acid, total gases, H2, CO2, CH4, and degradation rate
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Discussion

The intestinal microbiota is a potential determinant of the 
development of obesity [26]. L. paracasei K56 may reduce 
body fat in adults with obesity and increase the abundance 
of Bacteroides, Alistipes, and Parastutella in their intestines 
[27]. Synbiotics based on L. paracasei K56 significantly 
reduced body fat weight compared with either probiotics or 
prebiotics alone [28]. In this study, we examined the effects 
of L. paracasei K56 and three combinations of prebiotics 
on the gut microbiota of children with obesity, using an in 
vitro fermentation model. This model has been previously 
used to study probiotics and prebiotics [29, 30]. GOS, XOS, 
and their synbiotic combinations produced a higher propor-
tion of acetic acid, lower amounts of propionic and butyric 
acids, and lower amounts of H2S and H2 gases. These results 
suggest that GOS and XOS are more compatible with K56 
than with PG. Additionally, GOS and XOS promoted the 
abundance of Bifidobacterium and combinations of these 
prebiotics with L. paracasei K56 increased the abundance 
of Limosilactocobacillus. Collectively, these results suggest 
that synbiotics may regulate the abundance of certain spe-
cies that constitute gut microbiota, providing a foundation 
for synbiotics-based personalized intervention programs.

Individuals with obesity have a lower gut microbial 
diversity and abundance of beneficial bacteria than nor-
mal individuals. Turnbaugh et al. [31] sequenced the gut 
microbiota of twins with different degrees of fatness and 
thinness and found lower gut microbial diversity in the 
twin with obesity. Zuo et al. [32] analyzed the bacterial 
colony counts in the feces of obese people in China and 
found that the contents of Escherichia coli, Lactobacil-
lus, and Bifidobacterium was lower compared with those 
of individuals with normal body mass. The findings of 
the present study suggest that GOS and XOS may stimu-
late the abundance of Bifidobacterium, which is consist-
ent with previous findings [33, 34]. Supplementation with 
probiotics and prebiotics may help restore intestinal micro-
ecological balance and boost beneficial bacteria in the gut 
microbiota of patients with obesity [35, 36]. Additionally, 
similar to previous studies on in vitro simulated fermen-
tation, short-term in vitro fermentation of prebiotics and 
probiotics did not change the alpha diversity of intestinal 
microorganisms [24]. However, prebiotics and probiotics 
can change the abundance of specific intestinal flora. In 
our study, synbiotic Lacticaseibacillus was significantly 
enriched following the addition of L. paracasei K56. Lac-
tobacilli may help reduce weight [18]. Kadeer et al. [27] 
found that L. paracasei K56 reduced the weight, visceral 
adipose tissue content, and waist circumference of human 
subjects. Lactobacillus may directly reduce the cholesterol 
content in blood vessels and upregulate the transcription 

factor peroxisome proliferator-activated receptor in 
epididymal adipose tissue. The expression of fatty acid-
binding protein 4 and carnitine palmitoyl transferase-I 
stimulated lipid oxidation, thereby delaying obesity [37].

Generally, the metabolic products of prebiotics are usu-
ally used as the main indicator for evaluating their effects 
[30]. Following absorption by gut microbiota, prebiotics 
are decomposed into SCFAs, including acetic acid, propi-
onic acid, butyric acid, and other organic acids [29]. These 
organic acids provide energy for the body and reduce the 
intestinal pH, thereby promoting the growth of beneficial 
bacteria and creating an unfavorable environment for patho-
gens [38]. Acetic acid can cause weight loss, and acetic acid 
produced by gut microbiota enters the peripheral circulation 
via the veins and crosses the blood–brain barrier, thereby 
affecting appetite which leads to weight loss [39, 40], and 
stimulating leptin production via the activation of GPR43 in 
adipose tissue [41]. Additionally, Araújo et al. [42] reported 
that acetic acid activates the AMPK/PGC-1α/ PPAR α path-
way, which induces fat oxidation by intestinal epithelial cells 
to promote the consumption of dietary lipids, thereby reduc-
ing the binding of dietary lipids with apolipoprotein and 
releasing them into lymph and blood.

The relationship between butyric acid, propionic acid, 
and obesity remains complex and somewhat contradictory. 
Propionic acid and butyric acid can induce the secretion of 
glucagon like peptide 1 and peptide YY, thereby increas-
ing energy expenditure, suppressing appetite, and exerting 
anti obesity effects [43]. But their contents were positively 
correlated with the degree of obesity in children with obe-
sity. Gyarmati et al. [44] found that the levels of butyric, 
isovaleric, and propionic acids increased significantly 
with the severity of obesity. Additionally, Payne et al. [45] 
reported that the concentrations of butyric and propionic 
acids were significantly higher in children with obesity. 
In the present study, propionic and butyric acids were 
significantly lower in the YCFA + K56, PG + K56, GOS, 
GOS + K56, XOS, and XOS + K56 groups than those in the 
blank control group, indicating that they can reduce the pro-
duction of propionic and butyric acids in the intestines of 
obese children. Correlation analysis revealed that Bifidobac-
terium was negatively correlated with propionic and butyric 
acids synthesis, while Lactobacillus and propionic acid pro-
duction were negatively correlated. Ruiz-Aceituno et al. [46] 
showed that biosynthetic pathways for propionic and butyric 
acids are non-existent in Bifidobacterium species. Although 
Lactobacillus rhamnosus ATCC 53103 secretes acetic acid 
in brain–heart infusion broth containing 0.1% glucose, pro-
pionic acid or butyric acid were not detected in the spent 
culture supernatant [47]. This may explain the low propionic 
and butyric acid levels observed in the GOS, GOS + K56, 
XOS, and XOS + K56 groups.Intestinal microbes utilize 
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several gases, including CO2, H2, CH4, an H2S, during fer-
mentation. Due to differences between the compositions 
of the prebiotics and glycosidic bonds, the gases produced 
vary. Notably, these gases are detrimental to human health. 
Excessive gas production leads to flatulence and other gas-
trointestinal discomforts. Thus, gas production is considered 
a major adverse event associated with the consumption of 
prebiotics [48]. In the present study, the GOS, GOS + K56, 
XOS, and XOS + K56 groups produced the lowest total gas 
volumes, and consequently the lowest output of H2, H2S, 
and CH4. Additionally, the GOS and XOS groups exhib-
ited better degradation rates than the PG + K56 group. The 
degradation rate reflects the consumption of prebiotics by 
the intestinal microbiota during the fermentation process. 
Prebiotics are the fermentation substrates of probiotics. A 
higher degradation rate usually indicates that the intestinal 
microbiota can better utilize prebiotics [49]. Although the 
degradation rates of all synbiotic combinations decreased 
after the addition of L. paracasei K56, the differences were 
not statistically significant. This suggests that GOS and XOS 
have better absorption effects and lower gas production.

Despite the promising results, this study had some limi-
tations. In vitro experiments may not totally capitulate in 
vivo conditions, which may lead to differences between our 
results and those of any in vivo animal experiments. Moreo-
ver, there may be differences between the results of in vitro 
studies based on simulated fermentation and those based on 
the actual environment in the human intestines. Therefore, 
clinical experiments involving human subjects are necessary 
to validate the results of this study. Moreover, further stud-
ies are necessary to develop optimal synbiotic combinations 
based on L. paracasei K56.

Conclusions

This study showed that GOS and XOS promoted the abun-
dance of Bifidobacterium and combinations of these prebi-
otics with L. paracasei K56 increased the abundance of 
Limosilactocobacillus and reduce the abundance of Escheri-
chia/Shigella, thereby increasing the proportion of acetic 
acid and reducing the amounts of propionic and butyric 
acids, as well as CO2, H2, CH4, and H2S in the gut. Addi-
tionally, this study provides a theoretical foundation for the 
development of novel K56-based synbiotics to improve 
childhood obesity.
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