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Abstract

Most Escherichia coli O157-serogroup strains are classified as enterohemorrhagic E. coli (EHEC), which is known as an
important food-borne pathogen for humans. They usually produce Shiga toxin (Stx) 1 and/or Stx2, and express H7-flagella
antigen (or nonmotile). However, O157 strains that do not produce Stxs and express H antigens different from H7 are
sometimes isolated from clinical and other sources. Multilocus sequence analysis revealed that these 21 O157:non-H7 strains
tested in this study belong to multiple evolutionary lineages different from that of EHEC O157:H7 strains, suggesting a wide
distribution of the gene set encoding the O157-antigen biosynthesis in multiple lineages. To gain insight into the gene
organization and the sequence similarity of the O157-antigen biosynthesis gene clusters, we conducted genomic
comparisons of the chromosomal regions (about 59 kb in each strain) covering the O-antigen gene cluster and its flanking
regions between six O157:H7/non-H7 strains. Gene organization of the O157-antigen gene cluster was identical among
O157:H7/non-H7 strains, but was divided into two distinct types at the nucleotide sequence level. Interestingly, distribution
of the two types did not clearly follow the evolutionary lineages of the strains, suggesting that horizontal gene transfer of
both types of O157-antigen gene clusters has occurred independently among E. coli strains. Additionally, detailed sequence
comparison revealed that some positions of the repetitive extragenic palindromic (REP) sequences in the regions flanking
the O-antigen gene clusters were coincident with possible recombination points. From these results, we conclude that the
horizontal transfer of the O157-antigen gene clusters induced the emergence of multiple O157 lineages within E. coli and
speculate that REP sequences may involve one of the driving forces for exchange and evolution of O-antigen loci.
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Introduction

The O antigen constitutes the outermost part of the lipopoly-

saccharide (LPS) present in the outer membrane of Gram-negative

bacteria. The chemical composition and structure of O antigen

exhibit high levels of variation even within a species, and the

serotyping of strains with O antigens (together with the H-flagellar

antigen) is used as an effective method to identify various

pathogenic clones. In Escherichia coli, more than 170 O serogroups

have so far been identified [1], and above all, the O157 is an

important E. coli O serogroup because it is the most frequently

reported O serogroup of enterohemorrhagic E. coli (EHEC) strains

associated with outbreaks and sporadic cases of diarrhea,

hemorrhagic colitis and hemolytic-uremic syndrome worldwide

[2].

O157 strains isolated from patients with diarrhea usually carry

EHEC-associated virulence genes, such as stx1 and/or stx2

(encoding Shiga toxins) and eae (encoding intimin). Additionally,

the expression of the H7 antigen (encoded by fliCH7) is also an

important characteristic of EHEC O157. However, some O157

strains do not carry stx genes, and express H antigens different

from H7. These O157:non-H7 serotype strains are sometimes

isolated from human and other sources worldwide [3,4,5,6,7].

O157:H45 strains have been isolated from diarrhea patients [5].

They possess both the eae and bfpA genes (encoding a subunit of

bundle-forming pili), and were classified into a typical entero-

pathogenic E. coli (EPEC). O157:H39 strains carrying the eae gene

were also isolated from diarrhea or asymptomatic cases [3,6].

O157:H16 strains have occasionally been isolated from clinical,

food or environmental sources, and some of these strains also carry

the eae gene [3]. In addition to eae-positive strains, the presence of

eae-negative O157:non-H7 strains (including O157:H10,

O157:H16 and O157:H43) has also been reported [6].

In E. coli, genes required for O-antigen biosynthesis are usually

clustered at a chromosomal locus flanked by the colanic acid

biosynthesis gene cluster (wca genes) and the histidine biosynthesis
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(his) operon. And in EHEC O157, 12 genes required for the O157-

antigen synthesis are clustered; rfbE, gmd, fel, wbdQ, manC and manB

are involved in nucleotide sugar biosynthesis, wbdN, wbdO, wbdP

and wbdR in sugar transfer (encoding glycosyl transferases), and

wzy (encoding an O-antigen polymerase) and wzx (encoding a

flippase) in O-antigen processing [8]. Recently, Feng et al. [3]

demonstrated that eae-positive O157:non-H7 strains belonged to

distinct evolutionary lineages from that of EHEC O157:H7

strains, suggesting a wide distribution of O157-antigen biosynthe-

sis gene clusters within E. coli. However little is known about the

characteristics of the O157-antigen gene cluster of O157:non-H7

strains.

Here, we examined 21 O157:non-H7 strains in order to study

the evolution of the E. coli O157-serogroup strains. Sequence

comparison with EHEC O157:H7 strains revealed that O157-

antigen gene clusters are highly conserved among the strains, but

can be divided into two distinct types at the nucleotide sequence

level. Distribution of the two types did not clearly follow the

evolutionary lineages of the strains, suggesting that horizontal

transfer of the two distinct O157-antigen gene clusters induced the

emergence of multiple O157 lineages within E. coli. Additionally,

the observation suggests that horizontal transfer of O157-antigen

gene cluster may be a prominent mechanism for the exchange of

O-antigen loci. We discuss the probable mechanisms involved in

the recombination of the fragments including O-antigen gene

clusters.

Materials and Methods

Ethics Statement
An ethics statement is not required for this study according to

the ethical guidelines for Epidemiological Studies of the Ministry

of Health, Labor and Welfare, Japan.

Bacterial Strains
The bacterial strains used in this study are listed in Table 1. All

O157:non-H7 strains were isolated from human stool samples

(except a strain, PV06-4 which was isolated from a food source)

through routine investigations for outbreaks or sporadic cases of

EHEC O157 during 1995–2006 in the Osaka Prefectural Institute

of Public Health, Japan. An informed consent from patient

involved is not applicable for this study, because the samples were

taken for diagnostic purposes in order to appropriately treat the

patients. Three O157:H7 strains: RIMD 0509952 referred to as

Sakai [9], ATCC43895 and ATCC43888 (no Stx1 or Stx2

production) were also used.

Phenotypic Characterization
O serogroups of each strain were determined by agglutination

tests with the anti-O157 serum (Denka Seiken Co., Ltd., Tokyo,

Japan) according to the manufacturer’s instructions. H serogroups

were determined using a set of anti-H sera. Sorbitol fermentation

(Sor) was detected on Sorbitol MacConkey agar (Nissui Pharma-

ceutical Co. Ltd, Tokyo, Japan) plates after overnight incubation

at 37uC and further confirmed in peptone water containing

sorbitol (1%) and Andrade’s indicator (1%) after 72 h incubation

at 37uC. The b-glucuronidase activity (GUD) of strains was

examined with CLIG agar (Kyokuto seiyaku, Tokyo, Japan).

Genotypic Characterization
Genetic H serotyping was performed by PCR-RFLP analysis of

the fliC gene (encoding the flagella filament protein) as described

previously [10]. The presence of the rfbE gene encoding

perosamine synthetase, which is essential for O157-antigen

biosynthesis was determined by PCR [11]. Furthermore, the

following pathotype-associated genes were detected by PCR: stx1

and stx2 [12], and ehxA [13] associated with EHEC, eae [14] and tir

(encoding translocated intimin receptor) [15] associated with

EHEC/EPEC, bfpA [16] and EPEC adherence factor (EAF)

plasmid specific region [17] associated with typical EPEC, elt

(encoding heat-labile enterotoxin) and est (heat-stable enterotoxin)

[18] associated with enterotoxigenic E. coli (ETEC), astA (encoding

heat-stable enterotoxin EAST1) [19], aggR (encoding transcrip-

tional activator of aggregative adherence fimbria I expression)

[19], and irp2 (encoding iron-repressible high-molecular-weight

protein HMWP2) [20] associated with enteroaggregative E. coli

(EAEC), invE and ipaH associated with enteroinvasive E. coli

(EIEC). All PCRs were performed according to the protocols

described previously, except two genes (invE and ipaH), which were

examined using the Shigella sp./enteroinvasive E. coli (invE/ipaH

genes) PCR Screening Set (TaKaRa Bio Inc., Shiga, Japan). eae-

positive strains can be classified into several subtypes based on

sequence variation within the eae gene. Subtyping of the eae genes

was done by PCR using allele-specific primers (eae-alleles: a, b, c,

e, f, i, g, k and h) as described previously [21].

Sequencing of Seven Housekeeping Genes and rfbE
Internal regions of the seven housekeeping genes (adk, fumC,

gyrB, icd, mdh, purA, and recA) were PCR amplified and sequenced

using the primers and protocol specified on the E. coli MLST

website (http://mlst.ucc.ie/mlst/dbs/Ecoli). The entire coding

region of the rfbE gene was amplified and sequenced using the

primers as follows: rfbE_univ_F (59-AGCCATTTTGGGT-

TAACTGTT-39) and rfbE_univ_R (59-CCCCACTCG-

TAAAATCCATCT-39).

Evolutionary Analysis
The concatenated sequences of seven housekeeping genes from

non-H7 strains were used for multilocus sequence analysis

(MLSA). Additionally, the complete genome sequences for the

following E. coli strains (which are publicly available) were included

in the analysis: EHEC strain Sakai (Serogroup O157, Accession

number BA000007), EHEC strains 11368 (O26, AP010953),

12009 (O103, 010958) and 11128 (O111, AP010960), EPEC

strains E2348/69 (O127, FM180568) and CB9615 (O55, Acc.

No. CP001846), ETEC strains E24377A (O139, CP000800) and

H10407 (O78, FN649414), EAEC strain 042 (O44, FN554766),

Adherent-invasive E. coli (AIEC) strain LF82 (O83, CU651637),

extraintestinal pathogenic E. coli (ExPEC) strains UMN026 (O17,

CU928163), IAI39 (O7, CU928164), 536 (O6, CP000247),

CFT073 (O6, AE014075), S88 (O45, 928161) and IHE3034

(O18, CP001969), avian pathogenic E. coli (APEC) strain (O1,

CP000468), commensal E. coli strains SE11 (O152, AP009240),

SE15 (O150, AP009378), IAI1 (O8, CU928160) and HS (O9,

CP000802), and environmental E. coli strain SMS-3-5 (O19,

CP000970). ECOR strains were also included in the MLSA. Their

sequences were obtained from the E. coli MLST website: http://

mlst.ucc.ie/.

Multiple alignments of sequences were constructed by using the

CLUSTAL W program [22] in the MEGA4 software [23], and

then neighbor-joining trees were generated by using Tamura-Nei

model. A bootstrap test with 1,000 replicates was used to estimate

the confidence of the branching patterns of the tree. Rates of non-

synonymous (dN) and synonymous (dS) substitutions were

estimated using the modified Nei-Gojobori/Jukes-Cantor method

in MEGA4 [24]. dN/dS ratio provides a sensitive measure of

selective pressure on the protein, with values of dN/dS = 1, .1

Evolution of E. coli O157 Serogroup
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and ,1 indicating neutral evolution, positive (diversifying)

selection and negative (purifying) selection, respectively.

Sequence Analysis of O157-antigen Biosynthesis Gene
Clusters and Their Flanking Regions

The O157-antigen biosynthesis gene cluster and its flanking

regions were amplified using three PCR primer pairs as follows:

Seg3F (59-CATAGTCGGTTGGAGTGGCGA T-39) and Seg3R

(59-TTGCCGGAACGGAGAGAGTAGA-39) for amplifying the

region (18,482 bp in Sakai) covering the entire O157-antigen

biosynthesis gene cluster, Seg1F (59-GATAAAACTCGGGCT-

CGCCGTG-39) and Seg2R (59-TCCGGTACTGGCTATG-

TAGGCT-39), and Seg4F (59-GCCGTTTCAAGTAGTCGG-

GTTC-39) and Seg5R (59-CTTTCCCTTCCAGCCGTTCGTT-

39) for amplifying the upstream (17,205 bp) and downstream

(23,954 bp) regions of O157-antigen gene cluster, respectively.

Each PCR product was sequenced by the shotgun method.

Sequence comparisons were performed using the Sequencher

software, ver. 4.9 (Gene Code Corporation, Michigan, USA) and

the CLUSTAL W program.

Data Deposition
The GenBank/EMBL/DDBJ accession numbers for sequences

of O157-antigen biosynthesis gene clusters and their flanking

regions are EC95-42; AB602249, PV276; AB602250, PV01-185;

AB602251, PV57; AB602252, PV00-24; AB602253.

Results

Characterization of O157:non-H7 Strains
Basic characteristics of non-H7 strains are shown in Table 1. All

strains were reacted with the anti-O157 serum, and genetically

confirmed to have the O157-specific rfbE gene. Sixteen of 21

strains were motile and their H serogroups determined by H-

specific antiserums were as follow: four, H45; five, H16; three,

H39; one, H19 and three, untypeable (HUT). Genotypic H

serotyping confirmed these results and further revealed that

among the five non-motile strains, four were fliC-H16 and one was

fliC-H10. Three strains (PV01-182, PV01-183 and PV496) were

typeable neither by serological nor genotypic methods. Although

the three H7 strains were Sor2 and GUD2 phenotypes, all non-

Table 1. Phenotypic and genotypic characteristics of O157:non-H7 and O157:H7 strains used in this study.

Strain Year Sora GUDb O157c rfbE H typed fliC-H typee stx1 stx2 ehxA eae eae typef tir bfpA astA irp2

O157:non-H7

EC95-42 1995 + + + + H45 H45 2 2 2 + a + + + 2

PV51 1996 + + + + H45 H45 2 2 2 + a + + + 2

PV52 1996 + + + + H45 H45 2 2 2 + a + + + 2

PV405 1997 + + + + H45 H45 2 2 2 + a + + + 2

PV00-100 2000 2 + + + H16 H16 2 2 2 2 2 2 2 2 2

PV276 1997 2 + + + NM H16 2 2 2 2 2 2 2 2 2

PV284 1997 2 + + + NM H16 2 2 2 2 2 2 2 2 2

PV325 1997 2 + + + NM H16 2 2 2 2 2 2 2 2 2

PV06-4 2006 2 + + + NM H16 2 2 2 2 2 2 2 2 2

PV807 1999 + + + + H16 H16 2 2 2 + e + 2 2 2

PV01-185 2001 + + + + H16 H16 2 2 2 + e + 2 2 2

PV01-276 2001 + + + + H16 H16 2 2 2 + e + 2 2 2

PV02-85 2002 + + + + H16 H16 2 2 2 + e + 2 2 2

PV56 1996 + + + + H39 H39 2 2 2 + k + 2 2 2

PV57 1996 + + + + H39 H39 2 2 2 + k + 2 2 2

PV193 1996 + + + + H39 H39 2 2 2 + k + 2 2 2

PV00-24 2000 + + + + H43 UT 2 2 2 2 2 2 2 2 2

PV05-43 2005 + + + + NM H10 2 2 2 2 2 2 2 2 2

PV01-182 2001 + + + + UT UT 2 2 2 2 2 2 2 2 2

PV01-183 2001 + + + + UT UT 2 2 2 2 2 2 2 2 2

PV496 1998 + + + + UT UT 2 2 2 2 2 2 2 2 +

O157:H7

Sakai 1996 2 2 + + H7 H7 + + + + c + 2 2 2

ATCC43895 1982 2 2 + + H7 H7 + + + + c + 2 2 2

ATCC43888 2 2 + + H7 H7 2 2 + + c + 2 2 2

aSor, Sorbitol fermentation.
bGUD, b-glucuronidase activity.
cO-serogroup detected by the E. coli O157-specific antibody.
dH-serogroup detected by the E. coli H-specific antibodies. NM; non-motile, UT; untypeable.
egenotype detected by the PCR-RFLP assay of the fliC gene. UT; untypeable.
fgenotype detected by the PCR assay of the eae gene.
doi:10.1371/journal.pone.0023250.t001

Evolution of E. coli O157 Serogroup
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H7 strains but five H16 (including NM but fliC-H16) were Sor+
and all strains exhibited GUD+.

The presence of virulence-related genes known to be associated

with specific pathotypes was examined in each of the non-H7

strains by PCR (Table 1). All of the H45, H16 (Sor+) and H39

strains carried the eae and tir genes, thus they were classified into

EPEC. Depending on the presence or absence of the eae gene, the

H16 and fliC-H16 strains were divided into two groups, termed as

H16/eae+ and H16/eae2. PCR-based intimin typing indicated

that the H45, H16/eae+ and H39 strains possessed the a, e and k
subclass intimin, respectively, while H7 strains possessed the c
subclass intimin. In addition, the H45 strains carried the bfpA and

astA genes. Because H45 strains possessed both the eae and bfpA

genes, they were classified into a typical EPEC. No strains

possessed the stx1, stx2, ehxA, elt, est, aggR, irp2, invE or ipaH genes,

or the specific region of the EAF plasmid (data not shown), except

PV496 (HUT) which had irp2.

Phylogenetic Relationships of O157:H7/non-H7 Strains
Based on the concatenated nucleotide sequences (3,423 bp) of

seven housekeeping genes, we analyzed the phylogenetic relation-

ships of H7/non-H7 strains. By comparison with the sequences of

the ECOR collection strains (data not shown), the H39 and H45

strains belonged to the B2 phylogroup, the H16/eae+, H16/eae2

and H43 strains belonged to the A phylogroup. HUT and fliC-

H10 strains were unclassified into any of the five major E. coli

phylogroups. The phylogenetic tree of non-H7 strains with 21 fully

sequenced E. coli strains expressing various O antigens was

constructed (Fig. 1). Non-H7 strains belonged to multiple

evolutionary lineages, and all of them were clearly different from

that of O157:H7 strains belonging to the E phylogroup.

Furthermore, H16/eae+ and H16/eae2 strains formed distinct

clusters in the A phylogroup.

Sequence Analysis of rfbE
The rfbE gene is located in the middle of the O157-antigen

biosynthesis gene cluster, and is known to be essential for the

synthesis of the O157 antigen. As shown in Fig. 2A, the rfbE

sequences from 24 H7/non-H7 strains formed two distinct

clusters, termed as ‘‘Sakai type’’ and ‘‘PV01-185 type’’. Sequences

from all H16/eae2, H43 and fliC-H10 strains and two HUT

strains were identical and were closely related to those of H7

strains (Sakai type). The PV01-185 type included all H16/eae+
(including PV01-185), H45, H39 strains and one HUT strain

within one nucleotide difference between H39 strains and others.

There were five to seven nucleotide differences between rfbE

sequences from the ‘‘Sakai type’’ and ‘‘PV01-185 type’’. Of note is

the fact that the distribution of the strains in the two rfbE types was

Figure 1. Correlation between evolutionary lineages and distribution of two types of rfbE genes among O157:H7/non-H7 stains. 21
fully sequenced E coli strains were used as references. The phylogenetic tree was constructed based on concatenated sequences of seven
housekeeping genes. E. coli phylogroups (A, B1, B2, D and E) were determined by comparing with sequences from the ECOR collection. O157:H7/non-
H7 strains carrying ‘‘Sakai-type rfbE’’ and ‘‘PV01-185-type rfbE’’ are indicated by clear and gray boxes, respectively. Six O157 strains indicated by
asterisks were used for the sequence comparisons of O157-antigen gene clusters and their flanking regions.
doi:10.1371/journal.pone.0023250.g001
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inconsistent with the results of the phylogenetic analysis (Fig. 1).

For example, although H16/eae+ and H16/eae2 strains were

related in the A phylogroup, they carried ‘‘PV01-185-type rfbE’’

and ‘‘Sakai-type rfbE’’, respectively.

Sequence Comparison of the O157-antigen Biosynthesis
Gene Clusters and Their Flanking Regions

To gain more information about genetic similarities or

differences of the O157-antigen gene clusters as well as their

flanking regions, we sequenced about 59 kb of a chromosomal

segment containing the O157-antigen gene clusters (13.7 kb) from

five representative strains: PV276 (H16/eae2) and PV00-24 (H43)

for ‘‘Sakai-type rfbE’’, and PV01-185 (H16/eae+), EC95-42 (H45)

and PV57 (H39) for ‘‘PV01-185-type rfbE’’. Then, fine nucleotide

sequence comparison of these strains as well as with EHEC

O157:H7 Sakai was performed.

O157-antigen biosynthesis gene cluster. As shown in

Fig. 3A, the gene organization of the O157-antigen gene cluster

was identical among six strains, and pairwise sequence

comparisons showed that their nucleotide sequences were also

highly conserved between the strains (Fig. 3B–D), except for those

of manB (encoding a phosphomannomutase) of ‘‘Sakai-type rfbE’’

strains (Fig. 3B). Concatenated sequences (12,498 bp) of 12 genes

from six strains formed two distinct clusters (Fig. 2B). This result is

consistent with the result of rfbE sequence analysis (Fig. 2A).

ManB might be subjected to selective pressure driven by host-

protein interactions, so the nature of the selective pressure was

evaluated on the dN/dS ratio among the Sakai-type rfbE strains.

The average dN/dS ratio of manB yielded 0.045 (range: 0.030 to

0.063), and that ratio was not higher than those of the other 11

gene sequences of the O157-antigen gene clusters (dN/dS

ratio = 0.282, range: 0.130 to 0.521), indicating that manB genes

were not influenced by positive selection.

Between strains carrying the ‘‘Sakai-type rfbE’’ (Fig. 3B), the

region of highly conserved sequence was restricted within the O157-

antigen gene cluster. In contrast, between strains carrying the

‘‘PV01-185-type rfbE’’ (Fig. 3C), the highly conserved sequence was

extended into the flanking regions including part or all of the his

operon. Although the dN/dS ratio of O157-antigen gene clusters

(0.282) showed evidence of purifying selection, that ratio was not

lower than those of flanking genes of the O157-antigen gene cluster

(hisG to hisC and wcaM to wcaK; 0.069 and 0.063, respectively),

suggesting that the effect of purifying selection on the O157-antigen

gene cluster was lower than those of flanking genes.

Regions flanking the O157-antigen biosynthesis gene

cluster. The gene organization of regions flanking the O157-

antigen gene cluster was almost identical, but Sakai lacked two small

genes (corresponding to yoeB and yefM of E. coli K-12) between the

yeeZ and hisL genes, PV57 contained an insertion sequences (IS200-

like) between the sbcB and yeeF genes, and three strains carrying the

‘‘PV01-185-type rfbE’’ lacked two genes, yeeD and yeeE (Fig. 3A).

Pairwise sequence comparisons identified a number of small

indels (insertion/deletions) in the O157-antigen gene cluster

flanking regions between compared strains, and most of them

were located in intergenic regions (Fig. 3B–D). Furthermore, we

found several repetitive sequences termed as the repetitive

extragenic palindromic (REP) sequences, all of which were located

within intergenic regions of yeeZ-hisL, hisI-wzz, wcaK-wzxC, cpsG-

cpsB or wcaA-wzc (Fig. 3A), and ranged in size from 34 to 36 bp

(Fig. 4A). In the region of wcaA-wzc, all strains conserved a REP

sequence (Fig. 3A and Fig. 4C, as an example, between EC95-42

and PV57). In the region of wcaK-wzxC in EC95-42, four REP

sequences were inserted in the same orientation (Fig. 4B). While in

the regions of wcaK-wzxC in EC95-42 and PV276, and cpsG-cpsB in

PV276, two REP sequences were inserted in the same orientation

(Fig. 4B). Many indels involved REP sequences (Fig. 4B), and some

positions of indels including REP sequences were coincident with

junction points of the sequence similarity (Fig. 3B–D and Fig. 4C).

Between EC95-42 and PV57, the level of sequence similarity was

significantly changed in the intergenic region of wcaK-wzxC

(Fig. 4C), and the hisI-wzz intergenic region was also observed as

a junction point between some strains (as an example, between

Sakai and PV01-185, in Fig. 4C).

To evaluate the evolutionary relationships of regions flanking

the O157-antigen gene cluster, concatenated sequences of yeeZYF

(left hand), wcaKLM, wzxC-wcaJ-cpsG, cpsB-wcaGHI and wza-wzb-

wzc (right hand) in O157 strains and their homologues in other E.

coli strains were compared (Fig. 5). Sequences of the wza-wzb-wzc

Figure 2. Phylogenetic analysis of the O157-antigen biosyn-
thesis genes. (A) Phylogenetic tree of the rfbE from three O157:H7 and
21 O157:non-H7 strains. The six strains indicated by asterisks were used
for the sequence comparisons of O157-antigen gene clusters and their
flanking regions. (B) Phylogenetic tree of the O157-antigen biosynthesis
gene cluster from six O157:H7/non-H7 strains. The tree was constructed
based on the concatenated sequences of 12 genes in the O157-antigen
gene cluster. Neighbor-joining trees were generated by using Tamura-
Nei model. A bootstrap test with 1,000 replicates was used to estimate
the confidence of the branching patterns of the tree.
doi:10.1371/journal.pone.0023250.g002
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Figure 3. Comparisons of the O157-antigen biosynthesis gene clusters and their flanking regions in six O157 strains. (A) Genetic
organization of the O157-antigen gene clusters and their flanking regions. Red arrows indicate orthologs associated with the O157-antigen
biosynthesis, and white arrows indicate ORFs that are not conserved in all six strains. Arrowheads indicate insertion sites of REP sequences. (B–D)
Pairwise sequence comparisons. (B) Comparisons between O157 strains carrying ‘‘Sakai-type rfbE’’. (C) Comparisons between O157 strains carrying
‘‘PV01-185-type rfbE’’. (D) Comparisons between ‘‘Sakai-type rfbE’’ and ‘‘PV01-185-type rfbE’’ strains. Sakai is compared with PV01-185, and EC95-42 is
compared with PV276. The genetic organization of the O157-antigen gene clusters and their flanking regions are shown in upper panels, and levels of
% DNA sequence identity calculated with a 100 bp sliding window and a 10 bp step size are shown in lower panels. The vertical lines indicate regions
showing insertion and/or deletion of fragments, and of them, lines with circular heads indi cate indels containing REP sequences.
doi:10.1371/journal.pone.0023250.g003
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Figure 4. Schematic drawing of REP sequence-containing regions of O157-antigen biosynthesis gene cluster flanking regions. (A)
Sequence alignment of the REP sequences located in the O157-antigen gene cluster flanking regions. The consensus sequence is derived from
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formed some clusters and that phylogenetic tree was similar to that

of housekeeping genes (Fig. 1), although some sequences (including

from PV01-185) did not correlate with their phylogroups. This

result indicated that regions covering wza-wzb-wzc on PV276,

PV00-24, EC95-42 and PV57 were inherited in each lineage

during their evolution. Similarly, it was thought that regions

covering yeeZYF on EC95-42 and PV57 were also inherited in each

lineage. In contrast, sequences of wcaKLM showed no relationship

with their phylogroups, and their sequences from O157 strains did

not correlate with their types of the O157-antigen gene cluster.

Discussions

The O157-antigen gene clusters from O157:H7/non-H7 strains

are highly conserved among strains, although they are divided into

two distinct types based on nucleotide sequence similarity. The

distribution of the two types of O157-antigen gene clusters do not

appear to correlate with evolutionary lineages of their strains,

which strongly suggests that horizontal transfer of both types of

O157-antigen gene clusters has occurred independently among E.

coli strains.

It is known that EHEC O157:H7 emerged from an O55:H7-

like EPEC ancestor by specific events including the acquisition of

the O157-antigen biosynthesis gene cluster by horizontal gene

transfer [25]. Leopold et al. [26] have performed genome-wide

sequence comparison between EHEC O157:H7 and EPEC

O55:H7 strains, showing that a large region up to 130 kb

including the O-antigen gene cluster, the his operon and the

colanic acid biosynthesis gene cluster was replaced by the result of

the recombination events. The present sequence comparison of

O157-antigen gene clusters and their flanking regions between

PV01-185-type O157 strains (Fig. 3C) provided evidence that the

previously published data [40]. The palindromic motif is underlined. The non-consensus sequences were highlighted. (B) Four regions showing
insertion and/or deletion of fragments including REP sequence(s); yeeZ-hisG, hisI-wzz wcaK-wzxC and cpsG-cpsB are compared between strains. REP
sequences are indicated by arrowheads and gray boxes indicate missing regions on each of the compared strains. (C) The nucleotide sequences from
wcaK to wzxC and from wcaA to wzc on EC95-42 are compared with those of PV57, and the sequences from hisI to wzz on PV01-185 are compared
with those of Sakai. Locations of SNPs by pairwise sequence comparison are indicated by vertical lines (lower panel).
doi:10.1371/journal.pone.0023250.g004

Figure 5. Phylogenetic analyses of the O157-antigen gene cluster-flanking regions. The phylogenetic trees were constructed based on
concatenated sequences of yeeFYZ, wcaMLK, wzxC-wcaJ-cpsG, cpsB-wcaIHG and wzc-wzb-wza by neighbor-joining method using Tamura-Nei model.
O157 strains carrying ‘‘Sakai-type rfbE’’ and ‘‘PV01-185-type rfbE’’ are indicated by clear and gray boxes, respectively. Colors (red, green and blue)
indicate their E. coli phylogroups (A, B1 and B2), respectively.
doi:10.1371/journal.pone.0023250.g005
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O-antigen shift has taken place via the horizontal transfer of a

large fragment (at least 34 kb, in the case between PV57 and

PV01-185) encoding not only the O157-antigen gene cluster but

also neighboring genes including the his operon. In the case

between EC95-42 and PV57 (Fig. 3C, middle graph), the

comparable conserved sequences with those of O157-antigen

gene clusters were observed in the 4.5 kb region including three

genes, wzxC, wcaJ and cpsG, suggesting that the diversified region

from wcaM to wcaK was replaced by another genetic event on

EC95-42 and/or PV57.

On the O157-antigen gene cluster, sequences of the manB gene

had greater divergence than those of the other genes. Samuel et al.

[27] reported that the manB gene originally present in the O157-

antigen gene cluster of EHEC O157:H7 has been replaced by an

equivalent gene in the colanic acid gene cluster. Indeed, the cpsG

genes (a homolog of manB) in the colonic acid gene clusters of

O157 strains have a high level of sequence identity (.95%) with

the manB genes, and there was no evidence of selective pressure in

the manB sequences, suggesting that distribution of the manB genes

of Sakai-type strains can be attributed to gene conversion events

with homologous genes within the genome.

The DNA sequences of the wzz genes showed significant

divergence between some strains. Although not essential for the

synthesis and polymerization of O antigen, Wzz regulates the

chain length distribution of the O-antigen chain. The length of the

O-antigen chain affects various properties of Gram-negative

bacteria, including sensitivities to sera [28] and bacteriophages

[29], and the function of type III secretion systems [30]. The

encoded protein showed only 89.9% amino-acid sequence identity

between O157 strains Sakai and PV01-185. These sequence

variations in Wzz may affect the length of O157-antigen chains,

furthering the virulence potential [30,31].

Horizontal gene transfer is widely regarded as a major genetic

mechanism to shift O serogroups between and within Gram-

negative bacterial species, but the mechanism is not well

understood. Most evidence obtained by sequence comparisons

concluded that the replacement of the incoming fragment was

achieved by homologous recombination, because specific sequenc-

es that promote specific recombination, such as IS elements and

Chi sequences [32] were not found around the possible

recombination points. In this study, although these specific

sequences were not found in the sequenced regions, except the

IS200-like element inserted between sbcB and yeeF on PV57, we

noticed the presence of several REP sequences in the regions

flanking the O157-antigen gene clusters. REP sequences are

highly repetitive sequences found in the chromosome of E. coli and

other bacteria [33]. The presence of REP sequences has been

related to several functions, such as mRNA stabilization [34] and

transcription control [35]. Additionally, REP-related sequences

are known as binding sites for DNA polymerase I [36], DNA

gyrase [37], and integration host factor (IHF) [38], and hotspots of

IS element integration [39]. Although it is not clear whether REP

sequences are associated with the O157-antigen shifts, it is

reasonable to suggest that some genomic rearrangements of

chromosomal regions flanked by the O157-antigen gene clusters

may have involved the REP sequences. In this study, we could find

only a few cases where REP sequences were appeared to involve

with the horizontal gene transfer. A genomewide comparative

analysis will help to better understand the function of the REP

sequence involved in the horizontal gene transfer.

In summary, the present study showed that O157:non-H7

strains belong to multiple evolutionary lineages distinct from

EHEC O157:H7 strains, regardless of the eae-positive or -negative

strains. Although all O157 strains possessed highly conserved

O157-antigen gene clusters, these clusters were divided into two

distinct types at the nucleotide sequence level, and surprisingly,

their distribution did not follow the evolutionary lineages of the

strains. From these results, we conclude that horizontal transfer of

the two types of O157-antigen gene clusters induced the

emergence of multiple O157 lineages within E. coli. Our results

provide novel information regarding the distribution of O157-

serogroup strains in E. coli. Additionally, we speculate that REP

sequences in the regions flanking the O-antigen gene clusters may

involve one of the driving forces for exchange and evolution of O-

antigen loci. To better understand the genetic mechanism(s)

generating wide variety of O serogroups, we need to know more

about whether REP sequences is involved in O-antigen shifts in

other E. coli O serogroups and also in other Gram-negative

bacterial species.
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